Show simple item record

dc.contributor.authorAl-Shabi, Mohammad
dc.date.accessioned2016-11-14T13:19:04Z
dc.date.available2016-11-14T13:19:04Z
dc.date.issued2015-08
dc.identifier.citationIntelligent Control and Automation, 2015, 6, 168-183en_US
dc.identifier.urihttp://dx.doi.org/10.4236/ica.2015.63017
dc.identifier.urihttp://hdl.handle.net/123456789/1235
dc.description.abstractSigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of linearizing the nonlinear matrices statistically without the need to use the Jacobian matrices, the ability to handle more uncertainties than the Extended Kalman Filter (EKF), the ability to handle different types of noise, having less computational time than the Particle Filter (PF) and most of the adaptive techniques which makes it suitable for online applications, and having acceptable performance compared to other nonlinear estimation techniques. Therefore, SPKFs are a strong candidate for nonlinear industrial applications, i.e. robotic arm. Controlling a robotic arm is hard and challenging due to the system nature, which includes sinusoidal functions, and the dependency on the sensors’ number, quality, accuracy and functionality. SPKFs provide with a mechanism that reduces the latter issue in terms of numbers of required sensors and their sensitivity. Moreover, they could handle the nonlinearity for a certain degree. This could be used to improve the controller quality while reducing the cost. In this paper, some SPKF algorithms are applied to 4-DOF robotic arm that consists of one prismatic joint and three revolute joints (PRRR). Those include the Unscented Kalman Filter (UKF), the Cubature Kalman Filter (CKF), and the Central Differences Kalman Filter (CDKF). This study gives a study of those filters and their responses, stability, robustness, computational time, complexity and convergences in order to obtain the suitable filter for an experimental setup.en_US
dc.language.isoenen_US
dc.publisherScientific Research Publishingen_US
dc.subjectSigma Pointen_US
dc.subjectUnscented Kalman Filteren_US
dc.subjectCubature Kalman Filteren_US
dc.subjectCenteral Difference Kalman Filteren_US
dc.subjectFilteringen_US
dc.subjectEstimationen_US
dc.subjectRobotic Armen_US
dc.subjectPRRRen_US
dc.titleSigma-Point Filters in Robotic Applicationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record