Browsing by Author "Nthiwa, Daniel M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Identification and distribution of pathogens coinfecting with Brucella spp., Coxiella burnetii and Rift Valley fever virus in humans, livestock and wildlife(Wiley, 2002-01) Middlebrook, Earl A.; Romero, Alicia T.; Bett, Bernard; Nthiwa, Daniel M.; Oyola, Samuel O.; Fair, Jeanne M.; Bartlow, Andrew W.Zoonotic diseases, such as brucellosis, Q fever and Rift Valley fever (RVF) caused by Brucella spp., Coxiella burnetii and RVF virus, respectively, can have devastating effects on human, livestock, and wildlife health and cause economic hardship due to morbidity and mortality in livestock. Coinfection with multiple pathogens can lead to more severe disease outcomes and altered transmission dynamics. These three pathogens can alter host immune responses likely leading to increased morbidity, mortality and pathogen transmission during coinfection. Developing countries, such as those commonly afflicted by outbreaks of brucellosis, Q fever and RVF, have high disease burden and thus common coinfections. A literature survey provided information on case reports and studies investigating coinfections involving the three focal diseases. Fifty five studies were collected demonstrating coinfections of Brucella spp., C. burnetii or RVFV with 50 different pathogens, of which 64% were zoonotic. While the literature search criteria involved ‘coinfection’, only 24/55 studies showed coinfections with direct pathogen detection methods (microbiology, PCR and antigen test), while the rest only reported detection of antibodies against multiple pathogens, which only indicate a history of co- exposure, not concurrent infection. These studies lack the ability to test whether coinfection leads to changes in morbidity, mortality or transmission dynamics. We describe considerations and methods for identifying ongoing coinfections to address this critical blind spot in disease risk management.Item Molecular epidemiology of Brucella species in mixed livestock‑human ecosystems in Kenya(Nature, 2021-03) Akoko, James M.; Pelle, Roger; Lukambagire, AbdulHamid S.; Machuka, Eunice M.; Nthiwa, Daniel M.; Mathew, Coletha; Fèvre, Eric M.; Bett, Bernard; Cook, Elizabeth A. J.; Othero, Doreen; Bonfoh, Bassirou; Kazwala, Rudovick R.; Shirima, Gabriel; Schelling, Esther; Halliday, Jo E. B.; Ouma, CollinsBrucellosis, caused by several species of the genus Brucella, is a zoonotic disease that afects humans and animal species worldwide. Information on the Brucella species circulating in diferent hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi‑host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host–pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real‑time PCR assays with primers speciic for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, speciic for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0–17.1). Humans aged 21–40 years had higher odds (OR = 2.8, 95% CI 1.2–6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of diferent Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1–4.6) and camels (OR = 2.9, 95% CI 1.3–6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0–6.7) and goats (OR = 1.7, 95% CI 1.0–3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross‑transmission of these species among the diferent hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi‑host livestock populations.Item Sero-epidemiological survey of Coxiella burnetii in livestock and humans in Tana River and Garissa counties in Kenya(Plos, 2022-03) Mwololo, Damaris; Nthiwa, Daniel M.; Kitala, Philip; Abuom, Tequiero; Wainaina, Martin; Kairu-Wanyoike, Salome; LindahlI, Johanna F.; Ontiri, Enoch; Bukachi, Salome; Njeru, Ian; Karanja, Joan; Sang, Rosemary; Grace, Delia; Bett, BernardBackground Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remain scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts. Methods Data were collected through a cross-sectional study. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as a random effect to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively. Results The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57–14.11) and 24.44% (95% CI: 21.77–27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats (15.22%, 95% CI: 13.34-17.27) and sheep (14.22%, 95% CI: 12.04–16.64) while cattle (3.00%, 95% CI: 1.65–4.99) had the lowest seroprevalence. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women. Conclusions This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen.Item Serological evidence of single and mixed infections of Rift Valley fever virus, Brucella spp. and Coxiella burnetii in dromedary camels in Kenya(PLOS, 2021-03) Nthiwa, Daniel M.Camels are increasingly becoming the livestock of choice for pastoralists reeling from effects of climate change in semi-arid and arid parts of Kenya. As the population of camels rises, better understanding of their role in the epidemiology of zoonotic diseases in Kenya is a public health priority. Rift Valley fever (RVF), brucellosis and Q fever are three of the top priority diseases in the country but the involvement of camels in the transmission dynamics of these diseases is poorly understood. We analyzed 120 camel serum samples from northern Kenya to establish seropositivity rates of the three pathogens and to characterize the infecting Brucella species using molecular assays. We found seropositivity of 24.2% (95% confidence interval [CI]: 16.5–31.8%) for Brucella, 20.8% (95% CI: 13.6–28.1%) and 14.2% (95% CI: 7.9–20.4%) for Coxiella burnetii and Rift valley fever virus respectively. We found 27.5% (95% CI: 19.5–35.5%) of the animals were seropositive for at least one pathogen and 13.3% (95% CI: 7.2–19.4%) were seropositive for at least two pathogens. B. melitensis was the only Brucella spp. detected. The high sero-positivity rates are indicative of the endemicity of these pathogens among camel populations and the possible role the species has in the epidemiology of zoonotic diseases. Considering the strong association between human infection and contact with livestock for most zoonotic infections in Kenya, there is immediate need to conduct further research to determine the role of camels in transmission of these zoonoses to other livestock species and humans. This information will be useful for designing more effective surveillance systems and intervention measures