Physics & Mathematics

Browse

Recent Submissions

Now showing 1 - 20 of 103
  • Item
    Effect of Beam Length and Braced Length on Moment-Rotation Behavior of Castellated Beams
    (Scientific Research, 2013-09) Gerami, Mohsen; Saberi, Hamid; Saberi, Vahid; Firouzi, Ashkan
    The presence of web openings in castellated beams introduces different modes of failure at the perforated sections such as excessive stresses in tee-sections, excessive stresses in mid-depth of the web post, web-post buckling, developing plastic Vierendeel mechanism. This paper presents nonlinear behavior of castellated beams under moment gradient loading and investigates the effect of beam length and braced length on moment-rotation behavior and ductility of this type of beams. Accuracy of finite element models of plain-webbed beams is evaluated comparing moment-rotation behavior and failure mode of other researchers’ numerical models and cleared a satisfactory accuracy. Rotational capacity of castellated beams, derived from numerical modeling, is compared with corresponding I-shaped plain-webbed steel beams and it is cleared that for the short beams, web openings reduce energy absorbance and plastic moment capacity of the beams more than long ones.
  • Item
    Study on the Relationship between Aspects, Orientation,Type, and Unit Position toward to Indoor Air Quality in Flat
    (Scientific Research, 2013-05) Tobing, Rumiati R.; Karyono, Tri Harso; Sabaruddin, Arief
    Thermal factor is one of the main factors of the green building concept. The purpose of this research is to test building performance through design aspect that influences thermal comfort, the design aspects include: orientation, building type, and position of the flat. Method used in this research is covariance analysis, testing the influence of factor variable toward respond variable (indoor temperature) with taking outdoor temperature as concomitant variable. The cases tested on this research are Cigugur Tengah, Industri Dalam, and Sarijadi flats. Result of covariance analysis shows that the building orientation factor variable is most influentially variable toward thermal comfort, compared with building type factor variable; even the unit position factor variable has no significant influence toward thermal comfort.
  • Item
    Some New Results on Prime Graphs
    (Scientific Research, 2012-07) Vaidya, Samir K.; Prajapati, Udayan M.
    We investigate prime labeling for some graphs resulted by identifying any two vertices of some graphs. We also introduce the concept of strongly prime graph and prove that the graphs Cn, Pn, and K1,n are strongly prime graphs. Moreover we prove that Wn is a strongly prime graph for every even integer n ≥ 4.
  • Item
    Decisive Parameters for Backwater Effects Caused by Floating Debris Jams
    (Scientific Research, 2015-12) Hartlieb, Arnd
    The dimensional analysis of the backwater effect caused by debris jams results in the Froude number of the approach flow in the initial situation prior to debris jam formation and the debris density as decisive parameters. For the more precise detection of the influence of both parameters the results of different hydraulic model test series at the Laboratory of Hydraulic and Water Resources Engineering of the Technical University of Munich concerning debris jams at spillways as well as at racks for the retention of wooden debris were uniformly evaluated. On the one hand a significant increase of the backwater effect with a rising Froude number of the approach flow could be shown. This is in good correlation to recent test results for debris jams at retention racks at the Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss Federal Institute of Technology Zurich. On the other hand a significant increase of the backwater effect could also be shown for a rising debris density. However, the test results also show that significantly different backwater effects can occur in different test runs with identical test conditions. These differences are a result of the randomness of debris jam development, and therefore, a more exact quantification of the dependence of the backwater effect on the Froude number of the approach flow and on the debris density is not considered useful for the present results.
  • Item
    Combined Effect of Magnetic Field and Compressibility on Rayleigh Taylor Instability
    (Scientific Research, 2015-12) Mitra, Aniruddha; Mandal, Labakanta; Roychoudhury, Rajkumar; Khan, Manoranjan
    The nonlinear analysis of the combined effect of magnetic field and compressibility on the growth rate of Rayleigh-Taylor (RT) instability has been investigated for inviscid two fluid interface. We have considered an interface-parallel density dependent magnetic field and used Layzer’s approach to analyze the problem. We have also investigated the relative effect of magnetic pressure and hydrodynamic pressure on RT instability through the variation of the ratio of hydromagnetic pressure to magnetic pressure ( β ). Dynamics of bubble and spike has been studied analytically and numerically. Finally, we have obtained the stability conditions of our result through linear stability analysis
  • Item
    Effect of Curvature of Tip and Convexity of Electrode on Localization of Particles
    (Scientific Research, 2015-12) Ghonge, Sudarshan; Prasad, D. Nagendra; Narayan, Swarnim; Francis, Hains; Sethi, Astha; Deb, Subimal; Banerjee, Souri
    We investigate the effect of curvature of the tip and the convexity of an electrode on the localization of suspended particles under the combined effect of dielectrophoresis and AC electroosmosis through simulations using COMSOL Multiphysics. A systematic analysis of the parameters defining the convexity of the electrode—the radius of the tip and the apex angle shows that suspended particles can be trapped closely to the electrode edges for comparatively larger tip radii and apex angles. This in turn should favour the trapping of polarizable molecules between the electrodes only if the fluid velocities at the vortices are not very strong.
  • Item
    Experimental and Numerical Investigations on Plate-Type Heat Exchanger Performance
    (Scientific Research, 2015-03) Ikegami, Yasuyuki; Mutair, Sami; Kawabata, Yusuke
    Low-grade Thermal Energy Conversion (LTEC) is a potential source of renewable energy. One of its forms is the Ocean Thermal Energy Conversion (OTEC) in which the temperature difference between the warm surface water and the cold deep water of the ocean is utilized in driving a heat engine cycle. Unlike the conventional thermal power generation systems, the temperature difference between the heat source and heat sink in OTEC system is relatively small. Therefore, efficient heat exchangers should be used since heat exchangers play a major role in the overall system performance and economics. Due to their efficiency even in operating at small temperature difference, plate heat exchangers are strong candidates in OTEC systems. In this study, performance of a herringbone plate-type heat exchanger is experimentally investigated. Moreover, numerical simulation results obtained by using Fluent CFD software are compared with the experimental results and found in good agreement.
  • Item
    Weis-Fogh Mechanism Mathematic Model of Wave Power Generation Device
    (Scientific Research, 2014-12) Chen, Xin; Kuang, Quan; Li, Yang; Wang, Songbo; Ye, Yunling; Zhang, Shesheng
    A Weis-Fogh mechanism wave power generation system is designed, its physical model and mathematical model are discussed, and the component expressions of fluid dynamic expression are derived. Adopting numerical integral algorithm, the work done by fluid force acting on wing is calculated.
  • Item
    Impact of the Housing on the Air Flow and the Thermal Behavior of an Automotive Clutch System
    (Scientific Research, 2015-03) Levillain, Anthony; Brassart, Pascale; Patte-Rouland, Béatrice
    New directives and increasing competition push automakers to get better performances (engine power increase), along with mass and size reduction (consumption). These evolutions lead to an increase of the thermal solicitations undergone by the automotive clutches whereas their weight must be decreased, as it is one of the main influent factors on CO2 emissions. Previous studies only focused on the air flow created by the clutches, but none of them have shown the impact of the clutch housing on the cooling of the clutch parts. In order to determine the influence of the clutch housing on the thermal behavior of automotive clutch systems, a numerical study has been performed on a simplified model of a clutch system. A parametric variation has been performed on the clutch housing size in order to evaluate its impact on the flow and the thermal behavior of clutches. The results show that clutch housing has a significant impact on the air flow and the thermal behavior of clutches. Thermal tests on real clutches with and without clutch housing have confirmed these results.
  • Item
    Novel Power Law of Turbulent Spectrum
    (Scientific Research, 2014-06) Osonphasop, Chusak; Nakagawa, Takeo R. M.
    This paper is concerned with novel power law of turbulent energy spectrum and the relevant experiment in tidal current. The power law in the inertial sub-range has been proposed in such a way that the power of the one-dimensional turbulent energy spectrum varies from 0 to -2 approximately, but it is accompanying the small oscillation with increasing the wave number. The well-known Kolmogorov -5/3 power law is merely one facet, to appear within the present proposed novel power law. The turbulent energy spectra (Su, Sv, Sw) in x-, y-and z-directions, respectively oscillate with the wave number. It is found that the turbulent in the tidal currents is three dimensional, and the intermittence of momentum transport is a predominant and characteristic feature in tidal current.
  • Item
    Simulation of Average Turbulent Pipe Flow: A Three-Equation Model
    (Scientific Research, 2014-03) Alammar, Khalid
    The aim of this study is to evaluate a three-equation turbulence model applied to pipe flow. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed average pipe flow. The model is based on the Reynolds averaged Navier-Stokes equations. Boussinesq hypothesis is invoked for determining the Reynolds stresses. Three local length scales are solved, based on which the eddy viscosity is calculated. There are two parameters in the model; one accounts for surface roughness and the other is possibly attributed to the fluid. Error in the mean axial velocity and Reynolds stress is found to be negligible
  • Item
    The Research of Performance Comparison of Displacement and Mixing Ventilation System in Catering Kitchen
    (Scientific Research, 2013-07) Yuan, Jianping; Wang, Longyan; Liu, Xiaofan
    A commercial kitchen is a complicated environment where multiple components of a ventilation system including hood exhaust, conditioned air supply, and makeup air systems work together but not always in unison. And the application of an appropriate ventilation system is extremely vital to keep the catering kitchen comfortable, which consequently promotes the productivity and gains. Application of two systems (traditional mixing ventilation system and thermal displacement ventilation system) is compared in a typical kitchen environment using computational fluid dynamics modeling which was used to investigate the difference between mixing and displacement ventilation (DV). It was reported in two parts, one on thermal comfort and the other one on indoor air quality. The results show that DV can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and ankle level, and a low percentage of dissatisfied people, and may provide better IAQ in the occupied zone. So it was persuasive that using thermal displacement ventilation in kitchen environment allows for a reduction in space temperature without increasing the air-conditioning system capacity.
  • Item
    Effect of Hub-Ratio on Performance of Asymmetric Dual-Rotor Small Axial Fan
    (Scientific Research, 2013-07) Wu, Yongmin; Jin, Yingzi; Jin, Yuzen; Wang, Yanping; Zhang, Li
    Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-rotor axial fans. Like axial fan, many factors have influence on the performance of the asymmetric dual-rotor small axial flow fan, such as the wheel hub ratio, blade shape, blade number, stagger angle and the tip clearance. Because wheel hub ratio has great impact on the performance of the fan, we choose the size of wheel hub ratio as a variable factor to study the model change. There is a different wheel hub ratio between front stage impeller and rear stage of asymmetric dual-rotor small axial fan, so it is very beneficial to select the greater wind area that the fan area of external diameter minuses the area occupied by the blades and the hub as front stage impeller. In this paper, the hub-ratio of front stage impeller is 0.72, and that of rear stage is 0.72, 0.67 and 0.62 respectively along with the front stage impeller. Three kinds of models with different hub ratio of rear stage are simulated using the CFD software and the static characteristics are obtained. Based on the experimental test results, the internal flow field of the asymmetric dual-rotor small axial fan is analyzed in detail, the impact trends of different hub-ratio on the performance of asymmetric dual-rotor small axial fan are obtained and the argument of structure optimization for dual-rotor small axial fan is provided.
  • Item
    Performances and Rotating Flows of Rotary Jet Pump
    (Scientific Research, 2012-11) Komaki, Keiichi; Kanemoto, Toshiaki; Sagara, Kenji
    The rotary jet pumps, namely the pitot pumps, are composed of the rotating casing with the impeller channels and the stationary pick-up tube for discharging, are known as the one of high pressure pumps in the U.S. market. The pumps, however, have been prepared experientially, because of poor knowledge for the flow conditions and the pump performances. Then, this paper discusses the pump performances and the internal flow conditions in the rotating casing. Three types of the pick-up tube were prepared for the experiments to know the pump performances and the flow conditions in the rotating casing. The flow in the rotating casing is nearly in the forced vortex type and gives the higher pressure at the pick-up tube inlet. The more cross-sectional area of the pick-up tube channel is large, the more head and discharge are higher with excellent efficiency. Moreover, the authors confirmed that the secondary flow runs toward the rotating center at the wake flow region behind the pick-up tube.
  • Item
    Analysis on Physical Mechanism of Sound Generation inside Cavities Based on Acoustic Analogy Method
    (Scientific Research, 2013-03) Yang, Dangguo; Li, Jianqiang; Liu, Jun; Zhang, Yi; Li, Yaohua
    Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.
  • Item
    A New Surfactant Flooding Model for Low Permeability Reservoirs
    (Scientific Research, 2013-03) Li, Yongwei; Yin, Lizhong
    Surfactant as a successful Enhanced Oil Recovery (EOR) agent has been widely used in many mature reservoirs. This research focuses on the description of surfactant solution at low permeability condition. A new three-dimensional, two phase, three-component surfactant simulator is presented. The simulator is based on the non-Darcy flow characteristics of surfactant flooding in the low permeability formations. The change of threshold pressure and influences of surfactant on convection, diffusion, adsorption, and retention, are all considered. A new equation for the calculation of surfactant adsorption is employed, which can significantly promote the matching degree between the mathematical model and field practice. The design of this new simulator is to help the decision-making in the reservoir engineering analysis of surfactant EOR projects, to face the challenge of the design of injection schemes, to assist the surfactant screening, to screen and assess laboratory and field data and their effect on the performance predictions, and to find the optimal methods of field development.
  • Item
    Effects of Orbital Motion on the Boundary Layer Flow on a Spinning Disk
    (Scientific Research, 2012-12) Munekata, Mizue; Jobi, Naoya; Ikebe, Koichi; Yoshikawa, Hiroyuki
    The objective of this study is to experimentally examine the effects of orbital motion on the boundary layer flow on a spinning disk. The boundary layer flow on the disk is visualized by the oil flow method, and velocity in the boundary layer is measured by the hot-wire method. For the oil flow pattern in the case of spinning motion only, streaks are clearly observed on the disk as transient vortices, but by adding orbital motion to the spinning motion, we find that streaks are not observed in a certain range of orbital conditions. With increasing orbital motion speed, the laminar region becomes narrower and transition is promoted from the inward region of the disk, regardless of the direction of rotation. Also, with the addition of orbital motion, the velocity profile in the boundary layer becomes more asymmetric with respect to the spin axis of the disk. Furthermore, stationary vortices do not appear on the disk when the orbital speed is beyond a certain critical value. Therefore, the lack of streaks in the oil film pattern when orbital motion is added is due to the spatiotemporal unsteadiness of the flow field on the disk.
  • Item
    A Computational Study of the Gas-Solid Suspension Flow through a Supersonic Nozzle
    (Scientific Research, 2012-12) Sun, Jian G.; Kim, Heuy D.; Park, Jin O.; Jin, Ying Z.
    The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier-Stokes equations. A fully implicit finite volume scheme has been employed to discretize the governing equations. Based upon the present CFD results, the particle loading effect on gas-solid suspension flow was investigated. The results show that the presence of particles has a big influence on the gas phase behavior. The structure of shock train, the separation point, and the vortex of the backflow are all related to particle loading. As the particle loading increases the flow characteristics behave differently such as 1) the strength of shock train decreases, 2) the separation point moves toward the nozzle exit, 3) the number and strength of vortex increase, 4) the strength of first shock also increases while the other pseudo shocks decreases. The change of gas flow behavior in turn affects the particle distribution. The particles are concentrated at the shear layers separated from the upper wall surface.
  • Item
    Comparative Analysis of Velocity Decomposition Methods for Internal Combustion Engines
    (Scientific Research, 2012-09) Ölçmen, Semih; Ashford, Marcus; Schinestsky, Philip; Drabo, Mebougna
    Different signal processing technique performances are compared to each other with regard to separating the mean and fluctuating velocity components of a simulated one-dimensional unsteady velocity signal comparable to signals observed in internal combustion engines. A simulation signal with known mean and fluctuating components was generated using experimental data and generic turbulence spectral information. The simulation signal was generated based on observations on the measured velocity data obtained using LDV in a motored Briggs-and-Stratton engine at about 600 RPM. Experimental data was used as a guide to shape the simulated signal mean velocity variation; fluctuating velocity variations with specified spectrum and standard deviation was used to mimic the turbulence. Cyclic variations were added both to the mean and the fluctuating velocity signals to simulate prescribed cyclic variations. The simulated signal was introduced as input to the following algorithms: ensemble averaging; high-pass filtering; Proper-Orthogonal Decomposition (POD); Wavelet Decomposition (WD) and Wavelet Decomposition/Principal Component Analysis (WD/PCA). The results were analyzed to determine the best method in correctly separating the mean and the fluctuating velocity information, indicating that the WD/PCA performs better compared to other techniques.
  • Item
    Modeling Evaporating Droplets in Complex Unsteady Flows
    (Scientific Research, 2012-06) Ghosal, Sandip; Apte, Sourabh V.
    In many applications, a moving fluid carries a suspension of droplets of a second phase which may change in size due to evaporation or condensation. Examples include liquid fuel drops in engines and raindrops or ice-crystals in a thunderstorm. If the number of such particles is very large, and, if further, the flow is inhomogeneous, unsteady or turbulent, it may be practically impossible to explicitly compute all of the fluid and particle degrees of freedom in a numerical simulation of the system. Under such circumstances Lagrangian Particle Tracking (LPT) of a small subset of the particles is used to reduce the computational effort. The purpose of this paper is to compare the LPT with an alternate method that is based on an approximate solution of the conservation equation of particle density in phase space by the method of moments (MOM). Closure is achieved by invoking the assumption that the droplet size distribution is locally lognormal. The resulting coupled transport equations for the local mean and variance of the particle size distribution are then solved in conjunction with the usual equations for the fluid and associated scalar fields. The formalism is applied to the test case of a uniform distribution of droplets placed in a non homogeneous temperature field and stirred with a decaying Taylor vortex. As a benchmark, we perform a direct numerical simulation (DNS) of high resolution that keeps track of all the particles together with the fluid flow.