Show simple item record

dc.contributor.authorJoshi, Jayant G.
dc.contributor.authorPattnaik, Shyam S.
dc.contributor.authorDevi, Swapna
dc.contributor.authorLohokare, Mohan R.
dc.date.accessioned2016-10-27T07:42:45Z
dc.date.available2016-10-27T07:42:45Z
dc.date.issued2011-01
dc.identifier.citationWireless Engineering and Technology, 2011, 2, 37-44en_US
dc.identifier.urihttp://dx.doi.org/10.4236/wet.2011.22006
dc.identifier.urihttp://hdl.handle.net/123456789/1069
dc.description.abstractA planar magnetoinductive (MI) waveguide loaded rectangular microstrip patch antenna is presented and discussed. The MI waveguide consists of two planar metamaterial split squared ring resonators (SSRRs) placed in between two microstrip lines. The backward wave propagation takes place through this structure. The rectangular microstrip patch antenna is magnetically coupled to the MI waveguide. The unloaded rectangular microstrip patch antenna resonates at 37.10 GHz. When loaded with planar MI waveguide, its resonant frequency is reduced to 9.38 GHz with the bandwidth and gain of 44% and 4.16 dBi respectively. In loaded condition, the dimension of antenna is 12.50 mm × 3.70 mm (0.390 λ × 0.115 λ). The appreciable bandwidth is achieved in such a small size antenna. The pass band frequency of MI waveguide is predicted by using the theoretical model of dispersion equation. The effective medium theory is used to verify the metamaterial characteristics of SSRR. The simulated results and theoretical calculations are also presented. The results show that the proposed method can be used to design compact and high bandwidth microstrip patch antennas.en_US
dc.language.isoenen_US
dc.publisherScientific Research Publishingen_US
dc.subjectBandwidth Enhancementen_US
dc.subjectMagnetoinductive Waveguideen_US
dc.subjectSplit Squared Ring Resonator (SSRR)en_US
dc.subjectNegative Permeabilityen_US
dc.subjectMagnetic Couplingen_US
dc.subjectDispersion Relationen_US
dc.titleBandwidth Enhancement and Size Reduction of Microstrip Patch Antenna by Magnetoinductive Waveguide Loadingen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record