Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bationo, A."

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya
    (Springer, 2011-01) Kihara, J.; Bationo, A.; Mugendi, Daniel N.; Martius, C.; Vlek, P.L.
    Smallholder land productivity in drylands can be increased by optimizing locally available resources, through nutrient enhancement and water conservation. In this study, we investigated the effect of tillage system, organic resource and chemical nitrogen fertilizer application on maize productivity in a sandy soil in eastern Kenya over four seasons. The objectives were to (1) determine effects of different tillage-organic resource combinations on soil structure and crop yield, (2) determine optimum organic–inorganic nutrient combinations for arid and semi-arid environments in Kenya and, (3) assess partial nutrient budgets of different soil, water and nutrient management practices using nutrient inflows and outflows. This experiment, initiated in the short rainy season of 2005, was a split plot design with 7 treatments involving combinations of tillage (tied-ridges, conventional tillage and no-till) and organic resource (1 t ha−1 manure + 1 t ha−1 crop residue and; 2 t ha−1 of manure (no crop residue) in the main plots. Chemical nitrogen fertilizer at 0 and 60 kg N ha−1 was used in sub-plots. Although average yield in no-till was by 30–65% lower than in conventional and tied-ridges during the initial two seasons, it achieved 7–40% higher yields than these tillage systems by season four. Combined application of 1 t ha−1 of crop residue and 1 t ha−1 of manure increased maize yield over sole application of manure at 2 t ha−1 by between 17 and 51% depending on the tillage system, for treatments without inorganic N fertilizer. Cumulative nutrients in harvested maize in the four seasons ranged from 77 to 196 kg N ha−1, 12 to 27 kg P ha−1 and 102 to 191 kg K ha−1, representing 23 and 62% of applied N in treatments with and without mineral fertilizer N respectively, 10% of applied P and 35% of applied K. Chemical nitrogen fertilizer application increased maize yields by 17–94%; the increases were significant in the first 3 seasons (P < 0.05). Tillage had significant effect on soil macro- (>2 mm) and micro-aggregates fractions (<250 μm >53 μm: P < 0.05), with aggregation indices following the order no-till > tied-ridges > conventional tillage. Also, combining crop residue and manure increased large macro-aggregates by 1.4–4.0 g 100 g−1 soil above manure only treatments. We conclude that even with modest organic resource application, and depending on the number of seasons of use, conservation tillage systems such as tied-ridges and no-till can be effective in improving crop yield, nutrient uptake and soil structure and that farmers are better off applying 1 t ha−1 each of crop residue and manure rather than sole manure.
  • Loading...
    Thumbnail Image
    Item
    Effect of Reduced Tillage and Mineral Fertilizer Application on Maize and Soybean Productivity
    (2012) Kihara, Jimmy H.; Bationo, A.; Waswa, B.; Kimetu, J.M.; Vanlauwe, B.; Okeyo, J.; Mukalama, J.; Martius, C.
    Reduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.
  • Loading...
    Thumbnail Image
    Item
    Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya
    (Springer, 2007-01) Mucheru-Muna, Monicah; Mugendi, Daniel N.; Kung’u, James; Mugwe, Jayne; Bationo, A.
    Soil nutrient depletion as a result of continuous cultivation of soils without adequate addition of external inputs is a major challenge in the highlands of Kenya. An experiment was set up in Meru South District, Kenya in 2000 to investigate the effects of different soil-incorporated organic (manure, Tithonia diversifolia, Calliandra calothyrsus, Leucaena leucocephala) and mineral fertilizer inputs on maize yield, and soil chemical properties over seven seasons. On average, tithonia treatments (with or without half recommended rate of mineral fertilizer) gave the highest grain yield (5.5 and 5.4 Mg ha–1 respectively) while the control treatment gave the lowest yield (1.5 Mg ha–1). After 2 years of trial implementation, total soil carbon and nitrogen contents were improved with the application of organic residues, and manure in particular improved soil calcium content. Results of the economic analysis indicated that on average across the seven seasons, tithonia with half recommended rate of mineral fertilizer treatment recorded the highest net benefit (USD 787 ha–1) while the control recorded the lowest (USD 272 ha–1). However, returns to labor or benefitcost ratios were in most cases not significantly improved when organic materials were used.
  • Loading...
    Thumbnail Image
    Item
    Improving food production using ‘best bet’ soil fertility technologies in the Central highlands of Kenya
    (Springer, 2007) Mugendi, Daniel N.; Mucheru-Muna, Monicah; Mugwe, Jayne; Kung’u, James; Bationo, A.
    Declining crop productivity is a major challenge facing smallholder farmers in central highlands of Kenya. This decline is caused by continuous cultivation of soils without adequate addition of external inputs in form of manures and fertilizers. With this background, an on-station trial was initiated at Embu in 1992 to evaluate the feasibility of using two leguminous shrubs; Calliandra calothyrsus and Leucaena leucocephala for improving food production. In 2000, an off-station farmers’ participatory trial aimed at offering farmers soil enhancing technologies for replenishing soil fertility was established in Meru South District. The results from the Embu on-station trial indicate that, over the 11 years of study, calliandra and leucaena biomass transfer with half recommended rate of inorganic fertilizer treatments gave the best average maize grain yields of 3.3 Mg ha-1. Treatment where calliandra was alley cropped with maize but the prunings removed recorded the lowest maize yield of 1.2 Mg ha-1. Treatments with calliandra and leucana biomass transfer had similar yields but treatments that were alley cropped with leucaena did better than those that were alley cropped with calliandra. On the other hand, results from the off-station trial in Meru South indicate that, on average, across the seven seasons, sole tithonia gave the highest maize grain yield followed closely by tithonia with half recommended rate of inorganic fertilizer with 6.4 and 6.3 Mg ha-1 respectively. Control gave the lowest yield of 2.2 Mg ha-1 across the seasons. On average, integration of organic an inorganic sources of nutrients gave higher yields compared to all the other treatments.
  • Loading...
    Thumbnail Image
    Item
    Nitrogen fertilizer equivalencies of organics of differing quality and optimum combination with inorganic nitrogen source in Central Kenya
    (Kluwer Academic Publishers, 2004) Kimetu, J.M.; Mugendi, Daniel N.; Palm, C.A.; Mutuo, P.K.; Gachengo, C.N.; Bationo, A.; Nandwa, S.
    Decline in crop yields is a major problem facing smallholder farmers in Kenya and the entire Sub-Saharan region. This is attributed mainly to the mining of major nutrients due to continuous cropping without addition of adequate external nutrients. In most cases inorganic fertilizers are expensive, hence unaffordable to most smallholder farmers. Although organic nutrient sources are available, information about their potential use is scanty. A field experiment was set up in the sub-humid highlands of Kenya to establish the chemical fertilizer equivalency values of different organic materials based on their quality. The experiment consisted of maize plots to which freshly collected leaves of Tithonia diversifolia (tithonia), Senna spectabilis (senna) and Calliandra calothyrsus (calliandra) (all with %N>3) obtained from hedgerows grown ex situ (biomass transfer) and urea (inorganic nitrogen source) were applied. Results obtained for the cumulative above ground biomass yield for three seasons indicated that a combination of both organic and inorganic nutrient source gave higher maize biomass yield than when each was applied separately. Above ground biomass yield production in maize (t ha−1) from organic and inorganic fertilization was in the order of senna+urea (31.2), tithonia+urea (29.4), calliandra+urea (29.3), tithonia (28.6), senna (27.9), urea (27.4), calliandra (25.9), and control (22.5) for three cumulative seasons. On average, the three organic materials (calliandra, senna and tithonia) gave fertilizer equivalency values for the nitrogen contained in them of 50, 87 and 118%, respectively. It is therefore recommended that tithonia biomass be used in place of mineral fertilizer as a source of nitrogen. The high equivalency values can be attributed to the synergetic effects of nutrient supply, and improved moisture and soil physical conditions of the mulch. However, for sustainable agricultural production, combination with mineral fertilizer would be the best option.
  • Loading...
    Thumbnail Image
    Item
    Partial balance of nitrogen in a maize cropping system in humic nitisol of Central Kenya
    (Springer Netherlands, 2007) Kimetu, J.M.; Mugendi, Daniel N.; Bationo, A.; Palm, C.A.; Mutuo, P.K.; Kihara, J.; Nandwa, S.; Giller, K.
    The application of nitrogen in a soil under agricultural production is subject to several pathways including de-nitrification, leaching and recovery by an annual crop. This is as well greatly influenced by the management practices, nitrogen source and soil conditions. The main objective of this study was to investigate the loss of nitrogen (N) through nitrous oxide (N2O) emissions and mineral N leaching and uptake by annual crop as influenced by the N source. The study was carried out at Kabete in Central Kenya. Measurements were taken during the second season after two seasons of repeated application of N as urea and Tithonia diversifolia(tithonia) leaves. Results obtained indicated that nitrous oxide (N2O) emissions at 4 weeks after planting were as high as 12.3μg N m-2 h-1 for tithonia treatment and 2.9μg N m-2h-1 for urea treatment. Tithonia green biomass treatment was found to emit N2O at relatively higher rate compared to urea treatment. This was only evident during the fourth week after treatment application.Soil mineral N content at the end of the season increased down the profile. This was evident in the three treatments (urea, tithonia and control) investigated in the study. Urea treatment exhibited significantly higher mineral N content down the soil profile (9% of the applied N) compared to tithonia (0.6% of the applied N). This was attributed to the washing down of the nitrate-N from the topsoil accumulating in the lower layers of the soil profile. However, there was no significant difference in N content down the soil profile between tithonia treatment and the control. It could be concluded that there was no nitrate leaching in the tithonia treatment. Nitrogen recovery by the maize crop was higher in the urea treatment (76% of the applied N) as compared to tithonia treatment (55.5% of the applied N). This was also true for the residual mineral N in the soil at the end of the season which was about 7.8% of the applied N in the urea treatment and 5.2% in the tithonia treatment.From this study, it was therefore evident that although there is relatively lower N recovery by maize supplied with tithonia green biomass compared to maize supplied with urea, more nitrogen is being lost (through leaching) from the soil–plant system in the urea applied plots than in tithonia applied plots. However, a greater percentage (37.8%) of the tithonia-applied N could not be accounted for and might have been entrapped in the soil organic matter unlike urea-applied N whose greater percentage (92%) could be accounted for.

University of Embu | Library Website | MyLOFT | Chat with Us

© University of Embu Digital Repository. All Rights Reserved.