• Login
    View Item 
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    •   Repository
    • Journal Articles
    • Articles: Department of Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spatial population dynamics of a specialist aphid parasitoid, Lysiphlebus hirticornis Mackauer (Hymenoptera: Braconidae: Aphidiinae): evidence for philopatry and restricted dispersal

    Thumbnail
    View/Open
    Abstract (69.75Kb)
    Date
    2010-01
    Author
    Nyabuga, Franklin N.
    Loxdale, Hugh D.
    Heckel, David G.
    Weisser, Wolfgang W.
    Metadata
    Show full item record
    Abstract
    Within insect communities, the population ecology of organisms representing higher trophic levels, for example, hymenopterous parasitoids, may be influenced by the structure of their insect hosts. Using microsatellite markers and ecological data, we investigated the population structure of the specialist braconid wasp parasitoid, Lysiphlebus hirticornis Mackauer attacking Metopeurum fuscoviride, a specialist aphid feeding on tansy, Tanacetum vulgare. Previous studies revealed that M. fuscoviride has a classic metapopulation structure with high subpopulation turnover. In this study, up to 100% of ramets within a host plant genet colonized by aphids were colonized by the parasitoid, yet plants with aphids but no parasitoids were also observed. Genetic differentiation measured by FST, actual differentiation (D) and relative differentiation (GST) indicated highly structured parasitoid population demes, with restricted gene flow among and between parasitoid subpopulations at the various sites. Interestingly, both field data and population assignment analysis showed that the parasitoid is highly philopatric. Thus, despite the frequent local extinctions of the aphid host, the parasitoid continuously exploits its aphid host and contributes to the demise of local aphid subpopulations, rather than spreading its genes over many aphid populations. FST values for the haplodiploid parasitoid were similar to those found in an independent study of the diploid aphid host, M. fuscoviride, hence supporting the view that an insect herbivore’s population structure directly influences the ecology and genetics of the higher trophic level, in this case the wasp parasitoid. Heredity (2010) 105, 433–442; doi:10.1038/hdy.2009.190; published online 27 January 2010
    URI
    http://hdl.handle.net/123456789/928
    Collections
    • Articles: Department of Biological Sciences [285]

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV