• Login
    View Item 
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Amplicon-based assessment of bacterial diversity and community structure in three tropical forest soils in Kenya

    Thumbnail
    View/Open
    Full text (1.495Mb)
    Date
    2022-11
    Author
    Kenya, Eucharia U.
    Kinyanjui, Grace
    Kipnyargis, Alex C.
    Kinyua, Franklin
    Mwangi, Mary
    Khamis, Fathiya
    Mwirichia, Romano K.
    Metadata
    Show full item record
    Abstract
    Forest soils provide a multitude of habitats for diverse communities of bacteria. In this study, we selected three tropical forests in Kenya to determine the diversity and community structure of soil bacteria inhabiting these regions. Kakamega and Irangi are rainforests, whereas Gazi Bay harbors mangrove forests. The three natural forests occupy different altitudinal zones and differ in their environmental characteristics. Soil samples were collected from a total of 12 sites and soil physicochemical parameters for each sampling site were analyzed. We used an amplicon-based Illumina high-throughput sequencing approach. Total community DNA was extracted from individual samples using the phenol-chloroform method. The 16S ribosomal RNA gene segment spanning the V4 region was amplified using the Illumina MiSeq platform. Diversity indices, rarefaction curves, hierarchical clustering, principal component analysis (PCA), and non-metric multidimensional scaling (NMDS) analyses were performed in R software. A total of 13,410 OTUs were observed at 97% sequence similarity. Bacterial communities were dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Acidobacteria in both rainforest and mangrove sampling sites. Alpha diversity indices and species richness were higher in Kakamega and Irangi rainforests compared to mangroves in Gazi Bay. The composition of bacterial communities within and between the three forests was also significantly differentiated (R ¼ 0.559, p ¼ 0.007). Clustering in both PCA and NMDS plots showed that each sampling site had a distinct bacterial community profile. The NMDS analysis also indicated that soil EC, sodium, sulfur, magnesium, boron, and manganese contributed significantly to the observed variation in the bacterial community structure. Overall, this study demonstrated the presence of diverse taxa and heterogeneous community structures of soil bacteria inhabiting three tropical forests of Kenya. Our results also indicated that variation in soil chemical parameters was the major driver of the observed bacterial diversity and community structure in these forests.
    URI
    https://doi.org/10.1016/j.heliyon.2022.e11577
    http://repository.embuni.ac.ke/handle/123456789/4200
    Collections
    • Articles: Department of Biological Sciences [285]

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV