Show simple item record

dc.contributor.authorHorie, Masanori
dc.contributor.authorIwahashi, Hitoshi
dc.date.accessioned2018-07-12T08:54:05Z
dc.date.available2018-07-12T08:54:05Z
dc.date.issued2014-04
dc.identifier.citationJ Phys Chem Biophys 2014, Vol 4(2): 139en_US
dc.identifier.issn2161-0398
dc.identifier.uriDOI: 10.4172/2161-0398.1000139
dc.identifier.urihttp://hdl.handle.net/123456789/1837
dc.description.abstractRecently, many in vitro studies evaluating the effects of nanoparticles on cellular physiology have been reported. In in vitro systems, the nano-objects induce not only primary effects but also confounding (artificial) effects. Investigations into the physiological and pathological effects induced in cells by in vitro exposure to nano-objects may be confounded by the specific physical and chemical properties of the objects. For example, protein adsorption from the culture media to the surfaces of nano-objects can essentially starve the cells. In addition, certain nanoparticles can release metal ions into cell culture or bioassay reagents. The protein adsorption and metal ion release by the nano-objects can interfere with ELISA and LDH assays, producing inaccurate results. Moreover, unstable or non-homogenous suspensions of nano-objects can result in imprecise in vitro evaluations of nano-objects. For accurate in vitro testing of nanoparticles, we should consider the effects of these three important properties of nanosuspensions: protein adsorption, metal ion release, and suspension stability.en_US
dc.language.isoenen_US
dc.subjectNano-objecten_US
dc.subjectNanosuspensionen_US
dc.subjectAdsorptionen_US
dc.subjectMetal ionen_US
dc.subjectSuspension stabilityen_US
dc.titleThe Impact of the Physiochemical Properties of Manufactured Nanoparticles on In vitro and In vivo Evaluation of Particle Toxicityen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record