Browsing by Author "Krienitz, Lothar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Food algae for Lesser Flamingos: a stocktaking(Springer, 2016-07) Krienitz, Lothar; Krienitz, Doris; Dadheech, Pawan K.; Hübener, Thomas; Kotut, Kiplagat; Luo, Wei; Teubner, Katrin; Versfeld, Wilferd D.Lesser Flamingo, the flagship species of saline wetlands of Africa and India, is a specialised feeder subsisting on microscopic cyanobacteria and algae. To establish the relationship between flamingo occurrence and food algal abundance and quality, an extensive microphyte survey in more than 150 sampling trips to seven countries over a 15-years period (2001–2015) was carried out. The 44 habitat sites included the core soda lakes in eastern Africa (Bogoria, Nakuru, Elmentaita, Oloidien), where the highest numbers of flamingos were observed, and five breeding sites in eastern and southern Africa as well as in north-western India. A reference describing the diversity of microphytes was established including members of three orders of cyanobacteria and nine orders of eukaryotic algae that potentially could act as food source for Lesser Flamingos. Preferred food organisms consisted of filamentous cyanobacteria, mainly Arthrospira, as well as benthic diatoms. Further investigation on the suitability of other microphytes as alternative flamingo diet revealed the food potential of chlorophytes and euglenophytes. This paper discusses a phycological perspective in the feeding ecology of Lesser Flamingos. The survey findings can assist scientists and conservationists in evaluating the potential of wetlands to support flocks of this endangered bird.Item Molecular diversity of plankton in a tropical crater lake switching from hyposaline to subsaline conditions: Lake Oloidien, Kenya(Springer, 2016-09) Kotut, Kiplagat; Luo, Wei; Li, Huirong; Krienitz, LotharSalinity in the climate sensitive tropical endorheic crater lake Oloidien (Great African Rift Valley, Kenya) decreased from hyposaline to subsaline conditions during the period 2010–2015. The change in salinity was accompanied by a pronounced change in planktonic life forms—from blooms of the cyanobacterium Arthrospira supporting tens of thousands of Lesser Flamingos to highly diverse communities of cyanobacteria and algae which do not sustain the consumer birds. Besides the well-known macroand microscopic lake life, a hidden diversity of microorganisms was detected using molecular methods. SSU rRNA gene clone libraries and data from Ilumina Miseq sequencing of samples collected at the two contrasting stages revealed distinct and highly diverse microbial communities. Different bacterial clades dominated the two samples. In 2011, Firmicutes (class Bacilli) whose origin was the fecal waste of birds were the dominant group. However, the Cyanobacteria and Chloroflexi were the most prevalent in 2015. From the microbial eukaryote samples obtained in 2011, rotifers and ciliates that feed on Arthrospira and rich bacterial food dominated the plankton, while the cryptophytes were the most prevalent in 2015. On the two occasions, a mixture of organisms previously not known to occur in saline or in freshwater habitats was found.