Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ndiku, Morris, Zakayo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Three-dimensional dislocations in a uniform linear array's isotropic sensors-Direction finding's hybrid Cramér-Rao bound
    (Acoustical Society of America, 2020-05) Ndiku, Morris, Zakayo; Wong, Kainam Thomas; Wu, Yue Ivan
    The linear array’sone-dimensional spatial geometry is simple but suffices forunivariate direction finding, i.e., isadequate for the estimation of an incident source’s direction-of-arrival relative to the linear array axis. However, thisnominalone-dimensional ideality could be often physically compromised in the real world, as the constituentsensors may dislocatethree-dimensionally from their nominal positions. For example, a towed array is subject toocean-surface waves and to oceanic currents [Tichavsky and Wong (2004). IEEE Trans. Sign. Process.52(1),36–47]. This paper analyzes how a nominally linear array’sone-dimensional direction-finding accuracy would bedegraded by thethree-dimensional random dislocation of the constituent sensors. This analysis derives the hybridCram er-Rao bound (HCRB) of the arrival-angle estimate in a closed form expressed in terms of the sensors’ disloca-tion statistics. Surprisingly, the sensors’ dislocation could improve and not necessarily degrade the HCRB, depend-ing on the dislocation variances but also on the incident source’s arrival angle and the signal-to-noise power ratio

University of Embu | Library Website | MyLOFT | Chat with Us

© University of Embu Digital Repository. All Rights Reserved.