• Login
    View Item 
    •   Repository
    • Journal Articles
    • Articles: Department of Water and Agricultural Resources Management
    • View Item
    •   Repository
    • Journal Articles
    • Articles: Department of Water and Agricultural Resources Management
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya Part 2. Biomass decomposition, N mineralization, and N uptake by maize

    Thumbnail
    View/Open
    Full text (42.36Kb)
    Date
    1999-06
    Author
    Mugendi, Daniel N.
    Nair, P.K.
    Mugwe, Jayne
    O'Neill, M.K.
    Swift, M.J.
    Woomer, P.
    Metadata
    Show full item record
    Abstract
    A major challenge in developing agroforestry approaches that utilize tree-leaf biomass for provision of N to crops is to ensure synchrony between the N released from decomposing prunings and N demand by crops. A study was conducted in the subhumid highlands of Kenya to assess the rate of decomposition and mineralization of soil-incorporated Calliandra calothyrsus Meissner (calliandra) and Leucaena leucocephala (Lam.) de Wit (leucaena) tree biomass and maize roots (Zea mays L.) both in an alley cropping and a sole cropping system. The amount of mineralized N peaked four weeks after planting (WAP) maize in all the treatments during both seasons of 1995. Cumulative mineralized N at week 20 ranged from 114 to 364 kg N ha−1 season−1, the absolute control treatment giving the lowest and the prunings-incorporated treatments giving the highest amounts in the two seasons. Total N uptake by maize, ranging from 42 to 157 kg ha−1 season−1, was lowest in the 'alley-cropped, prunings-removed' treatments, and highest in the 'non alley-cropped-prunings-incorporated' treatments. The apparent N recovery rate by maize was highest in the fertilizer applied treatments in the two seasons. Decomposition rate constants (kD) ranged from 0.07 to 0.21 week−1, and the rates among the different plant residues were as follows: leucaena < calliandra < maize roots. Nitrogen release rate constants (kN), ranging from 0.04 to 0.25 week−1, followed a similar pattern as the rate of decomposition with leucaena releasing the highest amount of N followed by calliandra and lastly by maize roots
    URI
    http://hdl.handle.net/123456789/277
    Collections
    • Articles: Department of Water and Agricultural Resources Management [200]

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV