Browsing by Author "Mucheru-Muna, M."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Adapting African Agriculture to Climate Change(Springer, 2015) Kisaka, Oscar M.; Mucheru-Muna, M.; Ngetich, F.K.; Mugwe, Jayne; Mugendi, Daniel N.; Mairura, F.Drier parts of Embu County, Eastern Kenya, endure persistent crop failure and declining agricultural productivity which have been attributed, in part, to prolonged dry-spells and erratic rainfall. Nonetheless, understanding spatialtemporal variability of rainfall especially at seasonal level, is an imperative facet to rain-fed agricultural productivity and natural resource management (NRM). This study evaluated the extent of seasonal rainfall variability and the drought characteristics as the first step of combating declining agricultural productivity in the region. Cumulative Departure Index (CDI), Rainfall Anomaly Index (RAI) and Coefficients-of-Variance (CV) and probabilistic statistics were utilized in the analyses of rainfall variability. Analyses showed 90 % chance of below croppingthreshold rainfall (500 mm) exceeding 213.5 mm (Machanga) and 258.1 mm (Embu) during SRs for one year return-period. Rainfall variability was found to be high in seasonal amounts (CV = 0.56 and 0.38) and in number of rainy-days (CV = 0.88 and 0.27) at Machang’a and Embu, respectively. Monthly rainfall variability was found to be equally high even during April (peak) and November (CV = 0.42 and 0.48 and 0.76 and 0.43) with high probabilities (0.40 and 0.67) of droughts exceeding 15 days in Embu and Machang’a, respectively. Dry-spell probabilities within growing months were high (81 %) and (60 %) in Machang’a and Embu respectively. To optimize yield in the area, use of soil-water conservation and supplementary irrigation, crop selection and timely accurate rainfall forecasting should be prioritizedItem Effects of selected soil and water conservation technologies onnutrient losses and maize yields in the central highlands of Kenya(Elsevier, 2014-02) Okeyo, A.I.; Mucheru-Muna, M.; Mugwe, Jayne; Ngetich, F.K.; Mugendi, Daniel N.; Diels, J.; Shisanyaaa, C.A.tMitigating nutrient loss is a prerequisite of sustainable agriculture in the tropics. We evaluated threesoil and water conservation technologies (mulching, minimum tillage and tied ridging) for two croppingseasons (long rains 2011, short rains 2011) at two sites in the central highlands of Kenya. The objectiveswere: to determine effects of the technologies on runoff, sediment yield and nutrient loads in sediment,and to assess influence of the technologies on maize yields. Experimental design was a randomizedcomplete block with 3 treatments replicated thrice. At the beginning of experiment, soil was sampledat 0–15 cm depth and analyzed for pH, N, P, K, C, Ca and Mg. Mulch was applied at a rate of 5 t ha−1.Runoff was sampled, sediments extracted by drying in oven at 105◦C, and analyzed for NPK and C loads.Data were subjected to analysis of variance using SAS 9.1.3 and means separated using Fishers’ LSD at5% level of significance. Results showed reduced nutrient losses with the technologies. In Meru South,sediment yield was reduced by 41 and 7% during long rains 2011 (p = 0.03), and by 71 and 68% duringshort rains 2011 (p = 0.01) under mulching and minimum tillage, respectively. Runoff and maize yieldswere positively influenced by mulching. In Mbeere South, sediment yield was lower under soil and waterconservation technologies. Runoff was reduced by 52 and 49% during long rains 2011 and by 51 and30% during short rains 2011 under tied ridging and mulching respectively, compared with control. Totalcrop failure occurred during long rains 2011 due to erratic rains. During short rains 2011 tied ridging andmulching increased maize yield by 94 and 75%, respectively, compared with control. This study highlightsthe importance of analyzing soil and water conservation technologies within rain-fed farming systemsperspective in response to declining food production and supports a focus on tied ridging and mulchingItem Length of growing season, rainfall temporal distribution, onset and cessation dates in the Kenyan highlands(Elsevier, 2013-12) Ngetich, F.K.; Mugendi, Daniel N.; Mucheru-Muna, M.; Mugwe, Jayne; Shisanya, C.A.; Diels, J.Dependence on uncertain rainfall and exposure to unmitigated climate risk are major obstacles in efforts to sustainably intensify agricultural production and enhance rural livelihoods. There is generally enough seasonal total rainfall; the challenge is its poor distribution over time and across the season. The amount of water available to plants strongly depends on the rainy season’s onset, length, temporal distribution and cessation and can indirectly indicate the climatic suitability of the crop and its chances of success or failure in a season. Thus, the objective was to determine rainfall pattern; temporal distribution, onset, cessation and length of growing seasons in the tropical sub-humid and a semi-arid regions with contrasting rainfall patterns and agricultural potential in central highlands of Kenya. The study was carried out in Maara and Meru South Sub-Counties in Tharaka Nithi County and Mbeere North and South Sub-Counties in Embu County of the central highlands of Kenya (CHK). Central highlands of Kenya cover both areas with high potential for crop production and low potential, attributed to rainfall differences. Meteorological data were sourced from Kenya Metrological Department (KMD) headquarters and research stations within the study areas. Length of growing season, onset and cessation dates for both Long (LR) and short (SR) rains seasons were determined based on historical rainfall data using RAIN software and derived using various spatial analysis tools in ArcGIS software and presented spatially. Generally there was high frequency of dry spells of at least 5 days length in all the sites with Kiamaogo site having the highest (84 occurrences during LR season) and Kiambere having the least (44 occurrences during LR season) in 10 years. The occurrence of dry spells longer than 15 days in a season was more rampant in the lower altitude parts (semi-arid regions) of the study area as reflected by the Kiambere, Kiritiri, Machang’a and Kamburu sites in both seasons. For the higher altitude regions, average LR onset, representative of the normal/conventional growing period, ranged from 22nd to 26th March to end of April in the region. For the lower altitude region, it ranged from 16th to 30th March. For SR, onset was generally earlier in the high altitude areas with Kiamaogo having the earliest on 13th October. In the low altitude region, onset was comparatively late compared to the higher potential region, but unlike the LR season, spatial and temporal variation was narrower. The high frequency of dry spells more than 15 days long, coupled with the generally low total amount of rainfall receive per season makes agriculture a risk venture. Homogeneity test revealed that the generated onset and cessation dates for the two rain seasons were homogeneous over the 10 years for each of the seven stations. This indicates that, there has been no shift in onset and cessation within the period under consideration. Dynamic derivation of the spatial onset and cessation data at a local scale can be useful in monitoring shifts in onset dates and hence advice small scale farmers and other stakeholders in agriculture sector accordingly in the quest for enhanced agricultural productivity.Item Phosphorus availability and exchangeable aluminum response to phosphate rock and organic inputs in the Central Highlands of Kenya(Heliyon, 2021-03) Omenda, Jane A.; Ngetich, F. K.; Kiboi, Milka N.; Mucheru-Muna, M.; Mugendi, Daniel N.Soil acidity and phosphorus deficiency are some of the constraints hampering agricultural production in tropical regions. The prevalence of soil acidity is associated with phosphorus (P) insufficiency and aluminum saturation. We conducted a two-seasons experiment to evaluate soil phosphorus availability and exchangeable aluminum in response to phosphate rock and organic inputs in acidic humic nitisols. The field experiment was installed in Tharaka Nithi County in the Central Highlands of Kenya. The experimental design was a randomized complete block design with treatments replicated thrice. The treatments were: Green manure (Tithonia diversifolia Hemsl.) (60 kg P ha 1 ), phosphate rock (60 kg P ha 1 ), goat manure (60 kg P ha 1 ), Tithonia diversifolia (20 kg P ha 1 ) combined with phosphate rock (40 kg P ha 1 ), manure (20 kg P ha 1 ) combined with phosphate rock (40 kg P ha 1 ), Triple Super Phosphate combined with Calcium Ammonium Nitrate (TSP þ CAN) (60 kg P ha 1 ) and a control (no input). During the long rains of the 2018 season (LR2018), Tithonia diversifolia þ phosphate rock had a significantly higher reduction (67%) of exchangeable aluminum than the sole use of Tithonia diversifolia. Grain yield under TSP þ CAN was the highest, followed by the sole organics during the LR2018. Tithonia diversifolia þ phosphate rock resulted in a 99% and a 90% increase in NaHCO3-Pi compared to sole phosphate rock and sole Tithonia diversifolia, respectively. Tithonia diversifolia led to 14% and 62% higher resin-Pi and NaOH-Pi, respectively, compared to manure in the short rains of 2017 (SR2017). The increase in NaOH-Po after the two seasons was statistically significant in sole TSP þ CAN. Based on the observed reduced exchangeable aluminum and additional nutrients like Ca, Mg, and K in the soil, sole organic inputs or in combination with phosphate rock treatments are feasible alternatives for sustaining soil phosphorus. Our findings underscore an integrated approach utilizing organic amendments combined with phosphate rock in acidic humic nitisols' phosphorus nutrient management.Item Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: case of Kenya’s Central Highlands(Springer, 2015-03) Kisaka, Oscar M.; Mucheru-Muna, M.; Ngetich, F.K.; Mugwe, Jayne; Mugendi, Daniel N.; Mairura, F.; Shisanya, C.A.; Makokha, G. L.Drier parts of Kenya’s Central Highlands endure persistent crop failure and declining agricultural productivity. These have, in part, attributed to high temperatures, prolonged dry spells and erratic rainfall. Understanding spatial-temporal variability of climatic indices such as rainfall at seasonal level is critical for optimal rain-fed agricultural productivity and natural resource management in the study area. However, the predominant setbacks in analysing hydro-meteorological events are occasioned by either lack, inadequate, or inconsistent meteorological data. Like in most other places, the sole sources of climatic data in the study region are scarce and only limited to single stations, yet with persistent missing/unrecorded data making their utilization a challenge. This study examined seasonal anomalies and variability in rainfall, drought occurrence and the efficacy of interpolation techniques in the drier regions of eastern Kenyan. Rainfall data from five stations (Machang’a, Kiritiri, Kiambere and Kindaruma and Embu) were sourced from both the Kenya Meteorology Department and on-site primary recording. Owing to some experimental work ongoing, automated recording for primary dailies in Machang’a have been ongoing since the year 2000 to date; thus, Machang’a was treated as reference (for period of record) station for selection of other stations in the region. The other stations had data sets of over 15 years with missing data of less than 10 % as required by the world meteorological organization whose quality check is subject to the Centre for Climate Systems Modeling (C2SM) through MeteoSwiss and EMPA bodies. The dailies were also subjected to homogeneity testing to evaluate whether they came from the same population. Rainfall anomaly index, coefficients of variance and probability were utilized in the analyses of rainfall variability. Spline, kriging and inverse distance weighting interpolation techniques were assessed using daily rainfall data and digital elevation model in ArcGIS environment. Validation of the selected interpolation methods were based on goodness of fit between gauged (observed) and generated rainfall derived from residual errors statistics, coefficient of determination (R 2), mean absolute errors (MAE) and root mean square error (RMSE) statistics. Analyses showed 90 % chance of below cropping-threshold rainfall (500 mm) exceeding 258.1 mm during short rains in Embu for 1 year return period. Rainfall variability was found to be high in seasonal amounts (e.g. coefficient of variation (CV) = 0.56, 0.47, 0.59) and in number of rainy days (e.g. CV = 0.88, 0.53) in Machang’a and Kiritiri, respectively. Monthly rainfall variability was found to be equally high during April and November (e.g. CV = 0.48, 0.49 and 0.76) with high probabilities (0.67) of droughts exceeding 15 days in Machang’a. Dry spell probabilities within growing months were high, e.g. 81 and 60 % in Machang’a and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.Item The Potential of Organic and Inorganic Nutrient Sources in Sub-Saharan African Crop Farming Systems(2012-02) Ngetich, F.K.; Shisanya, C.A.; Mugwe, Jayne; Mucheru-Muna, M.; Mugendi, Daniel N.Item Rainfall Variability, Drought Characterization, and Efficacy of Rainfall Data Reconstruction: Case of Eastern Kenya(Hindawi Publishing Corporation, 2015) Kisaka, Oscar M.; Mucheru-Muna, M.; Ngetich, F.K.; Mugwe, Jayne; Mugendi, Daniel N.; Mairura, F.This study examined the extent of seasonal rainfall variability, drought occurrence, and the efficacy of interpolation techniques in eastern Kenya. Analyses of rainfall variability utilized rainfall anomaly index, coefficients of variance, and probability analyses. Spline, Kriging, and inverse distance weighting interpolation techniques were assessed using daily rainfall data and digital elevation model using ArcGIS. Validation of these interpolationmethods was evaluated by comparing the modelled/generated rainfall values and the observed daily rainfall data using root mean square errors and mean absolute errors statistics. Results showed 90% chance of below cropping threshold rainfall (500 mm) exceeding 258.1mmduring short rains in Embu for one year return period. Rainfall variability was found to be high in seasonal amounts (CV = 0.56, 0.47, and 0.59) and in number of rainy days (CV = 0.88, 0.49, and 0.53) inMachang’a, Kiritiri, and Kindaruma, respectively.Monthly rainfall variability was found to be equally high during April and November (CV = 0.48, 0.49, and 0.76) with high probabilities (0.67) of droughts exceeding 15 days in Machang’a and Kindaruma. Dry-spell probabilities within growing months were high, (91%, 93%, 81%, and 60%) in Kiambere, Kindaruma, Machang’a, and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.Item Using Apsim-Model as A Decision-Support-Tool for Long-Term Integrated-Nitrogen-Management and Maize productivity under Semi-Arid Conditions in Kenya(Cambridge University Press, 2015-04) Kisaka, Oscar M.; Mucheru-Muna, M.; Ngetich, F.K.; Mugwe, Jayne; Mugendi, Daniel N.; Mairura, F.; Muriuki, J.There is continued decline in per capita agricultural productivity in the drier parts of Kenya’s central highlands. The declines have been linked to low and declining soil fertility, soil water, high atmospheric heat, prolonged dry-spells and erratic rainfall. Integrated soil fertility management (ISFM) technologies have been developed and tested in the region. Despite their significant impacts, high variability in local soils and climate contributes to large variations and inconsistency in research results among replications. Experimentation is expensive and limited to a few years, sites and scenarios. Crop-growth simulation models suitably complement experimental research, to support decision making regarding soil fertility and water management. This study evaluated the performance of the Agricultural Production Systems Simulator (APSIM) model. APSIM was parameterized and calibrated based on a rain-fed randomized complete block trial (2009–2012) at a research station in Machang’a, Embu County. The study further reported on long-term effects of integrated Nitrogen (N) management from organic residues (goat manure, Lantana camara, Tithonia diversifolia and Mucuna pruriens) and their combination with mineral fertilizers in maize production. The model adequately reproduced the observed trends of maize leaf area index (LAI) and yield response to the testNamendments. Long-termsimulations showed that application of 0, 20 and 40 Kg Nha−1 had low inter-seasonal variations (CV = 18–33%) in yields. High yield variability (CV > 56%) was observed in the application of 60 and 80 Kg N ha−1. Application of 40 Kg N ha−1 by combining mineral fertilizer and manure showed 80% chance of harvesting more than 2.5 Mg ha−1 of maize grain yield. Maize stover mulching at 5 and 6 Mg ha−1 with the same N application increased long-term guaranteed grain harvests to 3.5 Mg ha−1. This is when complemented with 90 Kg P ha−1. This integrated N and soil water management is thus recommended. For subsistence farming, low-cost recommendations are geared towards some ‘guaranteed’ yield stability each cropping season. This recommendation underpins low-cost technologies that reduce production risks among small-holder farmers who faced with intermittent financial problems, to improve food security. However, there is need to evaluate and verify that there is a positive balance of primary nutrients such as N, P and K in such a fertility and water management option. Its effects on C:N levels ought to be evaluated as well.