Browsing by Author "O'Neill, M.K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya Part 2. Biomass decomposition, N mineralization, and N uptake by maize(Kluwer Academic Publishers, 1999-06) Mugendi, Daniel N.; Nair, P.K.; Mugwe, Jayne; O'Neill, M.K.; Swift, M.J.; Woomer, P.A major challenge in developing agroforestry approaches that utilize tree-leaf biomass for provision of N to crops is to ensure synchrony between the N released from decomposing prunings and N demand by crops. A study was conducted in the subhumid highlands of Kenya to assess the rate of decomposition and mineralization of soil-incorporated Calliandra calothyrsus Meissner (calliandra) and Leucaena leucocephala (Lam.) de Wit (leucaena) tree biomass and maize roots (Zea mays L.) both in an alley cropping and a sole cropping system. The amount of mineralized N peaked four weeks after planting (WAP) maize in all the treatments during both seasons of 1995. Cumulative mineralized N at week 20 ranged from 114 to 364 kg N ha−1 season−1, the absolute control treatment giving the lowest and the prunings-incorporated treatments giving the highest amounts in the two seasons. Total N uptake by maize, ranging from 42 to 157 kg ha−1 season−1, was lowest in the 'alley-cropped, prunings-removed' treatments, and highest in the 'non alley-cropped-prunings-incorporated' treatments. The apparent N recovery rate by maize was highest in the fertilizer applied treatments in the two seasons. Decomposition rate constants (kD) ranged from 0.07 to 0.21 week−1, and the rates among the different plant residues were as follows: leucaena < calliandra < maize roots. Nitrogen release rate constants (kN), ranging from 0.04 to 0.25 week−1, followed a similar pattern as the rate of decomposition with leucaena releasing the highest amount of N followed by calliandra and lastly by maize rootsItem Nitrogen recovery by alley-cropped maize and trees from 15N-labeled tree biomass in the subhumid highlands of Kenya(Springer-Verlag, 2000-05) Mugendi, Daniel N.; Nair, P.K.; Graetz, D.A.; Mugwee, Jayne; O'Neill, M.K.The effectiveness of tree-leaf biomass as a source of N to crops in agroforestry systems depends on the rate at which crops can obtain N from the biomass. A study was conducted to determine the fate of 15N labeled, soil-applied biomass of two hedgerow species, Calliandra calothyrsus Meissner (calliandra) and Leucaena leucocephala (Lam.) de Wit (leucaena), in the subhumid highlands of Kenya. Labeled biomass obtained from 15N fertilized trees was applied to microplots in an alley cropping field and maize planted. N uptake and recovery by maize and hedgerow trees was periodically determined over a 20-week period during the short rain (1995) and the long rain (1996) growing seasons. In maize crop from treatments that received leucaena biomass, higher N uptake and recovery were recorded than in maize from the plots that received calliandra biomass. However, N uptake and recovery were higher in calliandra tree hedges than in leucaena hedges, indicating differences in N uptake by the two tree species. The largest fraction (55–69%) of N in the applied tree biomass was left in the soil N pool, 8–13% recovered by maize, 2–3% by tree hedges, and 20–30% could not be accounted for. Some of the unaccounted for N may have been left in the wood and root portions of the tree hedges and in the bulk soil below the 20-cm depth. The study shows that only a small fraction of the N contained in the N-rich biomass that is applied to the soil is taken up by the current season's crop, suggesting that a major benefit may be in the build-up of the soil N store.