Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Adicka, Daniel"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Action of PGL(2,q) on the Cosets of the Centralizer of an Eliptic Element
    (Uoem, 2021-08-19) Kimani, Patrick Mwangi; Adicka, Daniel
    Most researchers consider the action of projective general group on the cosets of its maximal subgroups leaving out non-maximal subgroups. In this paper, we consider the action of PGL(2,q) centralizer of an elliptic element which is a non maximal subgroup c(q+1). In particular, we determine the subdegrees, rank and properties of the suborbital graphs of the action. We achieve this through the application of the action of a group by conjugation. We have proved that the rank is q and the subdegrees are [1][2] and [q+ 1][q-2].
  • No Thumbnail Available
    Item
    Action ofPGL (2 ,q ) on the Cosets of the Centralizer of an Eliptic Element
    (UoEm, 2021) Kimani, patrick; Adicka, Daniel
    Most researchers consider the action of projective general group on the cosets of its maximal subgroups leaving out non-maximal subgroupsCq+1. In this paper, we consider the action ofPGL (2, ) centralizer of an elliptic element which is a non maximal subgroup . In particular, we determine the subdegrees, rank and properties of the suborbital graphs of the action. We achieve this through the application of the action of a group by conjugation. We have proved that the rank is and the subdegrees are [1][ ] and [ + 1][ ] .

University of Embu | Library Website | MyLOFT | Chat with Us

© University of Embu Digital Repository. All Rights Reserved.