Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wakindiki, Isaiah I.C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Long-term effects of tillage, sub-soiling, and profile strata on properties of a Vitric Andosol in the Kenyan highlands
    (2008-09) Ngetich, F.K.; Wandahwa, Philip; Wakindiki, Isaiah I.C.
    Tillage alters the structure and composition of soil aggregates affecting infiltration rate (IR) and hydraulic conductivity (K). This study investigated the long-term effects of conventional, minimum, and no-tillage with or without subsoiling on aggregate stability, soil organic carbon (SOC), bulk density, IR, and K of a stratified Vitric Andosol in Kenyan highlands. The experiment was laid out in a spilt-split plot design with three replicates. Stepwise profiles were dug in order to expose the soil layers at 0 to 30, 30 to 60, and 60 to 90 cm depths. Soil bulk density was 6% lower in the minimum tilled and 12% lower in the conventionally tilled plots that were subsoiled compared to treatments with no subsoiling and tillage. Subsoiled treatments also increased sequestration of SOC by 20% in the 30 to 60 cm layer. Conventional tillage, however, decreased aggregate stability by 32% compared to no-tillage treatments. Subsoiling in combination with minimum tillage decreased IR by 25% but increased IR about three-fold in conventionally tilled plots. Hydraulic conductivity in the 60 to 90 cm layer was lowest, which constrained water movement in this stratified soil.

University of Embu | Library Website | MyLOFT | Chat with Us

© University of Embu Digital Repository. All Rights Reserved.