dc.description.abstract | Pediatric emergency cases need rapid systems that measure vital body parameters data, analyze and
categorize emergency cases for precise action. Current systems use manual examination resulting in
delayed medication, death, or other severe medical conditions.In this paper, we propose a Internet of
Things (IoT) based model, created using Balena fin with Raspberry pi compute module. It is used for
determining emergency cases, in pediatric section, specifically the triage section. It is later tested using
hospital data that represents the vital parameters in pediatric. Our approach entails designing and setting
up the hardware and software infrastructure, to accommodate data via Bluetooth protocol, and transmit it
to the cloud server database via Message Queuing Telemetry Transport (MQTT). Later, we perform
machine learning on the data by training a model and finally develop a Plotly Dash analytical application
integrating the model for visualization near real-time.Findings show that emergency cases are detected
using vital body parameters which include the body temperature, oxygen levels, heart rate and the age. The
model indicates a 97% accuracy.In conclusion, children’s emergency cases are detected in time using IoT
gadgets and machine learning classification. | en_US |