Browsing by Author "Arumingtyas, Estri L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Genetic diversity of hybrid durian resulted from cross breeding between Durio kutejensis and Durio zibethinus based on random amplified polymorphic DNAs (RAPDs)(Scientific Research Publishing, 2013-07) Hariyati, Tati; Kusnadi, Joni; Arumingtyas, Estri L.One of the ways to improve the quality of Indonesian Durian is by utilizing germplasm diversity. Durio zibethinus is the most cultivated durian in Indonesia, whereas Durio kutejensis is a unique durian cultivar which has golden yellow fruit flesh without smell. Crossbreeding of those two cultivars, in order to generate superior Durian cultivars has been done. Genetic diversity of durian generates from cross breeding between D. kutejensis and D. zibethinus was identified in molecular level using RAPD technique. Among 20 primers used in this study, 5 primers: OPA-02, OPA-03, OPA-08, OPA-10 and OPA-13 were capable of differentiating both the parents and the hybrids. RAPD analysis resulted in genetic diversity of hybrid Durian with family relationship of 0.59%-0.1%. Hybrids UB1, UB5, UB13, UB19, UB21, UB7 and UB35 have similarity value of 0.81% with their parent DRCK, whereas hybrids UB8, UB10, UB18 and UB17 have similarity value of 0.70% with their parent DRCM1. Hybrids UB2, UB16 and UB22 belong to one group with similarity value of 0.67%. Three hybrids lines UB2, UB16 and UB22 show the highest distance to both parent. The rest of the hybrids lines grouped into similar cluster to the parents D. kutejensis, whereas the other parent (D. zibethinus) belong to different cluster separated from all other hybrid lines and parents.Item Identification and characterization drought tolerance of gene LEA-D11 soybean (glycine max L. Merr) based on PCR-sequencing(Scientific Research Publishing, 2013-01) Savitri, Evika S.; Basuki, Nur; Aini, Nurul; Arumingtyas, Estri L.Drought is one of the most damaging abiotic stress. Different plants response differently to drought stress. Abiotic stresses such as drought induced diverse physicological and molecular responses in plants. These responses include changes in gene expression. One of drought tolerance gene is a gene encoding dehydrin which is belongs to the group II or D-11 LEA protein family. LEA-D11 gene produce dehydrin protein which has a role in stabilization of membrane structures and protection of macromolecules in the presence of drought. The aims of the study was to identify and to characterize the LEA-D11 gene in various soybean varieties. This research used seven varieties of soybean: Tanggamus, Nanti, Seulawah, Tidar (drought tolerant), Wilis and Burangrang (drought moderate) and Detam-1 (drought susceptible). DNA genome of those varieties was isolated using the methods from Doyle & Doyle [1]. DNA amplification was conducted using Polymerase Chain Reaction (PCR) with specific primers designed based on GmLEA-D11 gene sequence database from the NCBI. The DNA targets were sequenced using automatic sequencing machine, ABI 3130xl Genetic Analyzer, in Eijkman Institution. The result of this study showed that the sequences of Gm-LEA-D11 gene possessed by drought tolerance varieties (Tanggamus, Nanti, Seulawah and Tidar) and moderately tolerance (Wilis and Burangrang) were similar. However, the sequence of GmLEA-D11 gene detected in the drought susceptible variety Detam-1 was different from the two groups. Similarity between drought tolerance and moderately tolerance indicate that there is not only LEA-D11 gene responsible to drought tolerance but also others. The primer and sequences GmLEA-D11 gene can be used as molecular marker and capable of differentiating between drought susceptible and drought moderate to drought tolerant.Item Somaclonal variations of Soybeans (Glycine Max. L. Merr) stimulated by drought stress based on random amplified polymorphic DNAs (RAPDs)(Scientific Research Publishing, 2012-01) Arumingtyas, Estri L.; Widoretno, Wahyu; Indriyani, SerafinahIn soybeans, drought stress causes 50% yield losses. Breeding for drought tolerance in soybeans has been widely developed using various methods, among which is polyethylene glycol (PEG-6000) induction to simulate drought in vitro. In a previous experiment, three somaclones with different levels of tolerance were generated. The objectives of this research were to determine the RAPD patterns of those somaclones and to investigate the correlation of the RAPD patterns to the drought tolerance characteristics. The results showed eleven RAPD primers capable of amplifying the DNA genome of soybeans, among which four primers were monomorphic and seven were polymorphic. Two of the polymorphic primers, OPK7 and OPK12, are capable of differentiating medium tolerance traits from other traits. Bands that are specific for medium tolerance against drought were 450 bp and 650 bp in size, generated by the OPK7 primer, and the band of 2000 bp, generated by the OPK12 primer. However, there was no band capable of differentiating between sensitive and tolerance varieties/lines, although some changing of the DNA sequence was detected in this research. This indicates that there are other factors responsible for the expression of drought tolerance.