• Login
    View Item 
    •   Repository
    • Journal Articles
    • Articles: Department of Water and Agricultural Resources Management
    • View Item
    •   Repository
    • Journal Articles
    • Articles: Department of Water and Agricultural Resources Management
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya

    Thumbnail
    View/Open
    Full Text (1.391Mb)
    Date
    2020
    Author
    Musafiri, Collins M.
    Macharia, , Joseph M.
    Ng’etich, Onesmus K.
    Kiboi, Milka N.
    Okeyo, Jeremiah
    Shisanya, Chris A.
    Okwuosa, , Elizabeth A.
    Mugendi, Daniel N.
    Ngetich, Felix K.
    Metadata
    Show full item record
    Abstract
    Most sub-Saharan Africa smallholder farming systems are highly heterogeneous. Direct quantification of greenhouse gas emissions from these farming systems is hampered by di- versity at farm-level. Each farm contributes differently to greenhouse gas (GHG) emissions and consequently GHG inventories. Typologies can be used as a mechanism of addressing farming systems’ heterogeneity by grouping them into specific farm types. With the GHG quantification simplification initiatives in mind, we developed smallholder farm typologies based on soil fertility inputs. We assessed nitrogen application rate, soil fertility manage- ment technologies and the socio-economic factors diversity among the farm typologies in the central highlands of Kenya. We used data from a cross-sectional household survey with a sample size of 300 smallholder farmers. We characterized the farm types using princi- pal component analysis (PCA). To develop farm typologies, we subjected the PCA-derived typologies related factors to cluster analysis (CA). The results showed six farm types: Type 1, comprising cash crop and hybrid cattle farmers; Type 2, comprising food crop farmers; Type 3, composed of coffee-maize farmers; Type 4, comprising millet-livestock farmers; Type 5, comprising highly diversified farmers, and Type 6, comprising tobacco farmers. Land size owned, total tropical livestock unit, the proportion of land and nitrogen applied to different cropping systems were significant in the construction of farm typologies. Uni- variate analysis showed the household head’s level of education, hired labour, group mem- bership, access to extension services, and proportion of income from cropping activities as critical factors influencing farm typologies in the study area. This study demonstrates the importance of smallholder farm typologies in identifying greenhouse gas emissions hotspots, designing quantification experiment and policy framing. We concluded that poli- cies and intervention measures targeting climate-smart agriculture at smallholder farms
    URI
    https://doi.org/10.1016/j.sciaf.2020.e00458
    http://repository.embuni.ac.ke/handle/123456789/4097
    Collections
    • Articles: Department of Water and Agricultural Resources Management [200]

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu copyright ©  2021
    Contact us | Send Feedback
    Library ER 
    Atmire NV