Show simple item record

dc.contributor.authorFellman, Johan
dc.date.accessioned2018-07-11T08:35:40Z
dc.date.available2018-07-11T08:35:40Z
dc.date.issued2018-06
dc.identifier.citationTheoretical Economics Letters, 2018, 8, 1793-1802en_US
dc.identifier.issn2162-2086
dc.identifier.urihttps://doi.org/10.4236/tel.2018.810117
dc.identifier.urihttp://hdl.handle.net/123456789/1794
dc.description.abstractScientists have analysed different methods for numerical estimation of Gini coefficients. Using Lorenz curves, various numerical integration attempts have been made to identify accurate estimates. Central alternative methods have been the trapezium, Simpson and Lagrange rules. They are all special cases of the Newton-Cotes methods. In this study, we approximate the Lorenz curve by polynomial regression models and integrate optimal regression models for numerical estimation of the Gini coefficient. The attempts are checked on theoretical Lorenz curves and on empirical Lorenz curves with known Gini indices. In all cases the proposed methods seem to be a good alternative to earlier methods presented in the literature.en_US
dc.language.isoenen_US
dc.publisherScientific Researchen_US
dc.subjectGini Indexen_US
dc.subjectIncome Distributionen_US
dc.subjectLorenz Curveen_US
dc.subjectRegression Modelsen_US
dc.subjectTrapezium Ruleen_US
dc.subjectSimpson Ruleen_US
dc.subjectLagrange Ruleen_US
dc.subjectNewton-Cotes Methoden_US
dc.titleRegression Analyses of Income Inequality Indicesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record