Browsing by Author "Sarafian, Haiduke"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Angular Impulse and Spinning Bouncing Ball(2017-07) Sarafian, Haiduke; Lobe, NanazA solid ball of mass m, size r and spin ω about an axis through its center is dropped freely from a height h on a rough horizontal plane. Assuming its angular momentum is parallel to the horizontal plane upon impact it bounces repeatedly drifting on a vertical plane. We analyze the kinematics of the bouncing ball assuming the impacts are semi-elastic without slipping. By varying the spin and relevant parameters, a robust Mathematica [1] program enables simulating the trajectoriesItem Linear, Cubic and Quintic Coordinate-Dependent Forces and Kinematic Characteristics of a Spring-Mass System(2013-09) Sarafian, HaidukeBy combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen initial condition without compromising the generality of the problem we analyze the problem considering only the leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method producing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. According to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being used throughout the investigation and proven to be an indispensable computational toolItem Simulation of Transverse Standing Waves(Scientific research, 2014-08) Sarafian, HaidukeSolutions of a hyperbolic partial differential equation in one dimension with appropriate initial and boundary conditions are conducive to standing waves. We consider practical initial deformations not reported in literature. Utilizing a Computer Algebra System such as Mathematica we put the formulation into action simulating the standing waves