Chemistry
Permanent URI for this collection
Browse
Browsing Chemistry by Subject "Adsorption"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Contaminants in Industrial Lean Amine Solvent and their Removal using Biopolymers: A New Aspect(2014-03) Pal, Priyabrata; Banat, FawziNatural biopolymers are gaining increasing attention due to their extraordinary affinity towards adsorption of heavy metal ions. In this research, biopolymers such as chitosan and alginate were used to remove contaminants from lean alkanolamine (methyldiethnolamine; MDEA) solvent. The sweetening of natural gas is mostly done by absorption using single or mixed alkanolamine solutions. Alkanolamine solvent quality deteriorates abruptly while absorbing H2S/CO2 from natural gas and causes foaming in natural gas sweetening unit. Different types of organic as well as inorganic species are present as contaminant in lean MDEA solvent. Heat stable salts such as acetate and propionate are present in high amount in lean MDEA solutions and detected using Ion chromatograph and UV-VIS spectrophotometer. Substantial amount of elements (chromium, iron etc.) were detected using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis. Chitosan coated sand (CCS) and calcium alginate (Ca-Alg) beads were prepared and used in batch adsorption studies to monitor the removal of these contaminants in MDEA solvents. FTIR studies and SEM analysis were done to observe the underlying principle of bio-adsorbent preparation. It was observed that both CCS and Ca-Alg removed heavy metal ions like chromium (40% and 61%) and iron (21% and 62%) significantly. Ca-Alg could also remove organic acid anions (36%) appreciably. The maximum uptake capacity for chitosan coated sand was found to be 59.88 μgm/gm for iron and 38.022 μgm/gm for chromium.Item The Impact of the Physiochemical Properties of Manufactured Nanoparticles on In vitro and In vivo Evaluation of Particle Toxicity(2014-04) Horie, Masanori; Iwahashi, HitoshiRecently, many in vitro studies evaluating the effects of nanoparticles on cellular physiology have been reported. In in vitro systems, the nano-objects induce not only primary effects but also confounding (artificial) effects. Investigations into the physiological and pathological effects induced in cells by in vitro exposure to nano-objects may be confounded by the specific physical and chemical properties of the objects. For example, protein adsorption from the culture media to the surfaces of nano-objects can essentially starve the cells. In addition, certain nanoparticles can release metal ions into cell culture or bioassay reagents. The protein adsorption and metal ion release by the nano-objects can interfere with ELISA and LDH assays, producing inaccurate results. Moreover, unstable or non-homogenous suspensions of nano-objects can result in imprecise in vitro evaluations of nano-objects. For accurate in vitro testing of nanoparticles, we should consider the effects of these three important properties of nanosuspensions: protein adsorption, metal ion release, and suspension stability.