Decomposition of Riemannian Curvature Tensor Field and Its Properties

dc.contributor.authorGicheru, James,G
dc.contributor.authorNgari, Cyrus, G
dc.date.accessioned2022-02-07T13:56:52Z
dc.date.available2022-02-07T13:56:52Z
dc.date.issued2018-11-22
dc.descriptionArticleen_US
dc.description.abstractDecomposition of recurrent curvature tensor fields of R-th order in Finsler manifolds has been studied by B. B. Sinha and G. Singh [1] in the publications del’ institute mathematique, nouvelleserie, tome 33 (47), 1983 pg 217-220. Also Surendra Pratap Singh [2] in Kyungpook Math. J. volume 15, number 2 December, 1975 studied decomposition of recurrent curvature tensor fields in generalised Finsler spaces. Sinha and Singh [3] studied decomposition of recurrent curvature tensor fields in a Finsler space. In this paper we study the Riemannian Curvature tensor with its properties its decomposition of the Riemannian curvature tensor and its properties. This raises important question: in Riemannian manifold , is it possible to decompose Riemannian curvature tensor of rank four, get another tensor of rank two and study its properties?en_US
dc.identifier.citationGicheru and Ngari; JAMCS, 30(1): 1-15, 2019; Article no.JAMCS.43211en_US
dc.identifier.uriDOI: 10.9734/JAMCS/2019/43211
dc.identifier.urihttp://repository.embuni.ac.ke/handle/embuni/3965
dc.language.isoenen_US
dc.publisherScience Domainen_US
dc.subjectdecomposition.en_US
dc.subjectRiemannian curvature tensoren_US
dc.titleDecomposition of Riemannian Curvature Tensor Field and Its Propertiesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
28855-Article Text-54231-1-10-20190124.pdf
Size:
323.05 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
28855-Article Text-54231-1-10-20190124.pdf
Size:
323.05 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: