Browsing by Author "Heckel, D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Coevolutionary fine-tuning: evidence for genetic tracking between a specialist wasp parasitoid and its aphid host in a dual metapopulation interaction(2012-09) Nyabuga, Franklin N.; Loxdale, H. D.; Heckel, D.; Weisser, W.In the interaction between two ecologically-associated species, the population structure of one species may affect the population structure of the other. Here, we examine the population structures of the aphid Metopeurum fuscoviride, a specialist on tansy Tanacetum vulgare, and its specialist primary hymenopterous parasitoid Lysiphlebus hirticornis, both of which are characterized by multivoltine life histories and a classic metapopulation structure. Samples of the aphid host and the parasitoid were collected from eight sites in and around Jena, Germany, where both insect species co-occur, and then were genotyped using suites of polymorphic microsatellite markers. The host aphid was greatly differentiated in terms of its spatial population genetic patterning, while the parasitoid was, in comparison, only moderately differentiated. There was a positive Mantel test correlation between pairwise shared allele distance (DAS) of the host and parasitoid, i.e. if host subpopulation samples were more similar between two particular sites, so were the parasitoid subpopulation samples. We argue that while the differences in the levels of genetic differentiation are due to the differences in the biology of the species, the correlations between host and parasitoid are indicative of dependence of the parasitoid population structure on that of its aphid host. The parasitoid is genetically tracking behind the aphid host, as can be expected in a classic metapopulation structure where host persistence depends on a delay between host and parasitoid colonization of the patch. The results may also have relevance to the Red Queen hypothesis, whereupon in the ‘arms race’ between parasitoid and its host, the latter ‘attempts’ to evolve away from the former.Item Spatial population dynamics of a specialist aphid parasitoid, Lysiphlebus hirticornis Mackauer (Hymenoptera: Braconidae: Aphidiinae): evidence for philopatry and restricted dispersal(2010-01) Nyabuga, Franklin N.; Loxdale, H. D.; Heckel, D.; Weisser, W.Within insect communities, the population ecology of organisms representing higher trophic levels, for example, hymenopterous parasitoids, may be influenced by the structure of their insect hosts. Using microsatellite markers and ecological data, we investigated the population structure of the specialist braconid wasp parasitoid, Lysiphlebus hirticornis Mackauer attacking Metopeurum fuscoviride, a specialist aphid feeding on tansy, Tanacetum vulgare. Previous studies revealed that M. fuscoviride has a classic metapopulation structure with high subpopulation turnover. In this study, up to 100% of ramets within a host plant genet colonized by aphids were colonized by the parasitoid, yet plants with aphids but no parasitoids were also observed. Genetic differentiation measured by FST, actual differentiation (D) and relative differentiation (GST) indicated highly structured parasitoid population demes, with restricted gene flow among and between parasitoid subpopulations at the various sites. Interestingly, both field data and population assignment analysis showed that the parasitoid is highly philopatric. Thus, despite the frequent local extinctions of the aphid host, the parasitoid continuously exploits its aphid host and contributes to the demise of local aphid subpopulations, rather than spreading its genes over many aphid populations. FST values for the haplodiploid parasitoid were similar to those found in an independent study of the diploid aphid host, M. fuscoviride, hence supporting the view that an insect herbivore’s population structure directly influences the ecology and genetics of the higher trophic level, in this case the wasp parasitoid.