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ABSTRACT 

Sorghum (Sorghum bicolor L.) is an essential drought-resistant crop that could enhance 

food security. However, its productivity remains relatively low in Kenya. Efforts to 

increase sorghum productivity through the application of external inputs could increase 

greenhouse gas (GHG) emissions. The study aimed to assess environmental GHG 

emission hotspots, effects of minimum tillage and inorganic fertilizer adoption on 

sorghum yields, and the determinants of adopting climate-smart agriculture and climate 

change adaptation practices. The study employed a cross-sectional survey of 300 

smallholders in Siaya County, Kenya. Principal component analysis and hierarchical 

clustering were used in farm typologies construction. Using Cool Farm Tool software, a 

carbon footprint assessment approach was performed to identify environmental GHG 

emissions hotspots. One-way analysis of variance was used to test the influence of farm 

types on sorghum yields, GHG balance, carbon footprint, and monetary footprint in SAS 

9.4 software. Descriptive statistics were used to describe the survey data. The impact of 

minimum tillage and inorganic fertilizer adoption were analyzed using propensity score 

matching and endogenous switching regression. Socioeconomic, institutional and 

biophysical determinants of adopting climate-smart agricultural practices (CSAPs) were 

analyzed using multivariate and ordered probit regression. Binary and Poisson regression 

models were used to evaluate the determinants of adopting climate change adaptation 

strategies. The results showed five farm types. The study showed that sorghum cropping 

systems were net sinks of soil GHGs. The GHG balance, carbon footprint, and monetary 

footprint significantly varied across the farm types at p=0.025, p=0.018, and p=0.004, 

respectively. The GHG balance ranged from -818.76 kg CO2 eq. ha-1 in manure intensive 

and low fertilizer intensity small farms to 174.29 kg CO2 eq. ha-1 in fertilizer intensive 

and moderate manure application rates on small farms. Adoption of minimum tillage and 

inorganic fertilizer improved sorghum yields. The study showed both complements and 

substitutes between CSAPs. The multivariate probit analysis revealed that the household 

head's gender, education, age, family size, contact with extension agents, weather 

information, arable land, livestock owned, perceived climate change, infertile soil, and 

persistent soil erosion influenced CSAPs adoption. Gender, arable land, livestock owned, 

soil fertility, and constant soil erosion were crucial determinants of CSAPs adoption 

intensity. Membership in agricultural associations, study location, progressive farming, 

literacy, remittance, access to credit, farm size, weather forecast information, and 

perceived climate changes significantly determine the adoption of climate change 

adaptation strategies. The study revealed that the judicious integration of inorganic 

fertilizers with animal manure could significantly improve sorghum yields while reducing 

yield-scaled greenhouse gas emissions. The findings on adopting agricultural innovations 

have incredible implications on rural livelihood. Enhanced productivity could promote 

food security and improve purchasing power, thus enhancing smallholder farmers’ 

capacity to cope with declining soil fertility and climate change-related challenges. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 Background 

Producing adequate food to feed the growing population is a significant hurdle across 

global agro-ecosystems (Niza-Ribeiro, 2022). Population growth is a major threat to 

global food production (Askew, 2017). Global food production needs to be increased by 

approximately 70% to feed the estimated population of 9.1 billion by 2050 (FAO, 2009). 

Against the backdrop of rising population, soil fertility decline and climate change are 

significant factors affecting agricultural productivity in sub-Saharan Africa (SSA) (Kiboi 

et al., 2019; Thierfelder et al., 2022) and in Western Kenya (Wetende et al., 2018; 

Kanyenji et al., 2022). The soil fertility decline results from continuous cultivation with 

no or minimal soil fertility replenishment (Mairura et al., 2022a). Additionally, climate 

change indicators such as prolonged drought, erratic and unreliable precipitation, floods, 

variations in the length of the cropping calendar, and the outbreak of pests and diseases 

lead to reduced crop yields or total failure (Mairura et al., 2021). To improve agricultural 

productivity in SSA and Western Kenya, ameliorating soil fertility decline coupled with 

climate change mitigation and adaptation is essential (Ngetich et al., 2014; Donkor et al., 

2019; Musafiri et al., 2020a).  

 

Sorghum is an essential climate-smart crop for enhancing food security in arid and semi-

arid lands (ASALs) (Muui et al., 2013; Hadebe et al., 2017). According to the Kenya 

Ministry of Agriculture, Livestock, and Fisheries (MOALF), (2016), approximately 80% 

of the total-farming households grow sorghum, which ranks second in importance among 

smallholder farming systems in Western Kenya. Despite the high adoption of sorghum (a 

climate-smart crop), its productivity remains relatively low (Okeyo et al., 2020a). The 

main challenges facing sorghum farming includes low soil fertility, poor varieties, 

climate change, and bird menace (ICRISAT, 2019). Therefore, soil fertility management 

and climate change adaptation practices are essential for enhancing sorghum 

productivity.  
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Agricultural intensification practices such as the application of inorganic fertilizer, 

Animal manure and its integration enhance soil health and crop productivity (Kiboi et al., 

2019; Musafiri et al., 2020b). The soil amendments improve nutrient availability, organic 

matter, and water holding capacity, thus enhancing crop yields (Kiboi et al., 2021). 

However, the application of external inputs in smallholder farms leads to the increased 

atmospheric concentration of greenhouse gas (GHG) such as carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O) (Ortiz-Gonzalo et al., 2018; Macharia et al., 

2020). Smallholder farming systems are highly heterogeneous (Musafiri et al., 2020a). 

Intensifying the already heterogeneous smallholder farming systems complicates 

agricultural intervention targeting (Alvarez et al., 2018; Kamau et al., 2018). 

Characterizing smallholder farming systems in Western Kenya is important for enhanced 

GHG emissions mitigation and food security. 

 

Documentation of Nationally Determined Contributions (NDCs) of GHG emissions is 

essential in meeting Kenya’s obligation to the United Nations Framework Convention on 

Climate Change (UNFCCC) and the 2015 Paris agreement on climate change (Pauw et 

al., 2018). Directly quantifying GHG emissions to inform NDCs is expensive and 

impractical on a national and regional scale (Giltrap et al., 2010; Musafiri et al., 2021). 

Estimation approaches such as carbon footprint (CFP) assessment have been widely used 

to investigate the impacts of agricultural management practices on the GHG balance 

(Rakotovao et al., 2017). The intensification approaches result in environmental GHG 

emissions hotspots and hot moments (Ortiz-Gonzalo et al., 2017). However, there is 

scanty information on the influence of agricultural management practices on the GHG 

balances and environmental GHG emissions hotspots among sorghum cropping systems 

in Western Kenya.  

 

Minimum tillage and inorganic fertilizer could improve sorghum productivity. Adopting 

conservation agriculture practices (CA) such as minimum tillage could enhance sorghum 

productivity among sorghum cropping systems. Minimum tillage enhances soil organic 

matter build-up and structure, thus increasing soil fertility and reducing soil erosion 

(Alam et al., 2014), therefore improving crop yields (Thierfelder et al., 2015). The use of 
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minimum tillage is limited by slow gains in crop yields (Giller et al., 2009). Inorganic 

fertilizers enhance soil health and agricultural productivity through increased nitrogen 

availability (Amujoyegbe et al., 2007). However, the nitrogen application rates in Kenya 

are low (Pasley et al., 2019), thus limiting the yield gains. Therefore, there is a pressing 

need to assess the influence of minimum tillage and inorganic fertilizer adoption on 

sorghum yields. 

 

Smallholder farmers are faced with a decision to adopt multiple climate-smart 

agricultural practices (CSAPs) for coping with climate change. Smallholder farmers' 

awareness of climate change indicators, causes, and impacts is essential in selecting the 

appropriate adaptation practice (Wetende et al., 2018). However, smallholder farmers 

will only adopt CSAP if the utility of adopting is higher than not adopting (Streletskaya 

et al., 2020). The adoption level and intensity of the CSAPs vary widely among 

smallholders and range from low to high (Musyoki et al., 2022). Therefore, smallholders 

can adopt no, single or a bundle of agricultural technologies (Mairura et al., 2021). The 

decision to adopt multiple agricultural practices is influenced by myriad factors, 

including socioeconomics, institutional, and biophysical (Kanyenji et al., 2020; Ogada et 

al., 2020). Thus, the socio-economic, institutional, and biophysical determinants of 

CSAPs adoption level and intensity need to be investigated to determine the smallholders' 

mitigation and adaptation practices to climate change in Western Kenya. 

 

1.2 Statement of the problem  

Climate change and soil fertility decline are the significant challenges facing smallholder 

farmers in Western Kenya. Adopting climate-smart crops such as sorghum and using 

external inputs such as inorganic fertilizers and animal manure improves crop yields. 

However, smallholders apply limited amounts of external inputs in sorghum cropping 

systems. The smallholders are highly heterogeneous. This makes the implementation of 

best-fit agricultural management practices complicated. Agricultural intensification 

results in increased concentration of GHGs such as carbon dioxide, methane, and nitrous 

oxide leading to environmental hotspots. There are limited studies quantifying 

environmental GHG emissions hotspots in Kenya. There is a dearth of data on the 
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contribution of climate-smart crops such as sorghum to the national GHG emission 

budget. Therefore, an understanding of the contribution of climate-smart crops to the 

GHG balance is urgently needed.  

 

Smallholders adopt soil fertility management practices and conservation agriculture to 

enhance crop yields. The adoption of inorganic fertilizer and minimum tillage could 

improve crop yields. However, smallholders hardly use the recommended inorganic 

fertilizer amounts. To enhance soil health and crop yields, there is a need to promote 

inorganic fertilizer and minimum tillage. Adoption of multiple CSAPs is essential for 

climate change mitigation and adaptation. Climate change awareness and in-depth 

understanding of its causes, indicators, and impacts are necessary for choosing coping 

strategies. To cope with the vagaries of climate change, there is a pressing need to adopt a 

bundle of agricultural practices to benefit from their complementary benefits. However, 

there is inadequate information on the adoption level and intensity of CSAPs and their 

determinants in the study area. 

 

1.3 Justification of the study 

Adopting soil fertility management and climate-smart agricultural practices could be used 

to improve soil fertility and cope with climate change among smallholder farmers. 

Although adopting soil fertility management practices improves crop yield (Macharia et 

al., 2020; Musafiri et al., 2020b), it leads to GHG emissions. Although GHG emissions 

have been quantified from diverse cropping systems, including maize, and coffee-diary 

systems (Ortiz-Gonzalo et al., 2017; Githongo et al., 2022), estimating GHG hotspots 

from sorghum cropping systems is important. Additionally, understanding the effects of 

inorganic fertilizer and minimum tillage on sorghum yields, is essential. Understanding 

the determinants of adoption level and intensity of climate change adaptation practices is 

important in promoting mitigation and adaptation practices. Therefore, this study seeks to 

evaluate the environmental GHG emissions hotspots, effects of inorganic fertilizer, and 

minimum tillage adoption on sorghum yields and determinants of adopting climate 

change adaptation practices.  
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1.4 Research objectives 

The broad objective of the study was to evaluate the environmental GHG emissions 

hotspots, effects of inorganic fertilizer, and minimum tillage adoption on sorghum 

productivity and determinants of climate change adaptation among smallholder farms in 

Western Kenya. 

 

The following specific objectives guided this study: 

1. To assess environmental greenhouse gas emission hotspots among smallholders’ 

sorghum cropping systems in Siaya County. 

2. To evaluate the effects of minimum tillage adoption on sorghum productivity 

among smallholder farmers in Siaya County. 

3. To evaluate the effects of inorganic fertilizer adoption on sorghum productivity 

among smallholder farmers in Siaya County. 

4. To assess the determinants of climate-smart agricultural practices adoption level 

and intensity among smallholder farmers in Siaya County 

5. To assess the climate change perceptions and determinants of adaptation among 

smallholder sorghum farmers in Siaya County. 

 

1.5 Outline of the thesis 

The thesis is structured into seven chapters. Chapter one (General Introduction) 

highlights the background of the study, statement of the problem, justification of the 

study, and research objectives. Following the general introduction, there are five chapters 

(Chapters two to six), each a manuscript submitted to a peer-reviewed journal. 

 

Chapter two presents the carbon footprint of smallholder sorghum cropping systems in 

Western Kenya. The smallholders’ sorghum cropping systems in Western Kenya were 

characterized. Environmental GHG emissions hotspots were estimated using Cool Farm 

Tool (CFT), an excel program. The study presented the GHG balance, environmental 

GHG balances, and mitigation opportunities across different farm types. 
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Chapter three describes the effects of minimum tillage adoption on sorghum yields. The 

study highlights the adoption level of minimum tillage, determinants of minimum tillage 

adoption, and sorghum yields for both adopters and nonadopters. 

 

Chapter four describes the effects of inorganic fertilizer adoption on sorghum yield 

among smallholder farmers in western Kenya. The research describes the determinants of 

inorganic fertilizer adoption and sorghum yield for adopters and nonadopters.  

 

Chapter five presents the adoption level and intensity of smallholder CSAPs among 

smallholder farmers in Western Kenya. The socioeconomics, institutional and 

biophysical determinants of animal manure, soil water conservation, agroforestry, crop 

diversification, and crop-livestock integration are presented with the adoption intensity. 

 

Chapter six presents the smallholder farmers' awareness of climate change and its causes, 

indicators, and effects. The smallholder farmers' climate change adaptation practices are 

presented. The study describes the problems encountered by smallholder farmers in 

coping with climate change. The study underscores the socioeconomic, biophysical, and 

institutional factors determining the adoption of climate change adaptation practices. 

Lastly, chapter seven outlines the synthesis, conclusion, recommendations, and areas of 

further research. 
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CHAPTER TWO 

THE CARBON FOOTPRINT OF SMALLHOLDER RAIN-FED SORGHUM 

CROPPING SYSTEMS OF KENYA: A TYPOLOGY-BASED APPROACH 

 

Abstract 

Agriculture is a major source of greenhouse gas (GHG) emissions in sub-Saharan Africa, 

Kenya included. To feed the growing population, there is a need to identify agricultural 

management practices to increase food production while reducing GHG emissions for 

climate change mitigation and adaptation. This study assessed environmental hotspots 

among smallholders’ sorghum cropping systems in Siaya County. The study was based 

on the hypothesis that different intensification levels influence the GHG balance. Three 

hundred smallholder farms in western Kenya were surveyed. Principal component 

analysis and hierarchical clustering were used in farm typologies construction. The study 

revealed five farm types that ranged from no or minimal external inputs and highly 

intensified, small to large, and low to highly endowed in tropical livestock units. Cool 

Farm Tool excel program model was used to estimate GHG balances. The study showed 

that sorghum cropping systems were net sinks of soil GHGs. The GHG balance, carbon 

footprint, and monetary footprint significantly varied across the farm types at p=0.03, 

p=0.02, and p=0.004, respectively. The GHG balance ranged from -818.76 kg CO2 eq. 

ha-1 in manure intensive and low fertilizer intensity small farms to 174.29 kg CO2 eq. ha-1 

in fertilizer intensive and moderate manure application rates on small farms. Fertilizer 

production and direct and indirect emissions (fertilizer application) were the 

environmental hotspots accounting for 63 and 30 % of the GHG emissions. The carbon 

and monetary footprints ranged from -1.29 to 0.45 kg CO2 eq. kg-1 sorghum and -2.02 to 

0.13 kg CO2 eq. US$-1 generated, respectively. This study highlights that judicious 

integration of animal manure and inorganic fertilizer offers opportunities for GHG 

mitigation among smallholder sorghum cropping systems in western Kenya. 

 

Keywords: carbon footprint, smallholder sorghum farms; intensification; green 

production; 

farm-scale; Kenya 
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2.1 Introduction 

The global greenhouse gas (GHG) concentrations (carbon dioxide (CO2), methane (CH4), 

and nitrous oxide (N2O) have significantly increased over the last decades (IPCC, 2007; 

IPCC, 2014; Ntinyari & Gweyi-Onyango, 2021). The GHGs, CO2, CH4, and N2O 

contribute approximately 60%, 20%, and 6% of global warming, respectively (Dalal & 

Allen, 2020). Agriculture contributes to about 14-17% of the anthropogenic GHG 

emissions (Ciais et al., 2013; Paul et al., 2017). Consequently, agriculture has been 

identified as an essential entry point in GHG emissions mitigation (Ogle et al., 2014; 

Leahy et al., 2020; Sapkota et al., 2021). Few studies have quantified GHG emissions in 

most developing countries, including Kenya (Rosenstock et al., 2016; Pelster et al., 

2017). The direct quantification of agricultural GHG fluxes to inform the national and 

regional GHG budget is expensive and impractical (Giltrap et al., 2010; Musafiri et al., 

2021). The dearth of studies constrains the identification of GHG mitigation opportunities 

in smallholder farming systems. Moreover, smallholder farming systems are highly 

heterogeneous (Alvarez et al., 2014; Kamau et al., 2018; Musafiri et al., 2020a). 

Therefore, constructing farm typologies and using GHG emissions estimation approaches 

is essential for identifying GHG emissions hotspots and mitigation options.  

 

Climate change is the main challenge facing smallholder farming systems in African 

countries, including Kenya (Musafiri et al., 2020a; Mairura et al., 2022a). In the African 

countries, the main hurdle is to feed the growing population projected to double by 2050 

from the current 1.3 billion persons (United Nations Population Division, 2022) while 

mitigating and adapting to climate change. To feed the growing population, there is a 

need to shift from land expansion to intensification (Ortiz-Gonzalo et al., 2017). The 

growth of climate-smart crops such as sorghum also provides novel opportunities for 

enhancing food security (Mwadalu & Mwangi, 2013; Ogeto et al., 2013). Smallholder 

farmers use soil fertility management practices, including manure, inorganic fertilizer, 

integration of animal manure and inorganic fertilizer, and mulching to enhance crop 

yields (Musafiri et al., 2022a, b). However, the nitrogen application rates among 

smallholder farming systems are low (Waithaka et al., 2007; Tittonell et al., 2008; 

Musafiri et al., 2020a; Mairura et al., 2022b). Given the differences in intensification 
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among smallholder farms, the smallholders' sorghum cropping systems are highly 

heterogeneous. The construction of farm typologies is essential to group the smallholder 

sorghum cropping systems into homogenous farm types. Homogenous farm types could 

enhance the identification of GHG hotspots and mitigation options.  

 

Given that direct quantification of GHG fluxes for informing National and regional 

budgets is expensive, previous studies have used a modeling approach to quantify the 

carbon footprint (CFP) to assess the impact of management practices on climate change 

(Rakotovao et al., 2017; Ortiz-Gonzalo et al., 2017). The Cool Farm Tool (CFT) has been 

used to evaluate the GHG balance at the farm level (Farm-gate), as influenced by 

different agricultural management activities (Yan et al., 2015; Zhang et al., 2017; Chen et 

al., 2020a). Using the CFP methodology, agriculture has been evaluated for GHG 

mitigation through different management practices (Rakotovao et al., 2017; Huang et al., 

2017). Documentation of Nationally Determined Contributions (NDCs) of GHG 

emissions is essential in meeting Kenya's obligation to the United Nations Framework 

Convention on Climate Change (UNFCCC) and the 2015 Paris agreement on climate 

change (Pauw et al., 2018). Product carbon footprint (CFP) estimation could be used to 

report the GHG budget.  

 

In western Kenya, sorghum is grown by approximately 80% of the farming households 

(MoALF, 2016). Though sorghum farming is mainly subsistence, there are concerted 

efforts by different organizations such as One Acre Fund, Cereals Growers Association 

(CGA), and Farm to Market Alliance (FtMA) to commercialize sorghum farming 

(MoALF, 2016; CGIAR, 2021). The commercialization of sorghum productivity leads to 

increased use of soil amendments such as mineral and organic inputs. Though the 

external inputs lead to increased sorghum yields, they come with additional costs of GHG 

emissions, thus increasing climate variability. The climate disturbance due to the 

increased use of soil amendments could further threaten food security and smallholders' 

livelihoods. To enhance greener production, sustainable utilization of soil amendments is 

essential. The GHG balances under different intensification levels will be necessary to 

inform potential GHG mitigation options among sorghum cropping systems. 

https://www.cgiar.org/research/program-platform/grain-legumes-and-dryland-cereals/
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There is limited information on the influence of intensification levels on farm-scale GHG 

balances in sorghum cropping systems of Western Kenya. The objective of this study was 

to assess environmental hotspots among smallholders’ sorghum cropping systems (no 

external inputs to highly intensified systems) in Siaya County, Western Kenya. The study 

hypothesized that farm-level GHG balances varied across different intensification levels 

defined as farm types. Secondly, the study identified environmental GHG emissions 

hotspots by assessing the contributions of various components to the GHG balance. 

Finally, mitigation options across farm types were specified. 
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2.2 Methodology 

2.2.1 Study area description 

The study was conducted in Alego-Usonga and Ugenya sub-Counties, Siaya County, 

Western Kenya. Alego-Usonga and Ugenya sub-Counties cover 599 km2 and 324 km2 

and have a population of 224,343 and 134,354 persons (KNBS, 2019). The population 

density is 375 and 415 persons per km2, for Alego-Usonga and Ugenya, respectively. The 

sub-Counties lie at an altitudinal range of 1,140 and 1,500 m above sea level in Siaya 

County. Alego-Usonga and Ugenya sub-Counties experience similar climatic conditions 

with six agro-ecological zones that are Lower midland (LM 1-5) and upper midland 

(UM1) (Jaetzold et al., 2010). The sites receive bimodal precipitation with long rain (LR) 

season experienced between March and June and the short rain season between 

September and December. The annual precipitation amounts range from 800 and 2,200 

mm. The long-term temperature annual ranges from 20.9 to 22.3 °C. The primary soil 

type is Ferrasol, with moderate to low soil fertility. 

 

2.2.2 Smallholders' cropping systems 

The main economic activities in Alego-Usonga and Ugenya sub-Counties are agriculture, 

fishing, and livestock rearing. The sites experience climatic conditions varying from 

semi-humid to semi-arid. The smallholders grow climate-smart crops, including sorghum 

(Sorghum bicolor), cassava (Manihot esculenta), green gram (Vigna radiata), cowpea 

(Vigna unguiculata), groundnuts (Arachis hypogaea), millet (Panicum miliaceum) and 

chickpea (Cicer arietinum). Other crops grown in the sub-Counties include maize (Zea 

mays), beans (Phaseolus vulgaris), and sugarcane (Saccharum officinarum). Sorghum, a 

drought-resistance crop, is grown by approximately 80 % of the farmers in Siaya County 

(Ministry of Agriculture, Livestock, and Fisheries (MoALF), 2016). The crop is grown 

under rain-fed systems. Low soil fertility and climate change, including low rainfall 

amounts and erratic precipitation, affect sorghum production in the study area. 

Smallholders implement different soil fertility management and climate change 

adaptation mechanisms, including animal manure, inorganic fertilizer, and their 

integration, and minimum tillage to enhance productivity against declining soil fertility 

and changing climate. Most sorghum growing areas are affected by waterlogging, 
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impeding farm operations, including ploughing, planting, weeding, and harvesting. 

Animal manure (cattle, goat, and poultry) is acquired from domestic livestock or nearby 

households. Fertilizers are expensive for smallholder sorghum farmers, thus applied in 

small quantities. 

 

2.2.3 Data collection 

A cross-sectional survey of 300 farms was conducted using interview schedules to 

construct farm typologies and estimate GHG emissions and removal. The interview 

schedule targeted the households' heads. Additionally, fieldwork observation and 

measurements of soil samples, fertilizer amounts, manure quantity, and harvested grains 

were implemented to complement the survey. The smallholder farms were selected based 

on the following criteria: within Alego-Usonga and Ugenya sub-Counties who grew 

sorghum. The survey covered ten wards. 

 

The data collected included (i) farm description including georeferenced coordinates, 

sub-county, and ward, (ii) farmer gender, (iii) farm characteristics such as farm size, seed 

quantity planted, tropical livestock unit, and crop variety, (iv) soil fertility management 

technologies such as the use of animal manure, inorganic fertilizers, integration of animal 

manure and inorganic fertilizer, no inputs application, and tillage practices, (v) inputs 

such as quantity and type manure and fertilizer applied, (vi) management practices such 

as tillage, cover crop, compost, animal manure, and crop residues application, duration of 

application and proportion of land and (vii) output including yields and price per kilo of 

sorghum. Each farm was georeferenced using the Global Positioning System. The 

quantity of fertilizer, manure, and yields was determined by weighing ten tools used by 

smallholders (wheelbarrow, bag, debe, tin, and Korogoro). 

 

Fifteen farms were selected for composite soil sampling. Five soil samples were taken 

from each farm at 0-20 cm depth and mixed to form a composite sample. Soil texture was 

analyzed using the hydrometer method, soil organic carbon using the Walkley-Black 

method, soil pH using a 1:2 soil water ratio, and the suspension measured using HANNA 

Instruments (pH meter) (Okalebo et al., 2002). Eight storage heaps (four for goats and 
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four cattle) were selected for composite manure sampling. A composite sample was 

obtained by sampling five points from each manure heap. The manure from the five 

points was then mixed to form a composite sample. The total C and N were determined 

using C /N analyzers. 

 

2.2.4 Data analyses 

Rain-fed smallholders farm are highly diverse due to variations in farmer, farm, and input 

characteristics. Farm typologies construction is widely used to group heterogeneous 

farms into homogeneous categories (Gil et al., 2019; Hammond et al., 2020). The farm 

typologies are valuable for enhancing smallholder farm innovations and policy 

implementation (Alvarez et al., 2018). The farm typologies are highly influenced by the 

factors included in the construction (Alvarez et al., 2014). Therefore, the research 

objectives should guide the variables to be included in the farm typology construction 

(Pacini et al., 2014). Musafiri et al. (2020a) found that farm typologies could be pivotal in 

estimating GHG balance. The study hypothesized that due to differences across farm 

typologies, GHG balance could significantly differ across them. 

 

Farm typologies can be constructed using Step by step comparison of farm functioning 

(Landais, 1998), Expert knowledge (Pacini et al., 2014), Participatory rankings (Kebede, 

2007), and Multivariate analysis (Alvarez et al., 2018; Musafiri et al., 2020a). The 

multivariate analysis allows for statistical reduction of explanatory variables to 

homogeneous farm types. In this study, multivariate analysis (principal components 

analysis (PCA) and hierarchical clustering (HC) was performed in R software as 

described by Alvarez et al. (2014) using the ade4 package (Mangin et al., 2012). The key 

variables included in the analysis were land size under sorghum (ha-1), seed quantity 

planted (kg ha-1), tropical livestock unit (TLU units), fertilizer amount applied during 

planting (kg ha-1), fertilizer amount during top dressing ((kg ha-1), manure quantity (t ha-

1), sorghum yields (kg ha-1) and sorghum income (Dollars ha-1), Table 2.1). Box plots 

were used to check for normal distribution. To ensure normal distribution, manure 

quantity, fertilizer amounts, yields, and revenue data were log-transformed. 
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Table 2.1 Description of the study variables  

Variable description Description Units 

Number of farms Number of smallholders count (%) hh 

Farm typology description Classification of the farm type   

Categorical variables *     

Site Number of the smallholders who resident 

in Ugenya 

count (%) hh 

Gender Number of the male smallholders count (%) hh 

Control Number of smallholders not using soil 

fertility management practices 

count (%) hh 

Manure Number of smallholders who applied 

manure 

count (%) hh 

Fertilizer Number of smallholders who applied 

fertilizer 

count (%) hh 

Fertilizer and Manure 

integration 

Number of smallholders who integrated 

manure and fertilizer 

count (%) hh 

Minimum tillage Number of smallholders who implemented 

minimum tillage 

count (%) hh 

Continuous variables     

Land size Land size under sorghum production ha 

Seed quantity The quantity of seeds planted kg ha-1 

Tropical livestock unit The units of livestock kept TLU 

Fertilizer planting The quantity of fertilizer applied during 

planting 

kg ha-1 

Fertilizer top dressing The quantity of fertilizer applied during top 

dressing 

kg ha-1 

Manure quantity The quantity of manure applied kg ha-1 

Yields Sorghum productivity kg ha-1 

Revenue Sorghum revenue US$ ha-1 

*Only continuous variables were used in the multivariate analysis 

 

The principal components (PCs) were selected based on Kaiser Mayer-Olkin (KMO), 

Alvarez et al., 2014; Musafiri et al., 2020a). The Principal Components with eigenvalues 

greater than one were retained. The sample size was greater than 250, so the KMO 

resulted in many PCs (Field, 2011). Therefore, critical PCs were selected if the cumulated 

percentage of explained variability accounted for 70 % or more of the total variance (Hair 

et al., 2010). The resultant PCs were subjected to HC analysis similar to Kamau et al. 

(2018). The barplot (height = 40) and dendrogram suggested five categories (k=5), Figure 

2.1). Correlation circles were generated for farm types visualization and interpretations 

(Figure 2.2). A one-way analysis of variance was performed to assess whether there was 

a significant difference between the factors and the farm types (Table 2.2). 
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Figure 2.1 Dendrogram (a) and bar plot (b) indicate the number of farm types resulting 

from multivariate analysis. The dotted horizontal line indicates the cut-off points that 

resulted in five farm types (FT 1-5). The vertical axis represents the distance or 'height' 

between the farm types. 
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Figure 2.2 Visualization of farm types by Principal Component Analysis. The farm types 

are indicated in PC1-PC2 (a) and PC1-PC3 (b).  

 

Several tools, including Cool Farm Tool (CFT), EX-ACT and Climate Change, 

Agriculture, Food Security Mitigation Options Tool (CCAFSMOT), have been 

developed, tested, and validated for estimating GHG balance in tropical conditions. The 

GHG tools estimate global GHG emissions with minimal data requirements (Lata et al., 

2020). The CFT has been used to quantify GHG balance across different systems in 

Africa, including Seebauer (2014 from smallholder farms in Western Kenya, Svubure et 

al. (2018) from potato cropping systems in Zimbabwe, Ortiz-Gonzalo et al. (2017) from 

crop-livestock systems in Central Kenya and Vervuurt et al. (2022) from cacao 
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production in the Republic of Côte d'Ivoire. The CFT (Hillier et al., 2011) is an open-

source Spreadsheet program that estimates the GHG emissions from different input levels 

and management practices. Therefore, CFT combines other empirical models and uses 

them to calculate GHG emissions as carbon dioxide equivalents (Hillier et al., 2011). The 

CFT model uses empirical equations and the IPCC Tier 1 and 2 approaches. In this study, 

the CFT was used to estimate GHG balance across the different farm types in Western 

Kenya. 

 

The CFT could be sensitive to input variables. Previous studies have found that the CFT 

model has lower sensitivity (Clavreul et al., 2017). Given the nitrogen application rate (0-

89 kg N ha-1) in the study was lower than 66–506 kg N ha-1 used by Clavreul et al. 

(2017), the uncertainty in the study could be much lower. Vervuurt et al. (2022) 

employed a similar analysis approach on cocoa cropping systems with a nitrogen 

application rate of (0- 250 kg N ha-1). The GHG balance calculation requires a set system 

boundary (Alam et al., 2019; Chen et al., 2020b). The system boundary was set up to the 

farm gate. Therefore, emissions beyond the farm gate were not considered. The system 

boundary is used to assess the GHG balance based on sources and sinks. Figure 2.3 

highlights the GHG emissions sources and sinks considered in the research. The overall 

GHG balance is expressed as CO2 eq. The CO2 eq. is calculated using the global warming 

potential conversation factor of 265 for N2O and 28 for CH4 over a 100-year time horizon 

(IPCC, 2014). 
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Figure 2.3 Sorghum cropping system boundary 

 

The GHG balances comprised fertilizer production, background soil process, crop residue 

management, and carbon sequestration. This study did not consider emissions from trees, 

electricity, farm machinery, or sorghum processing. Smallholder sorghum cropping 

systems mostly use animals for farm labor, such as land preparation. In addition, 

including livestock emissions could lead to biased estimation due to overestimation of the 

GHG fluxes. Therefore, the study did not include emissions from livestock systems—

background emissions results from soil biogeochemical processes. The soil emissions 

from the background processes include soil pH, texture and soil organic matter, drainage, 

and climate (Hillier et al. 2011). The net GHG balance is expressed as CO2 eq. A positive 

sign indicates a source, and a negative sign indicates a sink. The soil characteristic data 

such as pH (5.2), SOM (2.8%), and texture (medium) were included in the model from 

the laboratory analysis. The C and N concentrations for manure were included in the 

laboratory analysis, while the manufacturer-specific concentrations of inorganic 

fertilizers were used for the input in the CFT model. 
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The environmental hotspots were determined by calculating the smallholders' sorghum 

cropping system to the GHG balance. The environmental hotspots were expressed as 

area-scaled emissions (kg CO2 eq. ha-1), yield-scale emissions (Kg CO2 eq. kg sorghum-

1), and monetary-scaled emissions (Kg CO2 eq. US$-1 generated). A heatmap analysis 

was performed to identify the environmental hotspots using R software. The 

environmental hotspots across different farm types were compared using one-way 

analysis of variance (ANOVA) and mean separation using Tukey's HSD when P < 0.05 

in R software. 
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2.3. Results and discussion 

2.3.1 Farm typology 

Five farm types were identified through PCA and HC (Figure 2.2-2.3). The descriptive 

characteristics of each farm type (FT) are described in Tables 2.2-2.3. Farm type 1 (FT1) 

comprises small farms (0.22 ha), sole fertilizers, and manure and fertilizer integrating 

farming households. The FT1 also had a high resource endowment in TLU (0.54 units). 

FT1 had a high fertilizer (143.29 kg ha-1) and moderate manure (502.39 kg ha-1) use 

intensity. The FT1 was categorized as fertilizer intensive and moderate manure intensity 

on small farms. The FT2 comprised small farms (0.17 ha), sole manure and manure and 

fertilizer integrating farming households. The FT2 had high manure (1918.53 kg ha-1) and 

low fertilizer (18.78 kg ha-1) use intensity. The FT2 had a high TLU (0.63 units) 

regarding resource endowment. Therefore, the FT2 was grouped as manure intensive and 

low fertilizer intensity small farms. 

 

Farm type three (FT3) comprised small farms (0.15 ha-1) with sole fertilizer and manure 

and fertilizer integrated farming households. The FT3 had moderate manure (195.84 kg 

ha-1) and fertilizer (68.76 kg ha-1) application rates. The farming households in FT3 had a 

low resource endowment of 0.27 units of TLU. The FT3 was classified as moderate 

fertilizer and manure intensifying on small farms. On the contrary, farm type 4 (FT4) had 

large (0.38 ha) and predominantly adopters of mineral fertilizer. The FT4 was 

characterized by low fertilizer (37.86 kg ha-1) and manure (110.44 kg ha-1) use intensity. 

Regarding resource endowment, FT4 had a high of 0.65 TLU units. The FT4 was 

grouped as low fertilizer and manure intensity on large farms.  
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Table 2.2 Descriptive characteristics of the five farm types in Western Kenya 
Typology description/ 

Variables 

FT 1 FT 2 FT 3 FT 4 FT 5 P-

Value 

Pooled 

Number of farms 57 (19.0) 69 (23.0) 56 (18.7) 63 (21.0) 55 (18.3)   300 

Categorical Variables               

Site 31(26.1) 14 (11.8) 28 (23.5) 29 (24.4) 17 (14.3) 0.000 119 

Gender 26 (22.8) 29 (25.4) 12 (10.5) 28 (24.6) 19 (16.7) 0.044 114 

Control 0 (0) 12 (23.5) 0 (0) 4 (7.8) 35 (68.6) 0.000 51 

Manure 0 (0) 37 (82.2) 0 (0) 2 (4.4) 6 (13.3) 0.000 45 

Fertilizer 45 (29.2) 0 (0) 50 (32.5) 47 (30.5) 12 (7.8) 0.000 154 

Fertilizer and Manure integration 12 (24.0) 20 (40.0) 6 (12.0) 10 (20.0) 2 (4.0) 0.002 50 

Minimum tillage 11 (19.0) 9 (15.5) 16 (27.6) 15 (25.9) 12 (7.1) 0.128 58 

Continuous Variables               

Land size 0.22±0.05b1 0.17±0.01b 0.15±0.02b 0.38±0.05a 0.24±0.02b 0.000 0.23±0.02 

Seed quantity 20.12±1.63a 17.48±1.08a 15.35±1.08ab 11.38±1.72b 11.62±1.16b 0.000 15.23±0.64 

Tropical livestock unit 0.54±0.05a 0.63±0.04a 0.27±0.04b 0.65±0.04a 0.28±0.04b 0.000 0.49±0.02 

Fertilizer planting 143.29±16.28a 18.78±4.46cd 68.76±7.59b 37.86±3.93bc 3.31±1.03d 0.000 52.94±4.59 

Fertilizer top dressing 88.25±10.91a 0.36±0.36b 10.28±3.33b 13.28±3.78b 0.22±0.15b 0.000 21.60±2.97 

Manure quantity 502.39±161.08b 1918.53±242.36a 195.84±96.08b 110.44±38.15c 90.87±48.41c 0.000 613.13±78.90 

Yields 1565.62±93.88a 1105.24±55.14bc 1333.58±85.27ab 1061.62±63.50c 688.28±33.77d 0.000 1149.73±34.70 

Revenue 702.48±53.10a 434.46±25.24b 531.97±37.99b 440.29±31.06b 269.70±13.55c 0.000 474.60±17.15 
1 Mean values with different superscripts across rows are significantly different at P < 0.05. 

FT indicates the farm types 

Values in parenthesis are the percentage 

The ± showed the standard error of the mean 

The soil fertility inputs, sorghum yields, and revenue are for one cropping season. 
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Table 2.3 Farm type distribution in Ugenya and Alego-Usonga sub-Counties 

Pooled sample (n=300)  Ugenya (n=119)  Alego-Usonga (n=181) 

Farm type description Farm type Percent (%)  frequency Percent (%)   Frequency Percent (%) 

Fertilizer intensive and moderate manure 

intensity small farms 

1 (n=57) 19.0  31 26.1  26 14.4 

Manure intensive and low fertilizer 

intensity small farms 

2 (n=69) 23.0  14 11.8  55 30.4 

Moderate fertilizer and manure intensity 

small farms 

3 (n=56) 18.7  27 22.7  29 16.0 

Low fertilizer and manure intensity large 

farms 

4 (n=63) 21.0  29 24.4  34 18.8 

No or minimal soil fertility 

replenishment small farms 

5 (n=55) 18.3  18 15.1  37 20.4 
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Farm type five (FT5) was characterized by small farms (0.24 ha) with minimal utilization 

of soil fertility management technologies. The FT5 had very low fertilizer (3.31 kg ha-1) 

and low manure (90.87 kg ha-1) application rates. Additionally, the FT5 had a low 

resource endowment of 0.28 TLU units. The FT5 was grouped as no or minimal soil 

fertility replenishment on small farms.  

 

2.3.2 Sorghum yields and revenue 

The sorghum yields ranged from 688.28 to 1565.62 kg ha-1 under FT5 and FT1, 

respectively (Table 2.2). The sorghum yields significantly (p≤0.0001) differed across the 

FTs. The average sorghum productivity was 1149.73 kg ha-1. The sorghum yields were 

lower in FT2, FT4, and FT5 and higher in FT1 and FT3. The FT1 had the highest 

sorghum yields, 2.27 times higher than FT5. The average revenue across the FTs was 

474.60 US$ ha-1 (Table 2.2). The sorghum revenues significantly (p≤0.000) differed 

across the FTs with FT5 having the lowest (269.70 US$ ha-1), and FT1 the highest 

income (702.48 US$ ha-1). The sorghum revenues in FT2, FT3, and FT4 were not 

statistically different.  

 

The quantity of 688 to 1566 kg ha-1 of sorghum grain yields observed in the study agreed 

with 300 to 4300 kg ha-1 reported under drier conditions in Kenya (Okeyo et al., 2020; 

Kimaru-Muchai et al., 2021; Tegemeo Institute, 2021). However, the sorghum yields 

were much lower than the production potential of 2000 to 5000 kg ha-1 (Karanja et al., 

2014). The higher crop yields in FT1, FT2, and FT3 than FT 4 and FT4 could be 

attributed to the higher nutrient application rates. Increased application of soil 

amendments such as mineral fertilizer and animal manure leads to improved soil fertility 

(Macharia et al., 2020; Musafiri et al., 2020b), thus enhancing crop productivity. 

Additionally, the application of animal manure in the drylands of Western Kenya could 

have resulted in better soil properties such as water content, organic carbon, and reduced 

degradation, thus enhancing crop yields. The findings indicated that external inputs such 

as animal manure and soil fertility improved sorghum yields. 
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2.3.3 Farm GHG environmental hotspots 

Table 2.4 shows a heat map visually interpreting GHG balance and yield scaled 

emissions across farm types. The heat map interpretation is based on color intensity. The 

darker colors suggested hotspots and hot moments at multiple scales. FT1 and FT2 had 

the darkest colors for GHG balance, and yield scaled emissions, thus highlighted as 

environmental GHG hotspots among smallholder sorghum cropping systems in Western 

Kenya. Fertilizer production and application were the main contributors to the GHG 

hotspots. 

 

Table 2.4 Heat map of environmental GHG hot moments and hotspots 

Category Sources of emissions FT1 FT2 FT3 FT4 FT5 

Product Footprint Fertilizer Production      

(kg CO2 eq. ha-1) Fertilizer application      

 Crop Management      

 Carbon sequestration      

       

Carbon Footprint Fertilizer Production      

(kg CO2 eq. kg-1 yields) Fertilizer application      

 Crop Management      

 Carbon sequestration      

Darker colors indicate higher emissions, FT is farm type 

 

Differences in GHG balance were found across farm types, p=0.046 for fertilizer 

production, p=0.010 for fertilizer application, p≤0.0001 for crop management, and 

p=0.023 for carbon sequestration (Table 2.5). FT1 (1208.52 kg CO2 eq. ha-) and FT2 

(1187.52 kg CO2 eq. ha-) had the highest GHG emissions from fertilizer production, 

while FT5 (86.23 kg CO2 eq. ha-) had the lowest. Both FT3 (416.15 kg CO2 eq. ha-) and 

FT4 (336.89 kg CO2 eq. ha-) contributed the same amount to the GHG balance. FT2 

(400.00 kg CO2 eq. ha-1) had the highest contribution regarding fertilizer application, 

while FT5 (288.77 kg CO2 eq. ha-1) had the lowest. The FT1 (81.70 kg CO2 eq. ha-1) had 

the highest while FT5 (61.50 kg CO2 eq. ha-1) had the lowest contribution to GHG 

balance resulting from crop management. Different management practices resulted in soil 

carbon sink. The FT2 (-2478.77 kg CO2 eq. ha-1) had the highest soil carbon sink, while 

FT5 (-577.07 kg CO2 eq. ha-1) had the lowest. The overall contribution of different 
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sources to GHG balance was ranked as; crop management (7%), fertilizer application 

(30%), and fertilizer production (63%), Figure 2.4). 

 

An estimated -577 to -2478 kg CO2 eq. ha-1 of carbon was stored in sorghum cropping 

systems (Table 2.5). The carbon sequestration falls within the range documented by 

previous studies range, between -1530 and -3830 kg C ha-1 in Western Kenya (Karanja, 

2020), -1300 to -2300 kg C ha-1 in the Central highland of Kenya (Ortiz-Gonzalo et al., 

2017), and -700 to -1150 kg C ha-1 in Brazil (Corbeels et al., 2006). Considering farm 

type, the highest amount of carbon (2478 kg CO2 eq. ha-1) was stored in the FT2, while 

the lowest amount of carbon was stored in FT5. It is noteworthy that FT2 had the highest 

manure application rates (1919 kg ha-1) and FT5 the lowest (91 kg ha-1). Therefore, the 

highest and lowest carbon sequestration observed in FT2 and FT5 could be endorsed to 

the differences in manure application rates. The findings agreed with Ortiz-Gonzalo et al. 

(2017), who reported the highest manure application rates stored higher carbon. 
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Table 2.5 The GHG balance and yield-scaled emissions for different GHG sources and sinks 

Farm type description The GHG balance (kg CO2 eq. ha-1) 

 
Fertilizer 

production 

Fertilizer 

application 

Crop 

Management 

Carbon 

sequestration 

FT1 1208.52a±360.32 313.78ab±10.20 81.7a±78 -1429.71b±275.44 

FT2 1187.52a±297.82 400.00a±47.46 72.5ab±2.46 -2478.77c±277.69 

FT3 416.15b±120.89 295.19b±2.51 72.29ab±2.28 -832.00ab±120.69 

FT4 336.89b±120.92 311.56ab±10.27 64.28bc±1.76 -780.06ab±107.98 

FT5 86.23c±44.51 288.77b±6.48 61.51c±2.06 -577.07a±86.62 

p-Value 0.046 0.010 0.000 0.023 

Mean 666.98±104.96 325.09±11.56 70.46±1.20 -1266.74±100.05 

 The yield-scaled emissions (kg CO2 eq. kg sorghum -1) 

FT1 1.90a±0.42 0.31d±0.03 0.07c±0.01 -1.87b±0.15 

FT2 2.05a±0.25 0.64c±0.10 0.09c±0.01 -4.05d±0.16 

FT3 0.71b±0.12 0.39d±0.04 0.08c±0.01 -1.10a±0.06 

FT4 0.77b±0.15 0.77b±0.12 0.13b±0.02 -3.69c±0.52 

FT5 0.56c±0.12 1.02a±0.20 0.18a±0.03 -2.05b±0.18 

p-Value 0.015 0.000 0.000 0.027 

Mean 1.23±0.11 0.63±0.05 0.11±0.01 -2.65±0.13 
1 Mean values with different superscripts across columns are significantly different at P < 0.05. 

FT indicates the farm types 

The ± indicated the standard error of the mean 
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Figure 2.4 The contribution of different sources to GHG balance across the farm types 

(FT 1-5) and the overall. a) farm type 1, b) farm type 2, c) farm type 3, d) farm type 4, e) 

farm type 5 and f) overall.  

 

The study revealed statistical differences in yield scaled emission across different farm 

types; p=0.015 for fertilizer production, p≤0.0001 for fertilizer application, p≤0.0001 for 

crop management, and p=0.027 for carbon sequestration (Table 2.5). Considering 

fertilizer production, the average carbon footprint was 1.23 kg CO2 eq. kg sorghum -1. 

The lowest CFT were observed under FT5 (0.56 kg CO2 eq. kg sorghum -1) and the 

highest in FT2 (2.05 kg CO2 eq. kg sorghum -1). FT1 (0.31 kg CO2 eq. kg sorghum -1) had 

the lowest and FT5 had the highest (1.02 kg CO2 eq. kg sorghum -1) CFT resulting from 

fertilizer application. The average CFT from fertilizer application was 0.63 kg CO2 eq. kg 

sorghum -1. On average, crop management had a CFT of 0.11 kg CO2 eq. kg sorghum -1. 

The lowest CFT was recorded in FT1 0.07 kg CO2 eq. kg sorghum -1 and the highest in 

FT5 at 0.18 kg CO2 eq. kg sorghum -1. Regarding carbon sequestration, smallholder 

farms in Siaya sequestered -2.65 kg CO2 eq. kg sorghum -1. The lowest carbon 

sequestration was observed in FT3 -1.10 kg CO2 eq. kg sorghum -1 and the highest in FT2 

-4.05 kg CO2 eq. kg sorghum -1. The overall contribution of different sources to CFT was 
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in rank; crop management (6%), fertilizer application (32%), and fertilizer production 

(62%), Figure 2.5). 

 

 

 

Figure 2.5 The contribution of different sources to yield-scaled emissions, the farm types 

(FT 1-5), and the overall. a) farm type 1, b) farm type 2, c) farm type 3, d) farm type 4, e) 

farm type 5 and f) overall. 

 

The smallholder sorghum cropping system is an integration of different management 

components. The management components contribute differently toward the GHG 

balance. The results showed that the primary GHG emission hotspots were fertilizer 

production, fertilizer application (background soil emissions), and crop management. The 

influence of specific components varied across the farm types. Fertilizer production 

dominated the GHG balance in FT1, FT2, and FT5, while in FT3 and FT4, its 
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contribution was relatively low. The indirect and direct emissions significantly 

contributed to the GHG balance in FT3 and FT4. The increased contribution of fertilizer 

production in FT3 and FT4 could be attributed to the low fertilizer application rates. 

Given the interactions between the components, rational approaches are essential to 

identify potential GHG mitigation options across the farm typologies. 

 

2.3.4 Area, yield, and monetary-scaled footprint 

Smallholder sorghum farms in Siaya County were predominantly GHG sinks (Table 2.6). 

This implies that the GHG emissions were less than the carbon sequestration. The GHG 

balance varied (p=0.025) across farm types. The mean GHG balance across farm types 

was -205.54 kg CO2 eq. ha-1. The lowest GHG balance was observed in FT2 -818.76 kg 

CO2 eq. ha-1 while the highest was in FT1 at 174.29 kg CO2 eq. ha-1. FT1 had the highest 

GHG balance among the five FTs, which was 5.7 folds higher than FT2. 

 

The sorghum cropping systems in Western Kenya were mostly net sinks of soil GHGs. 

The magnitude of GHG emissions and removal among the smallholder sorghum cropping 

systems was influenced by soil fertility management intensification. The smallholder 

sorghum farms with higher fertilizer rates produced higher area scaled emissions than 

manure application rates. The GHG balance ranged from -818.76 kg CO2 eq. ha-1 under 

FT2 (high manure application rates) to 174.29 kg CO2 eq. ha-1 under FT1 (high fertilizer 

application rates). The findings suggested that high manure application increased soil 

carbon sequestration, thus reducing the overall amount of GHG balance. The GHG 

balance was lower than Ortiz Gonzalo et al. (2017) of 4.5 to 12.5 t CO2 eq ha−1 yr−1 in the 

Central Highlands of Kenya, though they included trees and livestock. The findings were 

lower than 4 and 6.5 t CO2 eq ha−1 yr−1 reported by Seebauer (2014), in Western Kenya 

though they included household energy consumption. The low GHG balance in sorghum 

cropping systems of Western Kenya could be attributed to the failure to include GHG 

removal by trees and enteric fermentation from livestock. The GHG balance was lower 

than 1946 kg CO2 eq./ha to 6211 kg CO2 eq./ha as reported under the potato cropping 

system in Zimbabwe (Svubure et al., 2018). Additionally, the findings on GHG balances 

were lower than the field measurements reported in the Central Highlands of Kenya 
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(Ortiz-Gonzalo et al., 2018; Macharia et al., 2020; Musafiri et al., 2020b). However, the 

field measurements did not consider carbon removal through soil sequestration. 

Considering soil carbon sequestration, Githongo et al. (2022) found that GHG balances 

ranged from -14700 to 3390 kg CO2 eq ha−1 yr−1. The findings indicated that the 

smallholders' sorghum cropping systems acted as GHG sinks. Thus, they could 

significantly contribute to climate change mitigation and adaptation. However, it is 

noteworthy that the diversity of variables included in the CFT GHG estimation 

methodology limits comparing the study findings with those reported in the literature. 

 

Table 2.6 The area, yield, and monetary-scaled footprint across different farm types in 

Siaya County 

Farm type 

 

Area-scaled footprint 

(kg CO2 eq. ha-1) 

Yield-scaled footprint 

(kg CO2 eq. kg sorghum -1) 

Monetary-scaled footprint 

(kg CO2 eq. US$-1 generated) 

FT1 174.29a±62.79 0.45a±0.24 0.13a±0.04 

FT2 -818.76d±57.64 -1.29d±0.19 -2.02d±0.20 

FT3 -49.00b±25.18 0.07b±0.07 -0.01b±0.01 

FT4 -67.34b±16.79 -1.86e±0.49 -0.01b±0.01 

FT5 -147.88c±20.86 -0.30c±0.19 -0.46c±0.07 

p-Value 0.025 0.018 0.004 

Mean -205.54±19.37 -0.64±0.13 -0.53±0.06 
1 Mean values with different superscripts across columns are significantly different at P < 

0.05. 

FT indicates the farm types 

The ± showed the standard error of the mean 

 

Differences in yield-scaled emissions (CFT) were observed across farm types at p = 

0.018 (Table 2.6). The smallholder sorghum farm resulted in a CFT of -0.64 kg CO2 eq. 

kg sorghum -1. The highest CFT was observed in FT2 -1.29 kg CO2 eq. kg sorghum -1 and 

the highest in FT1 0.45 kg CO2 eq. kg sorghum -1, which was 3.9 times higher. The CFT 

of -0.64 to -1.29 kg CO2 eq. kg sorghum -1 was lower than those reported by (Ortiz-

Gonzalo et al., 2017). According to SGS North America (2015) the sorghum CFT ranged 

0.05 kg CO2 eq up to 0.74 kg CO2 eq per kg of sorghum, with an average of 0.25 kg CO2 

eq. kg sorghum -1 in the United States. Additionally, the low CFT of sorghum could be 

attributed to the limited soil fertility management intensity. 
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The study determined monetary footprint (MFT) as influenced by the five farm types 

(Table 2.6). The study showed significant (p=0.004) variation in MFT across the farm 

types. The smallholder sorghum farms had a mean of -0.53 kg CO2 eq. US$-1 generated. 

The lowest MFT was recorded in FT2 -2.02 kg CO2 eq. US$-1 and the highest in FT1 

0.13 kg CO2 eq. US$-1. Manure intensification did not increase CFT and MFT. 

Smallholders' sorghum farming in Western Kenya is mainly subsistence (ICRISAT, 

2017; Okeyo et al., 2020). Most of the sorghum yields are consumed by the farmers 

without selling. However, the farmers reported the prevailing market prices which were 

used to calculate the market value of the produced sorghum. Therefore, the study 

allocated the GHG balance to the market value of the sorghum grain yields produced. 

 

2.4 Conclusion 

Smallholder sorghum cropping systems showed lower CFT mainly due to the low use of 

external inputs in Western Kenya sorghum farms. In the study, sorghum cropping 

systems showed net sinks of GHG emissions. The primary GHG emissions hotspots were 

fertilizer production and application in moderate to high fertilizer manure use intensity. 

Integrating animal manure and inorganic fertilizer resulted in increased yields. 

Smallholder farmers in Western Kenya had already integrated animal manure and 

inorganic fertilizer for increased soil organic carbon and fertility for enhanced crop 

productivity. Therefore, the smallholders are contributing to the sink of GHG emissions. 

The study underscored the low contribution of smallholders' sorghum cropping systems 

in western Kenya to GHG emissions mitigation through integrated soil fertility 

management. 
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CHAPTER THREE 

DOES THE ADOPTION OF MINIMUM TILLAGE IMPROVE SORGHUM 

YIELD AMONG SMALLHOLDERS IN KENYA? A COUNTERFACTUAL 

ANALYSIS1 

Abstract 

Climate change is an essential drawback to food security in most developing countries. 

Promoting minimum tillage and climate-smart crops is critical for mitigating and 

adapting to climate shocks. However, information on the impacts of minimum tillage on 

crop productivity under farmers' conditions is limited in Western Kenya. The study 

assessed the effects of minimum tillage adoption on sorghum productivity among 

smallholder sorghum farmers in Western Kenya. The study used household survey data 

from 300 smallholder farmers, and an endogenous switching regression model was 

performed to analyze the effects of minimum tillage adoption on sorghum yields. The 

results revealed that the adoption of minimum tillage increased sorghum yields by 11%, 

from 1146 to 1163 kg ha-1. The occupation of the household head, acreage, soil fertility 

perception, and farm credit significantly and positively determined minimum tillage 

adoption. The remittance, agricultural associations, weather information, and site 

negatively and significantly determined minimum tillage adoption. The findings suggest 

that minimum tillage adoption under drought-tolerant crops such as sorghum could 

improve community wellbeing through increased crop productivity, notwithstanding the 

changing climate and associated weather shocks. 

 

Keywords: Food security; Conservation tillage; Endogenous switching regression; 

Propensity score matching; Sub-Saharan Africa 

                                                 
1 Musafiri, C.M., Kiboi, M., Macharia, J., Ng'etich, O.K., Okoti, M., Mulianga, B., Kosgei, D.K. & 

Ngetich, F.K., (2022). Does the adoption of minimum tillage improve sorghum yield among 

smallholders in Kenya? A counterfactual analysis. Soil and Tillage Research, 223, 105473. 

https://doi.org/10.1016/j.still.2022.105473  

https://doi.org/10.1016/j.still.2022.105473
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3.1 Introduction 

Conservation agriculture (CA) can be defined as agricultural practices for improved 

agricultural production while conserving resources and protecting the environment (FAO, 

2012). The main innovation in CA is reduced soil disturbance. Reducing soil disturbance 

enhances time, energy, and labor savings, thus promoting the conservation of soil, water, 

and nutrients for improved crop yields (Fredenburg, 2015). CA is one of the approaches 

promoted for enhanced agricultural productivity and making smallholder farming 

systems resilient to climate change (Findlater et al., 2019; Kassam et al., 2019). The three 

CA principles are minimum tillage, permanent soil surface cover, and crop diversification 

(Sommer et al., 2014; Vanlauwe et al., 2014). Minimum tillage, a conservation 

agriculture principle, involves minimal soil disturbance for improved crop productivity. 

Minimum tillage enhances soil organic matter build-up and structure, thus increasing soil 

fertility and reducing soil erosion (Alam et al., 2014; Kiboi et al., 2017; Kiboi et al., 

2019; Seitz et al., 2019). The improved soil properties and fertility increase crop 

productivity (Thierfelder et al., 2015; Grabowski et al., 2016). Conventional tillage 

involves rigorous soil disturbance, reduces soil organic matter, and destroys soil 

structures, thus promoting soil erosion and degradation (Busari et al., 2015; Komissarov 

and Klik, 2020). However, there is low adoption of minimum tillage in sub-Saharan 

Africa (SSA) due to low initial yields coupled with a lack of technical know-how, 

increased weeds menace, and climatic conditions (Giller et al., 2009; Awada et al., 2014; 

Marenya et al., 2017; Ntshangase et al., 2018).  

 

Minimum tillage adoption shows mixed results in improving crop productivity. Minimum 

tillage has been reported to significantly influence crop yields (Kassie et al., 2015; Jaleta 

et al., 2016; Ngoma, 2018). Experimental findings indicate that minimum tillage provides 

mixed results on crop yields (Kiboi et al., 2019). Long-term implementation of minimum 

tillage significantly improved maize yields in the Central Highlands of Kenya (Kiboi et 

al., 2019). Despite the novel gains of minimum tillage adoptions, quasi-experimental 

studies show that its adoption has no significant influence on crop yields in Kenya (Jena 

2019). However, minimum tillage adoption saves labor and increases crop profitability 

(Jena, 2019; Osewe et al., 2020). Additionally, minimum tillage reduces the labor burden 
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among women (Gatzweiler & Von Braun, 2016). Thus, there is a need to assess the 

influence of minimum tillage on crop yields across diverse socioeconomic, 

environmental and climatic conditions in Western Kenya. 

 

Promoting climate-smart crops (such as cassava, millet, groundnuts, and sorghum) can 

foster smallholder farmers' enhancement of the adaptive capacity to climate change in 

SSA. Climate-smart agriculture is an approach to enhancing sustainable agricultural 

technical, policy, and investment techniques for achieving food security whilst the 

changing climate (FAO, 2014). The climate-smart crops flourish under low rainfall; thus, 

they have a high potential to promote food and nutritional security while mitigating and 

adapting to the changing climate (Mabhaudhi et al., 2019). Increasing sorghum 

production, a "climate-smart crop" in most developing countries, including Kenya, could 

significantly contribute to food security and alleviate poverty (MoALF, 2016; Okeyo et 

al., 2020). However, Kenya records low sorghum yields of approximately 1000 kg ha-1 

despite the potential above 2,800 kg ha-1 (Tegemeo Institute, 2021). In Western Kenya, 

the sorghum productivity is about 700 kg ha-1 despite the potential of 2,000 to 5,000 kg 

ha-1 (Karanja et al., 2014). Sorghum productivity remains relatively low due to the low-

yielding varieties, unreliable rains, low soil fertility, bird menace, Striga infestation, and 

reduced adoption of agricultural technologies (Mwadalu & Mwangi, 2013; Kavoi et al., 

2014; Mutisya et al., 2016). Assessing the impacts of climate-smart agricultural 

technology on sorghum productivity is indispensable in guiding agricultural policies on 

food security and climate change adaptation and mitigation. The adoption of climate-

smart crops and minimum tillage could enhance the achievement of Sustainable 

Development Goals (SDGs), including (1) ending poverty, (2) zero hunger, and (13) 

climate action coupled with the actualization of Kenyan vision 2030 economic pillar 

(Government of the Republic of Kenya, 2007; United Nations, 2016).  

 

Minimum tillage adoption on sorghum cropping systems could improve crop yields, thus 

closing Kenya's yield gap. However, there is limited literature on the influence of 

minimum tillage on sorghum yields in Kenyan conditions. Zero tillage improved 

sorghum yields by 25% compared to conventional tillage in the drylands of Nigeria 
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(Agbede & Ojeniyi, 2009). The results implied that smallholders implementing 

conservation tillage could close the yield gap by 25% relative to conventional tillage. The 

influence of minimum tillage adoption on crop yields could be influenced by climatic and 

soil conditions (Busari et al., 2015; Githongo et al., 2021).  

 

In addition to the inconsistent results on the influence of minimum tillage on crop yields, 

there are limited studies that have quantified the determinants and impacts of minimum 

tillage on sorghum yields. Moreover, socioeconomic, biophysical, and institutional 

determinants influencing sorghum yields under minimum tillage in Western Kenya have 

not been considered. This study assessed the determinants and impacts of minimum 

tillage on sorghum yields in Western Kenya. The study's specific objectives were to; i) 

assess the determinants of minimum tillage adoption, ii) assess the determinants of 

sorghum yields for adopters and non-adopters, and iii) quantify the impacts of minimum 

tillage adoption on sorghum yields in Western Kenya. The study hypothesized that i) 

socioeconomic factors influenced the adoption of minimum tillage, ii) socioeconomic 

factors influenced the sorghum yields for adopters and non-adopters, and iii) minimum 

tillage adoption significantly influenced sorghum yields among smallholder farmers in 

Western Kenya. 
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3.2 Methodology 

3.2.1 Description of the study area 

The study was conducted in Alego Usonga and Ugenya sub-Counties, Siaya County, 

Western Kenya. The Alego Usonga and Ugenya sub-Counties have 224343 and 134354 

persons and a population density of 375 and 415 persons per km2, respectively (Kenya 

National Bureau of Statistics (KNBS), 2019). The average land size is 1.02 ha in Alego 

Usonga and 0.96 ha in Ugenya. The high population density and increased land sub-

division pressure available land (County Government of Siaya, 2019). Climate-smart 

agriculture (CSA) is necessary to increase agricultural productivity to feed the increasing 

population under harsh climatic conditions in Siaya due to climate change. Ferrasols are 

the predominant soils exhibiting moderate soil fertility, thus unsuitable for production 

without amendments (Jaetzold et al., 2010). The County experiences a bimodal rainfall 

distribution with long rains between March and June and short rains between September 

and December. The long-term annual rainfall ranges from 800 to 1600 mm and 1600 to 

2000 mm, in Alego Usonga and Ugenya sub-Counties. The average long-term yearly 

average temperature ranges between 20.9 and 22.3 °C. The sub-Counties share similar 

agro-ecological zones (AEZs) of Lower Midlands (LM1, LM2, LM3) (Jaetzold et al., 

2010). The LM2 is the predominant AEZ in both Alego-Usonga and Ugenya sub-

Counties. The rainfall distribution varies across the agro-ecological zones, with most 

areas receiving less than 700 mm annually (County Government of Siaya, 2019). 

However, the rains are generally erratic and unreliable, thus suitable for climate-smart 

crops like sorghum. The sub-Counties experience high rainfall variability between the 

two seasons of approximately 66% (County Government of Siaya, 2019). The main food 

crops grown in the area include maize (Zea mays), beans (Phaseolus vulgaris), sorghum 

(Sorghum bicolor), millet (Panicum miliaceum), cowpeas (Vigna unguiculata), sweet 

potatoes (Ipomoea batatas), and groundnuts (Arachis hypogaea). Sorghum is grown by 

approximately 80% of the residents in the study area (MoALF, 2016). The climate-smart 

crop is raised twice a year. However, the majority of the farmers grow sorghum during 

the long rains.  
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The study used primary data collected in June-July 2020 among smallholder sorghum 

farmers in Western Kenya's Alego Usonga and Ugenya sub-Counties of Siaya County. 

The reference cropping season was long rain 2019. Siaya County is a central sorghum-

growing region in Kenya, and the two sub-Counties are the main sorghum-growing sites 

in the County. Sorghum is no longer a poor man's crop in Western Kenya, but an 

essential source of income among smallholders and has a great potential to enhance food 

security and nutritional wellbeing of their families (Kenya News Agency, 2019; Okeyo et 

al., 2020). Despite the great significance of sorghum in the study area, the productivity 

remains relatively low, at approximately 700 kg ha-1. The low productivity is attributed to 

low-yielding crop varieties, erratic rains, bird menace, and limited climate-smart 

agriculture technologies (MoALF, 2016, ICRISAT,2019). The main sorghum varieties 

grown in the study area include Seredo, Gadam, Sila, KARI Mtama 1 (CGA, 2019). 

 

3.2.2 Sample size and sampling procedure 

Three hundred (300) smallholder sorghum farming households were sampled based on a 

5.65 % allowable error at a 95% confidence level (Cochran, 2007). The sample size was 

determined following equation 3.1. 

 

 

 

whereby: ss = Sample size, z = z value of 1.96 for 95% confidence level, p = probability 

of picking a choice, expressed as decimal (0.5), q = 1-p and E = 5.65 % allowable error, 

expressed as decimal (0.0565). Therefore, the sample size comprised of 300 smallholder 

sorghum farmers.  

 

The study employed a multistage sampling procedure to select farming households for 

the survey. The smallholder farming households were sampled using a simple random 

sampling procedure. The first stage involved a purposive selection of the study locations, 

Siaya County, and the two sub-Counties based on sorghum’s growing prevalence among 

smallholder farmers. This was achieved through a reconnaissance survey and discussion 
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with agricultural officers. The sampling frame was smallholder sorghum farming 

households in the study area. The second stage involved selecting wards in the two sub-

Counties. The whole sampling procedure was employed to select all the ten wards in the 

study area's. Thirdly, the proportionate population size (PPS) sampling technique was 

used to calculate the number of sorghum farming households sampled from each ward. 

Finally, a simple random sampling procedure was implemented. The sampling frame was 

smallholder sorghum farming households from each ward. The households in each ward 

were obtained from the ward agricultural officer. 

 

3.2.3 Data source, data types, and data collection procedures 

A semi-structured interview schedule was used to collect the empirical data. First, pre-

testing the interview schedule was done. Pre-testing feedback was used in modifying the 

interview schedule by specifying the units of measurement, such as the area in acres and 

harvested sorghum in kgs. The study collected data on sorghum yields (independent 

variables) and minimum tillage adoption (treatment variable) (Table 3.1). The sorghum 

grain yields were based on farmer-reported yields on their pieces of land. The yields were 

calculated following equation 3.2. 

     (3.2) 

Where Y is the sorghum yields in kg ha-1, Yi is the farmer-reported yields, A is the 

sorghum land size in acres, and 2.47 is the conversion rate to hectares.  

 

The study employed two treatment variables that are minimum tillage and conventional 

tillage. Minimum tillage adoption was considered for a farmer who had implemented 

minimum tillage in the same piece of land for six consecutive cropping seasons. 

Minimum tillage is the form of tillage that minimizes soil disturbance. This study defined 

minimum tillage as no-till, strip-till, ridge-till, or mulch till. Conventional tillage was 

defined as the farming household implementing ploughing that results in soil disturbance. 

Trained enumerators collected the empirical data using an Open Data Kit software. The 

enumerators were trained on data handling, questions interpretation, and sampling 

protocol. 
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3.2.4 Conceptual framework  

A conceptual framework was developed to assess the impacts of minimum tillage on 

sorghum yields (Figure 3.1). The conceptual framework demonstrates the linkage 

between minimum tillage adoption and improving sorghum yields alongside explanatory 

variables. Adopting minimum tillage (1) is a binary farmer choice that multiple factors 

could influence. The determinants of minimum tillage adoption were categorized as 

household and farm, smallholders soil perception, institutional, and location 

characteristics. 
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Figure 3.1 Conceptual framework displaying hypothesized determinants of minimum 

tillage adoption and sorghum yields 

 

Household and farm characteristics (2) included sex, education, experience, occupation, 

and age of household head, farm, and household size. Evidence shows that household and 

farm characteristics determine the adoption of agricultural technologies (Macharia et al., 

2014; Ngoma, 2018; Jena, 2019; Mwaura et al., 2021; Yigezu et al., 2021). Gender 

significantly impacts agricultural technologies' adoption (Coulibaly et al., 2017; 

Kpadonou et al., 2017). However, gender exhibits mixed results, with males dominating 

the adoption of most agricultural technologies. This underlines gender disparities in 

technology adoption. Male household heads are more likely to adopt because they mainly 

control the farming resources such as land. Education is an essential factor driving the 

adoption of agricultural innovations. Previous studies have reported mixed results on the 

influence of education on agricultural technology adoption (Asfaw & Neka, 2017; 
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Donkor et al., 2019; Ojo & Baiyegunhi, 2020; Musafiri et al., 2022a). Education could 

positively influence minimum tillage adoption since educated farmers could easily 

comprehend new agricultural technologies, thus increasing adoption (Donkor et al., 

2019). However, education could negatively influence the adoption of minimum tillage 

as literate farmers could focus on salaried employment and pay for limited agriculture. 

Experience positively and age negatively impacts minimum tillage adoption, similar to 

El-Shater et al. (2016) and Ngoma (2018) studies. Experienced farmers could adopt 

minimum tillage due to the lessons learned in labor savings and increased revenue. Older 

farmers are risk-averse, thus, less likely to adopt agricultural technologies. However, old 

farmers could have accumulated experience in changing climate and need to adopt new 

technologies for enhanced productivity. Household size is an essential variable in 

negatively influencing the adoption of minimum tillage as it requires minimum labor. 

Therefore, the propensity to adopt minimum tillage could decrease with the increase in 

household size. The households with few family members could adopt minimum tillage 

compared to those with larger family sizes. Farmers with larger farm sizes could 

experiment with minimum tillage, thus increasing the likelihood of adoption (Jena, 2019). 

Finally, household head occupation is an essential predictor of minimum tillage adoption. 

Households whose main occupation is farming are more likely to receive training and 

implement new technologies (Jawid & Khadjavi, 2019). 

 

Smallholder soil perceptions (3) on soil statuses, such as fertility and erosion, are 

fundamental in sharpening technology adoption. A farmer's holistic approach to 

identifying soil status drives the motivation to adopt improved management. Therefore, 

smallholders who perceive their soil as problematic, such as highly eroded and of poor 

fertility, could adopt agricultural technologies to improve land productivity. Previous 

studies have found soil perception a vital variable in defining the adoption of farming 

technologies (Ngoma, 2018; Jena, 2019; Belachew et al., 2020; Essougong et al., 2020).  

 

Institutional factors (4) are vital in supporting smallholder farmers' adoption of 

agricultural innovations. Institutional factors such as membership in farming associations, 

extension, credit access, and weather forecast information were included in the study. 
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The institutional factor improves smallholders' human or financial capacity, thus 

promoting the adoption of agricultural technologies (Macharia et al., 2014; Donkor et al., 

2019; Amadu et al., 2020). Therefore, access to the aforementioned institutional factors 

could enhance the adoption of minimum tillage among smallholder farmers in Western 

Kenya. 

 

Location (5) captures differences in the environmental, institutional, and farmers' 

characteristics, thus highlighting differences in agricultural technologies adoption 

(Ndiritu et al., 2014; Marenya et al., 2017; Martey and Kuwornu, 2021). Farmers in a 

given study area could experience varied adoption rates due to differences in supportive 

services and environmental conditions.  

 

The study was based on the hypothesis that minimum tillage adoption (6) and the 

explanatory variables (7), including household and farm, soil perceptions, and 

institutional and location, influenced sorghum yields. More importantly, minimum tillage 

adoption improves sorghum yields. The minimum tillage adoption is expected to improve 

soil organic carbon build-up, soil structure, and soil physio-chemical properties, 

increasing land productivity. Therefore, increased crop productivity contributes to food, 

nutritional security, and poverty alleviation.  

 

3.2.5 Econometric description 

Minimum tillage adoption is a binary variable for smallholder sorghum farmers who 

maximize the expected utility. Farmers could adopt minimum tillage to better their 

productivity. However, the minimum tillage adoption decision could be an endogenous 

variable influenced by selection biases involving observable and unobservable 

characteristics. Thus, controlling the observable and unobservable biases is key in 

determining the impact of adoption on sorghum productivity. An endogenous switching 

regression (ESR) was employed in data analysis to control the cofounding factors, similar 

to Amadu et al. (2020) and Martey et al. (2021). The ESR is a robust analysis 

methodology that predicts the determinants of technology adoption (selection) and 

outcome for adopters and non-adopters (Asfaw et al., 2012; Manda et al., 2019; Martey et 
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al., 2019). Further, the ESR computes for both actual (adopter and non-adopters) and 

counterfactual (adopter if they did not adopt and non-adopters if they adopted), thus 

superior to propensity score matching (Di Falco et al., 2011; Ngoma, 2018). 

 

Following utility maximization theory, it is assumed that smallholder sorghum farmers 

are risk-averse in reality which affect technology adoption decisions. The farmers could 

adopt or not adopt minimum tillage based on expected gains in yields. Therefore, 

minimum tillage adoption is a pre-determined production decision by farmers' 

perceptions of increasing or decreasing sorghum yields. The yield difference (Pi*) is a 

latent variable computed by subtracting observed yield for minimum tillage's non-

adopters (Y0i) from for adopters (Y1i), Equation 3.3. 

 

Y1i-Y0i > 0     (3.3) 

 

Therefore, a farmer will adopt minimum tillage if Y1i exceeds Y0i. However, the latent 

variable describing expected utility could be influenced by observable factors such as 

farmer, farm, soil perceptions, institutional and location characteristics, and unobservable 

variables such as motivation Equation 3.4. 

  (3.4) 

 

Where Pi* is a latent variable describing the expected utility, Xi is the vector of minimum 

tillage adoption,  is a vector of parameters to be estimated,  is a vector of unobserved 

factors affecting the adoption decision, and a random error term. However, only observe 

Pi, which is indicated by 1 for minimum tillage adopters and 0 for minimum tillage non-

adopters. Since sorghum yield is conditional on smallholder farmers' adoption of 

minimum tillage (Di Falco et al., 2011; Amadu et al., 2020; Martey et al., 2021), the 

sorghum yields could be displayed as two endogenous switching regimes Equation 3.5a 

and 3.5b. 

 

  (3.5a) 
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   (3.5b) 

 

Where Y1i and Y0i are sorghum yields for minimum tillage adopters and non-adopters, 

respectively. β1 and β0 vectors of parameters to be estimated, X1i and X0i are the vector 

determinants of the sorghum yields from ith household while e1i and e01 are the error 

terms. The three error terms are assumed to have a trivariate normal 

distribution with mean vector zero and covariance matrix Equation 3.6. 

 

cov  =    (3.6) 

 

where σ2ε = var (εi), σ
2e1 = var (e1), σ

2e0 = var(e0), σe1ε = cov (e1,ε), and σe0ε = cov (e0, 

ε). In this study, the covariance between e1 and e0 is not defined since Y1 and Y0 are never 

observed simultaneously (Maddalla, 1983). Therefore, the expected values of the error 

terms e1 and e0 can be expressed as described by Fuglie and Bosch (1995) equation 3.7a 

and 3.7b.  

 

E  =  (Minimum tillage adopters)   (3.7a) 

 

E   =   (Minimum tillage non-adopters)  (3.7b) 

 

The inverse mills ratios or selectivity terms (  and ) can be included in equation 3 to 

correct for selection bias two-step estimation procedure known as the endogenous 

switching treatment regression model (Maddala 1983) equation 8a and 8b.  

 

 =  +  +  if  = 1 (Minimum tillage adopters)   (3.8a) 

 

 =  +  +  = 0 (Minimum tillage non-adopters) (3.8b) 
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If the  and are significant, indicate the presence of an endogenous switching. 

However, full information maximization likelihood (FIML) is more effective than the 

two-step procedure (Lee and Trost, 1978; Lokshin and Sajaia, 2004). Recent studies have 

employed the FIML to estimate the selection (first-stage) and outcome (second-stage) 

equations simultaneously (Donkor et al., 2019; Manda et al., 2019; Martey et al., 2021; 

Yigezu et al., 2021). A falsification test was performed to identify instrumental variables 

using F statistics. 

 

The study estimated the treatment effects on outcome variables (sorghum yields) of 

minimum tillage adoption under two scenarios, i.e., actual and counterfactual while 

accounting for selection bias Equation 3.9a –3. 9d. 

 

Minimum tillage adopters (actual) 

 

     (3.9a) 

 

Minimum tillage non-adopters (actual) 

 

     (3.9b) 

 

Minimum tillage adopter if they decided not to adopt (counterfactual) 

     (3.9c) 

 

Minimum tillage non-adopters if they decided not to adopt (counterfactual) 

 

     (3.9d) 

 

After that, the average treatment effect on minimum tillage adopters was computed, the 

average treatment effect on the Treated (ATT), and the average treatment effects on 

untreated (ATU) as described in Equations 3.10a and 3.10b.  
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)  (3.10a) 

 

) (3.10b) 

 

Further, base heterogeneity following equations 3.11a and 3.11b was computed. The base 

heterogeneity compares the actual and counterfactual results, that is, whether actual 

adopters could have higher yields than non-adopters if they decided to adopt and if 

adopters decided not to adopt could have higher yields than actual non-adopters. Finally, 

transitional heterogeneity was determined by subtracting ATU from ATT. 

 

= (a)-(d)=E -E = ) 

 (3.11a) 

 

-E = ( ) +  

 (3.11b) 

 

A stochastic dominance analysis (SDA) was performed to evaluate overlap, common 

support region, and the the superiority of minimum tillage adopters over non-adopters 

(Martey et al., 2021). The SDA assumes smallholders are risk-neutral and could only 

adopt minimum tillage if the expected utility dominates conventional tillage (the 

traditional farming).  

 

Propensity score matching is a quasi-experimental analysis that pairs treated and control 

groups based on similarity in propensity score matching and possibly covariate but 

removing the unmatched units (Donkor et al., 2019; Manda et al., 2019; Martey et al., 

2019). The propensity score matching does not account for unobserved biases 

(Rosenbaum & Rubin, 1983). Due to the PSM weakness in accounting for other 

confounding factors, the study only used the PSM to check the robustness of ESR, similar 

to studies by Shiferaw et al. (2014a) and Martey et al. (2021). A detailed presentation of 
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the PSM framework can be found in Rosenbaum and Rubin, (1985) &Martey et al. 

(2019). Matching methods such as kernel, radius, near neighbor, and local linear methods 

were employed to estimate the average treatment effects on the treated. 

 

3.2.6 Data analysis 

The statistical analysis was performed in STATA 15 software. Before actual data 

analysis, Variance inflation factors (VIFs) were used to test multicollinearity. The VIFs 

of the independent variables were less than 4, and tolerance factors (1/VIF) were greater 

than 0.2 (Appendix 1), thus no problem of multicollinearity (Hair et al., 2010). The 

results indicated that the data was not highly correlated, therefore plausible for the 

analysis. Descriptive analysis was performed, such as mean and standard error of the 

mean of dependent, independent, and treatment variables. Before performing the 

endogenous switching regression, the data were tested for an instrumental variable using 

a falsification test. To assess the influence of minimum tillage on sorghum yields, 

propensity score matching, and endogenous switching regression were performed. 

Stochastic dominance analysis evaluated an overlap between minimum and conventional 

tillage farming households. 

 



47 

 

 

3.3 Results and discussion 

3.3.1 Descriptive characteristics of sampled households in Western Kenya 

Descriptive statistics showed variations between conventional tillage and minimum 

tillage among smallholder sorghum farming households in Western Kenya (Table 3.1). 

Fifty-eight (19%) of the interviewed sorghum farmers adopted minimum tillage, while 

242 (81%) practiced the conventional tillage. Remittance, seed quantity, fertility poor, 

agricultural associations, weather information, and site significantly differed between 

adopters and non-adopters. The conventional tillage farming households were better in 

remittance receipt and seed quantity. The average seed quantity for minimum tillage 

farmers was 3.97 kg acre-1 and 4.75 kg acre-1 for conventional tillage farmers. The seed 

rate was consistent with the recommended seed rate of 3 - 4 kg per acre (Karanja et al., 

2014). Smallholder farmers' soil perception significantly differed between minimum 

tillage adopters and non-adopters at a 1% significance level (Table 3.1). The findings 

showed that institutional factors, including membership in agricultural associations and 

receipt of weather forecast updates, significantly differed between the minimum and 

conventional tillage farmers at 10% and 5% levels of significance, respectively. More 

conventional tillage farmers (21%) were members of agricultural associations than the 

minimum tillage farming households. Most conventional tillage farmers (86%) received 

weather forecast information compared to minimum tillage farmers 74%. Most minimum 

tillage farmers, 53% lived in the Ugenya sub-County than conventional tillage farmers, 

47%. 
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Table 3.1 Descriptive statistics of sampled households by the tillage adoption decision 

Variables Description sign (+/-) Minimum tillage (A) 

(N=58) 

  Conventional tillage (B) 

(N=242) 

Diff 

     Mean SE   Mean SE (A-B) 

Dependent variable               

Sorghum 

yields 

Harvested sorghum 

yields (kg ha-1) 

 1163.62 82.17   1146.40 38.33 17.42 

Explanatory Variables              

Household and farm characteristics        

Gender Gender of household 

head (1=Male) 
+/- 0.31 0.06   0.40 0.03 -0.09 

Literacy Education of 

household head 

(1=formal, 

0=otherwise) 

+/- 0.90 0.04   0.85 0.02 0.05 

Age Age of household 

head in years 
+/- 50.84 1.85   52.16 0.88 -1.32 

Occupation The main 

occupation of the 

household head 

(1=farming, 

0=otherwise) 

+ 0.90 0.04   0.85 0.02 0.05 

Experience Farming experience 

of the household 

head in years 

+ 22.69 1.75   22.54 0.95 0.15 

Household 

size 

Number of 

residences in the 

family  

+ 6.26 0.40   5.72 0.18 0.54 

Remittance Household received 

remittance (Yes=1) 
+ 0.10 0.04   0.40 0.03 -0.30*** 

Acreage Land size under 

sorghum production 

in acres 

+ 0.58 0.07   0.54 0.03 0.04 

Seed type Planted sorghum 

seeds (1=improved, 

+ 0.12 0.04   0.10 0.02 0.03 
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0=local) 

Seed quantity Seeds planted per 

unit area (kg acre-1) 

- 3.97 0.29   4.75 0.14 -0.78** 

Perceptions of soil status 

  

             

Fertility poor Farmer perceived 

soil fertility as poor 

(Yes=1) 

+ 0.36 0.06   0.21 0.03 0.15*** 

Erosion high Farmer perceived 

soil erosion as high 

(Yes=1) 

+ 0.05 0.03   0.06 0.02 -0.01 

Institutional  factors              

Agricultural 

association 

Household member 

to agricultural 

association (Yes=1) 

+ 0.12 0.04   0.21 0.03 -0.09* 

Farm credits Household received 

credit (Yes=1) 

+ 0.09 0.04   0.07 0.02 0.02 

Extension Household received 

extension services 

(Yes=1) 

+ 0.09 0.04   0.15 0.02 -0.06 

Weather 

information 

Household received 

weather updates 

(Yes=1) 

+ 0.74 0.06   0.86 0.02 -0.12** 

Geographical  Location              

Site Household located 

in Alego Usonga 

sub-County (1), 

Ugenya (0)  

± 0.47 0.07   0.63 0.03 -0.17** 

Significance at 10%, 5%, and 1% indicated by *, **, *** respectively, SE indicates the Standard error of the mean 
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The average sorghum yield under minimum tillage was 1163.62kg ha -1, while 

conventional tillage was 1146.40kg ha-1. The sorghum yields were not significantly 

different between the minimum and conventional tillage. Table 3.2 shows the quantile 

distribution of sorghum yields between minimum tillage and conventional tillage. The 

first quantile had similar sorghum yields for minimum and conventional tillage farmers. 

Minimum tillage adopters had higher sorghum yields at the second and third quantile 

than the conventional tillage quantile. Sorghum yields were higher under conventional 

tillage than in minimum tillage farming households in the fourth quartile.  

 

Table 3.2 Quartile distribution of sorghum yields among minimum and conventional 

tillage farmers 

Quartile Minimum tillage   Conventional tillage 

  
Sorghum yields  

(kg ha-1) 

% 

farmers 
  

Sorghum yields  

(kg ha-1) 

% 

farmers 

First 790.4 31.03 
 

790.4 28.93 

Second 938.6 18.97 
 

889.2 23.14 

Third 1407.9 24.14 
 

1333.8 23.97 

Forth 2,668 25.86   4,446 23.97 

 

The findings showed insignificant sorghum yields differences between minimum and 

conventional tillage farming households. However, the bivariate mean differences did not 

account for self-selection biases, which could have confounding effects on the yields. The 

mean results could not automatically be attributed to the minimum tillage adoption 

without controlling the confounding factors. 

 

3.3.2 Distribution of sampled households: Stochastic dominance results 

The findings highlighted a substantial overlap in the estimated probability of minimum 

and conventional tillage farming households (Figure 32a-b). Visualizing the distribution 

of propensity scores between the minimum and conventional tillage demonstrates 

fulfillment of the common support condition. The findings were consistent with Wossen 

et al. (2017), who documented satisfaction of common support conditions between 

treated and untreated sampled households. 
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Figure 3.2 Propensity score density distribution and common support region for minimum tillage adoption 
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3.3.3 Determinants of minimum tillage adoption 

The first stage for the endogenous switching regression model showed the determinants 

of minimum tillage adoption (Table 3.3). Household heads whose main occupation was 

farming had a positive and significant (β=0.778, p=0.014) higher propensity to adopt 

minimum tillage at a 5% significance level than their counterparts who implemented 

conventional tillage. The significantly higher propensities of minimum tillage among 

smallholder farming households whose main occupation was farming make sense in 

Kenya. The plausible explanation for this could be that the main occupation being 

farming, farmers depend on agriculture for their livelihoods and may adopt new 

technologies to improve the livelihoods of their households. Household whose main 

occupation is farming has a higher potential to learn and implement new technologies on 

their farms compared to their counterparts whose main occupation is not farming. The 

households have full-time interests in improving crop yields and saving labor. The 

increased adoption of minimum tillage among farmers whose main occupation was 

farming showed increased interest in experimenting with new technologies. The findings 

were in line with Marenya et al. (2017) and are intuitive because salaried employment 

negatively influenced minimum tillage adoption among smallholder farmers in Ethiopia. 

Households whose main occupation is farming could be willing to adopt agricultural 

innovation for improved productivity to meet their livelihoods demands. 

 

Minimum tillage adoption significantly decreased with remittance receipt at a 1% 

significance level. The findings implied that smallholder farming households that 

received remittance had a lower propensity to adopt minimum tillage. The propensity to 

adopt minimum tillage increased with acreage under sorghum production. The negative 

prediction of minimum adoption by remittance receipt is intuitive since it is crucial for 

domestic household consumption and mainly been used to buy seed and fertilizers. 

Therefore, smallholder farming households receiving remittance could use it to purchase 

farm inputs such as fertilizer and improved seeds.  
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The positive estimate of acreage on minimum tillage adoption is consistent with Jena 

(2019) andMartey and Kuwornu (2021). The strong influence of acreage on minimum 

tillage underscores the importance of additional land to experiment with new 

technologies among smallholder farming households. Smallholders farming households 

with larger land sizes could experiment with new technologies, including minimum 

tillage (Martey and Kuwornu, 2021). This was attributed to the probability of practicing 

minimum tillage in some plots while performing conventional tillage in others. 

 

Soil fertility perception of the smallholder farming household had a positive and 

significant (β=0.615, p=0.011) influence on minimum tillage adoption. This implied that 

if a farming household perceived low soil fertility in the sorghum cropping systems had a 

higher likelihood of adopting minimum tillage. The positive and significant prediction of 

soil fertility perceptions was consistent with Kpadonou et al. (2017) and Essougong et al. 

(2020). Being mindful of declining soil fertility, smallholders could explore various 

agricultural technologies to alleviate the declining soil problem. The adoption of 

minimum tillage among smallholders' who perceived soil fertility as poor could be 

attributed to the need to improve agricultural productivity using climate-smart 

technologies. Minimum tillage improves soil fertility through improved aggregate 

stability and soil carbon stock (Busari et al., 2015).  

 

Membership in an agricultural association exerted a negative and significant (β=-0.955, 

p=0.026) influence on minimum tillage adoption. This implied that smallholder sorghum 

farmers who belonged to agricultural associations were less likely to adopt minimum 

tillage technology. The negative and significant effect of agricultural associations was 

inconsistent with current research highlighting agricultural associations as vital platforms 

for knowledge sharing among members (Macharia et al., 2014; Musafiri et al., 2020a). 

The finding mirrors the descriptive characteristics (Table 3.1) that showed higher 

agricultural association membership among conventional tillage farming households. 

Smallholder farmers who join agricultural associations could pool resources and access 

facilitation, including loans to implement improved agricultural technologies. The lower 

adoption of minimum tillage among smallholder sorghum farmers who belonged to 
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agricultural associations could be attributed reduced effectiveness of the agricultural 

organizations. The findings agreed with Ahmed and Anang (2019), who found that group 

membership was associated with lower adoption of improved maize varieties in Ghana 

due to increased politicization, reduced effectiveness, and low public and private support 

of the smallholders’ groups. 

 

Table 3.3 Determinants of minimum tillage adoption: First-stage results of the FIML 

ESR results 

Variables Coefficient Standard error p value 

Household and farm characteristics    

Gender -0.331 0.226 0.143 

Literacy 0.569 0.355 0.109 

Age -0.001 0.010 0.900 

Occupation 0.778** 0.316 0.014 

Household size 0.026 0.037 0.477 

Experience -0.004 0.009 0.657 

Remittance -0.986*** 0.264 0.000 

Acreage 0.817** 0.457 0.044 

Seed quantity 0.042 0.249 0.867 

Seed type 0.549 0.348 0.114 

Perceptions of soil status    

Fertility poor 0.615** 0.241 0.011 

Erosion high -0.357 0.460 0.437 

Institutional factors    

Agricultural association -0.955** 0.428 0.026 

Farm credits 1.118** 0.521 0.032 

Extension -0.440 0.365 0.228 

Weather information -0.619** 0.248 0.013 

Geographical location    

Site -0.641*** 0.214 0.003 

Constant -0.165 0.883 0.852 

FIML indicates full information maximization likelihood, ESR represents endogenous 

switching regression, *, **, *** indicates 10%, 5% and 1% level of significance. 

 

Farm credit access significantly increased the probability of minimum tillage adoption 

among smallholder sorghum farmers in Kenya at a 5% significance level. Smallholder 

sorghum farming households that received farm credit had a higher likelihood of 
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adopting minimum tillage technology. The positive relationship between minimum tillage 

adoption and credit access was in line with previous studies that found that credit access 

increased the propensity of adopting conservation farming practices (Ng'ombe et al., 

2014). The findings were in line with descriptive characteristics (Table 3.1) that showed 

higher farm credit access among minimum tillage than conventional tillage farming 

households. Sorghum markets in Western Kenya are imperfect, triggering organizations 

such as One Acre Fund and East African Breweries Ltd (EABL) to provide farm credit to 

streamline market access (MoALF, 2016). Farm credit is used for agricultural investment 

instead of remittance used in family consumption. However, the descriptive statistics 

show low credit and remittance receipt (Table 3.1).  

 

Weather forecast information receipt precipitated a negative and significant (β=-0.619, 

p=0.013) influence on minimum tillage adoption. This implied that minimum tillage 

adoption decreased with weather forecast information receipt. The negative prediction of 

minimum tillage adoption among smallholder farming households that received weather 

forecast information could be attributed to their utilization of cropping calendar 

management relative to agricultural inventions. Though weather forecasts provide 

essential information that could influence agricultural decisions (Bloodhart et al., 2015; 

Kumar et al., 2020), the information is mainly used for seasonal planning, such as 

sowing, crop protection from pests and diseases, and harvesting based on the cropping 

calendar (van der Burgt et al., 2018).  

 

Geographical location negatively and significantly (β=-0.641, p=0.003) influenced 

minimum tillage adoption. Smallholder sorghum farmers in the Alego Usonga sub-

County had a lower likelihood of adopting minimum tillage than their counterparts in the 

Ugenya sub-County. The geographical location highlights differences in supportive 

services such as credit, extension, and group membership, culminating in variations in 

technologies' receptive capacities. The findings underscore the importance of site-specific 

considerations in promoting the adoption of conservation farming. 
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3.3.4 Determinants of sorghum production among minimum and conventional 

tillage farmers 

The covariance term (rho 1, -0.778***) was negative and significantly different at a 1% 

significance level (Table 3.4). This implied that the use of ESR analysis was justified. 

The chi-square statistics for the likelihood ratio (LR) test of independent equations for 

sorghum yields (14.95***) was significant at the 1% level. This implied that the 

estimation of determinants of minimum tillage adoption sorghum yields for adopters and 

non-adopters using FIML was plausible. Further, the results rejected the hypothesis that 

equations 3, 4a, and 4b were independent. The Wald chi-square (57.91***) was 

significant at a 1% level. The finding implied that the parameters used in ESR jointly 

explained the variations in sorghum yields. The instrumental variables (occupation, 

remittance, and weather forecast information receipt) were significant in the selection 

model (Table 3.3) but insignificant in the validity test (Table 3.5), therefore credible to be 

used as instrumental variables. 

 

The gender of the household head showed a negative and significant effect on sorghum 

yields for minimum tillage adopters at a 1% significance level. The findings showed that 

female-headed farming households harvested 672.865 kg ha-1 higher than the male 

counterparts for minimum tillage adopters. The significantly higher sorghum yields 

among female-headed farming households over male-headed households are interesting 

because when women implement minimum tillage, they would save labor for other 

household chores (Yigezu et al., 2021). Additionally, females mostly grow low-value 

crops, "women's crops," such as sorghum, possibly due to limited access to resources, 

while cash crops, mainly for export, are regarded as men's crops. The results corroborate 

with Martey et al. (2019), who found that gender negatively predicted land productivity 

in Ghana. Contrary to the findings, Martey et al. (2021) documented higher cowpea 

yields among male-headed households than women in Ghana. These findings highlight 

the gendered disparities in promoting agricultural technologies in sub-Saharan Africa.  

 

Literacy exhibited a positive and significant effect on sorghum yields for minimum 

tillage adopters at a 1% significance level. The finding implied that minimum tillage 
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adopters who received formal education harvest higher sorghum yields than illiterate 

ones. The findings signified that literate minimum tillage adopters harvested 710.298 kg 

ha-1 greater sorghum yields than illiterate counterparts. The positive effect of literacy on 

sorghum yields is intuitive since literate farming households can understand and 

appreciate new agricultural technologies for increasing crop yields. Educated household 

heads are more likely to implement other agronomic activities, including herbicides and 

pesticides, thus improving productivity. The findings were consistent with Ngoma (2018) 

and Donkor et al. (2019), who found that adopting agricultural technologies such as 

minimum tillage and fertilizer had significantly high returns among educated farmers. 

 

Seed type positively and significantly impacted sorghum yields for both adopters and 

non-adopters. Utilization of improved seeds increased sorghum yields by 242.307 kg ha-1 

and 500.010 kg ha-1 for non-adopters and adopters, respectively. Improved sorghum 

seeds are bred to promote agricultural productivity against changing climate. Increased 

sorghum yields among smallholders' who utilized improved varieties could be attributed 

to the potential of improved seeds in enhancing production. The finding agreed with 

Ngoma (2018), who reported that utilization of improved seeds increased crop yields for 

both minimum tillage adopters and non-adopters in Zambia. 
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Table 3.4 Determinants of sorghum production among minimum tillage adopters and 

non-adopters: Second-stage results of the FIML ESR results 

Variable Conventional tillage   Minimum tillage 

  Coeffici

ent 

Standard 

error 

p-

valu

e 

 Coeffici

ent 

Standard 

error 

p-value 

Household and farm characteristic            

Gender -33.609 85.161 0.693  -

672.865

*** 

229.557 0.003 

Literacy 152.268 131.718 0.248  710.298

** 

329.150 0.031 

Age -0.795 3.673 0.829  12.550 8.919 0.159 

Family size -3.888 14.706 0.792  0.998 30.606 0.974 

Experience -1.620 3.391 0.633  -12.654 8.840 0.152 

Acreage -99.798 92.615 0.281  16.702 235.784 0.944 

Seed quantity 176.202 185.457 0.342  160.298 432.581 0.711 

Seed type 242.307

* 

144.772 0.094  500.010

* 

272.154 0.066 

Perceptions of soil status        

Fertility poor 192.771

* 

102.004 0.059  -196.543 294.172 0.504 

Erosion high 450.908

*** 

169.178 0.008  568.767 399.041 0.154 

Institutional factors        

Agricultural 

association 
204.654

* 

120.096 0.088  -410.358 455.273 0.367 

Farm credits -

393.078

** 

181.916 0.031  656.331 505.740 0.194 

Extension 19.948 131.695 0.88  395.425 307.382 0.198 

Geographical 

location 

       

Site -34.674 86.243 0.688  591.491

** 

266.730 0.027 

Constant 947.067

*** 

334.092 0.005  678.504 748.128 0.364 

Sigma (0,1) 564.185

*** 

27.291 0.000  658.146

*** 

125.160 0.000 

rho (0,1) -0.181 0.274 0.156   -

0.778**

* 

0.188 0.007 

Summary statistics        

LR test of independent 

equations 

14.95**

* 
      

Wald chi-square 57.9***       

Log-likelihood -1119.6             
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FIML indicates full information maximization likelihood, ESR represents endogenous 

switching regression, *,**,*** indicates 10%, 5% and 1% level of significance. 

 

Soil fertility perception positively impacted sorghum yields among non-adopters. The 

findings implied poor soil fertility perception increased sorghum yields by 192.771 kg ha-

1. The decline in soil fertility is the main challenge facing smallholders in SSA (Kiboi et 

al., 2019; Musafiri et al., 2020a). The smallholders link low agricultural productivity and 

poor soil fertility (Essougong et al., 2020). Smallholders who perceived low soil fertility 

status among minimum tillage adopters could integrate soil fertility management, thus 

increasing farm productivity. This could lead to nutrient replenishment, thus surging crop 

performance. 

 

The perception of soil erosion positively and significantly affected sorghum minimum 

tillage non-adopters. The finding implied that smallholder farmers who perceived the soil 

to have high erosion rates harvested 450.908 kg ha-1 higher than their counterparts. Soil 

erosion significantly degrades soil fertility, culminating in reduced crop yields, thus 

advancing the need to adopt soil erosion management technologies (Moges and Holden, 

2007; Odendo et al., 2010). The increased yields among minimum tillage non-adopters 

who perceived soil erosion as high could be attributed to implementing preventive 

measures such as erosion control, thus increasing sorghum yields. The finding conforms 

with previous studies that endorsed soil erosion leads to reduced agricultural production 

(Ngetich et al., 2014; Okeyo et al., 2014; Mihretie et al., 2021), prompting the need for 

agricultural innovation, including minimum tillage and mulching. 
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Table 3.5 Test of the validity of instrumental variables (falsification test) 

Variable Coefficient. Standard error P value 

Household and farm characteristics       

Gender -63.659 81.552 0.436 

Literacy 104.837 123.861 0.152 

Age -0.264 3.532 0.941 

Occupation -167.977 104.192 0.108 

Family size -8.220 13.311 0.537 

Experience -0.803 3.157 0.799 

Remittance 20.817 78.667 0.791 

Acreage 200.023* 86.559 0.077 

Seed quantity 246.573* 167.118 0.051 

Seed type 471.582*** 126.580 0.007 

Perceptions of soil status    

Fertility poor -84.973 87.801 0.334 

Erosion high 503.687*** 157.527 0.002 

Institutional factors    

Agricultural association 414.538** 111.649 0.035 

Farm credits -278.539* 163.225 0.089 

Extension 113.832 120.615 0.346 

Weather information -127.294 100.838 0.208 

Geographical location    

Site -18.854 73.045 0.797 

Constant 1048.651*** 321.226 0.001 

F statistic 2.040   

Prob. > F 0.009     

FIML indicates full information maximization likelihood, ESR represents endogenous 

switching regression, *, **,*** indicates 10%, 5%, and 1% significance level. 

 

Agricultural associations' membership positively and significantly impacted sorghum 

yields of minimum tillage non-adopters. The finding suggests that agricultural association 

increased yields by 204.654 kg ha-1 among minimum tillage adopters. Agricultural 

associations positively influenced sorghum yields and were consistent with Donkor et al. 

(2019), who documented that being an association member enhanced cassava yields and 

income of the smallholder farmers in Nigeria. Siaya County has strong sorghum 

organizations, including Cereal Growers Associations (governmental) and Farm to 

Market Alliance (non-governmental organization), promoting agricultural innovation 

through groups. Smallholders gain insights into agricultural innovations during the 
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organizations' training, thus improving sorghum yields. Sorghum is ranked as a low-value 

crop, i.e., "poor man's crop," The credit received could be diverted to other valuable 

crops. The findings were consistent with Martey et al. (2021), who found that loans from 

associations negatively impacted cowpeas yields among trained farmers in Ghana. 

 

Against the expectations, farm credits negatively affected sorghum yields of minimum 

tillage non-adopters. The finding implied farm credit access reduced sorghum yields by 

393.078 kg ha-1 among minimum tillage non-adopters. The credit could be used to 

implement agricultural innovations, including minimum tillage. The increased adoption 

of minimum tillage among smallholders who received farm credit could be attributed to 

utilizing the revenues to implement agricultural innovation for improved sorghum yields. 

Therefore, access to farm credit increases the propensity of adopting agricultural 

innovation. 

 

Minimum tillage adopters in the Alego Usonga sub-County harvested 591.491 kg ha-1 

lower sorghum yields than those in Ugenya sub-County. The findings suggested that 

minimum tillage adopters in the Ugenya sub-County had higher sorghum productivity 

than their counterparts in the Alego Usonga sub-County. The positive influence of 

geographical location on sorghum yields is intuitive because it underscores the 

importance of smallholder residence. The differences in yields between minimum tillage 

adopters in Ugenya and Alego-Usonga sub-Counties could be attributed to differences in 

rainfall amounts. This implies that the one-size-fits-all approach is not applicable across 

geographical locations and the need to consider site-specific characteristics in promoting 

agricultural practices. Additionally, the study location could highlight differences in 

socioeconomics and institutional factors. The disparities in the institutional factors such 

as credit access, extension agent and group membership could significantly determine 

yields.  
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3.3.5 Impacts of minimum tillage adoption on sorghum yields 

3.3.5.1 Propensity score matching results 

The propensity score matching analysis revealed insignificant effects of minimum tillage 

adoption on sorghum yields (Table 3.6). Though insignificant, the findings were 

consistently positive across evaluation algorithms signifying that minimum tillage 

adopters had better yields than a non-adopter. However, the PSM results do not include 

counterfactual outcomes. Therefore, a more robust methodology like ESR is viable to 

account for the unobserved biases. 

 

Table 3.6 Average impact of minimum tillage adoption on adopters: PSM results 

Outcome Matching Minimum  Conventional  

ATT SE T-stat 

variable algorithm tillage tillage 

Sorghum yields  Kernel 1175.37 1149.37 26.01 105.89 0.25 

(kg ha-1) Radius 1175.37 1152.58 22.80 106.19 0.21 

 
Near Neighbor 1175.37 1149.22 26.16 112.80 0.23 

  Local linear 1175.37 1142.42 32.95 150.37 0.22 

ATT indicates average treatment effects; SE represents the standard error. 

 

The descriptive statistics and propensity score matching algorithms showed that 

minimum tillage adoption had insignificant effects on sorghum yields. The findings were 

consistent with Jena (2019), who found that various matching algorithms such as 5-

nearest neighbor matching, kernel matching, and radius matching showed that minimum 

tillage had insignificant effects on maize yields in Kenya. The latter does not account for 

the influence of the confounding factors. Therefore, suitable models are needed to 

account for confounding factors such as endogenous switching regression. 

 

3.3.5.2 Endogenous switching regression results 

The ESR results showed that minimum tillage adoption positively and significantly 

impacted sorghum yields (Table 3.7). The ATT results indicated that sorghum yields of 

minimum tillage adopters 1167.99 kg ha-1 were superior to adopters if they decided not to 
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adopt (1046.79 kg ha-1). Further, the ATU results demonstrated that sorghum yields for 

non-adopters, if they did adopt minimum tillage (1805.87 kg ha-1), were higher than the 

actual non-adopters (1148.99 kg ha-1). The ATT suggested that the adoption of minimum 

tillage improves sorghum yields by 11.58%. The ATU findings suggest that if non-

adopters decided to adopt minimum tillage, they could increase sorghum yields by 58%. 

The findings are substantial, based on the low adoption rate of minimum tillage among 

smallholder farming households and the highlighted potential of improving yields if they 

choose to adopt. 

 

The endogenous switching regression revealed that minimum tillage adoption 

significantly influenced sorghum yields. The findings were consistent with Ngoma 

(2018), who reported increased crop yields with minimum tillage among smallholder 

farmers in Zambia. The treatment effect analysis shows substantial implications for non-

adopters to adopt minimum tillage. If the non-adopters decided to adopt, there could be a 

58% increment in sorghum yields; thus, the study is plausible in improving food security. 

 

Minimum tillage is a component of conservation agriculture. In Kenya, smallholders 

have adopted conservation agriculture principles at varying rates. Some adopt one, others 

two or three conservation agriculture practices. Adopting one or more conservation 

agriculture practices could contribute to improved crop yields. Minimum tillage improves 

soil fertility which leads to increased crop yields. The increment in crop yields shows the 

potential of minimum tillage in improving food security. 

 

Table 3.7 Average treatment effects of minimum tillage adoption on sorghum yields  

Sample  Decision Stage Average 

treatment 

effect 

Average 

treatment 

effects (%) 

  Adopt Not to adopt     

Minimum tillage 1167.99 1046.79 121.2** 11.58 

  

Conventional tillage 1805.87 1148.99 656.87*** 58.01 

  

Heterogeneity effects -638.50 -102.21 535.67   
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Values in parenthesis are standard error, **, *** significance and 5% and 1%.  

 

The study revealed a negative base heterogeneity effect for sorghum yields. The BH1 

suggested that sorghum yields for non-adopters were higher than for actual adopters if 

they decided to adopt. The findings highlight that if non-adopters decide to adopt 

minimum tillage could attract higher benefits than the actual adopters. Further, the BH2 

suggested that actual non-adopters had higher yields than adopters if they chose not to 

adopt. This finding disclosed that if adopters decided to abandon minimum tillage, they 

could attract lower yields than the actual non-adopters. The transitional heterogeneity 

(TH) was negative, suggesting that had minimum tillage non-adopters decided to adopt, 

they could have higher sorghum yields than the actual adopters. 

 

The counterfactual analysis showed that minimum tillage adoption could increase 

sorghum yields in Kenya (Table 3.7). The findings were consistent with previous studies 

(Ngoma, 2018; Yigezu et al., 2021). The finding highlights the importance of promoting 

minimum tillage adoption among non-adopters for increased yields. The results provide 

the basis for quasi-experimental studies investigating labor savings of minimum tillage 

and economic gains among smallholder farmers. 

 

3.4. Conclusion and policy implications 

The study evaluated factors determining smallholder sorghum farmers' adoption of 

minimum tillage and the impacts on sorghum yield. The study revealed low adoption 

level of minimum tillage among smallholder sorghum farmers. The findings confirm the 

low adoption level of conservation agriculture principles in Western Kenya. The 

descriptive comparison revealed the insignificant difference between minimum tillage 

adopters and non-adopters. However, the bivariate mean comparison does not account for 

the confounding factors. An endogenous switching regression model was used to correct 

the selection biases. 

 

Households whose main occupation was farming, perceived poor soil fertility status, had 

large acreage and accessed farm credit were likelier to adopt minimum tillage. Household 
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heads who received remittance, members of agricultural associations, weather forecast 

information and residents in Alego Usonga were less likely to adopt minimum tillage.   

The ESR results showed that minimum tillage significantly improved sorghum 

productivity among smallholder sorghum farmers in Western Kenya. Different factors 

affect sorghum productivity among minimum tillage adopters’ s non-adopters. 

 

The findings established that could the non-adopter decide to adopt minimum tillage; 

they could improve sorghum productivity by 58%. Given the low adoption of minimum 

tillage in the study area, if non-adopters decide to adopt they could substantially enhance 

food security. Enhancing sorghum productivity through minimum tillage is pertinent for 

social development. The improved productivity could reduce malnutrition, food 

insecurity, and poverty while improving access to social services, including health and 

education, through income obtained from selling the surplus. Therefore, promoting 

minimum tillage adoption non-adopters in Western Kenya could enhance the 

actualization of sustainable development goals, including zero hunger and poverty 

alleviation and Kenyan vision 2030. 

 

Based on the findings, the study draws two folds’ key policy recommendations. First, 

minimum tillage adoption should be promoted among smallholder sorghum farmers for 

improved agricultural productivity. Government and stakeholders should disseminate 

minimum tillage importance among smallholders. Second, agricultural policies targeting 

minimum tillage adoption should consider key determinants such as enhancing credit 

access to agricultural association membership while paying attention to the farmer, farm, 

and site-specific characteristics for enhanced acceptability and increased productivity. 

These policies could promote the three pillars of climate-smart agriculture: food security, 

climate change adaptation, and mitigation. 
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CHAPTER FOUR 

POTENTIAL OF INORGANIC FERTILIZER AND CLIMATE-SMART CROPS 

IN RESPONDING TO SOIL FERTILITY DECLINE AND CLIMATE CHANGE 

IN WESTERN KENYA 

Abstract 

Adoption of inorganic fertilizers and careful selection of climate-resilient crops such as 

sorghum could improve the livelihoods of smallholder farmers through improved soil 

health and food security. However, information on the effects of inorganic fertilizer 

adoption on sorghum productivity remains scanty, especially in SSA. The study objective 

was to evaluate the effects of inorganic fertilizer adoption on sorghum productivity 

among smallholder farmers in Siaya County, Western Kenya. A cross-sectional survey 

was conducted to collect data from 300 smallholder sorghum farmers. The study 

employed endogenous switching regression (ESR) modeling to control observed and 

unobserved biases in predicting the effects of inorganic fertilizer adoption on 

productivity. Smallholder farmers applied a limited amount of inorganic fertilizer. The 

study established that hired labor, agricultural training, and farmers' perception of soil 

erosion were significant positive determinants of inorganic fertilizer adoption. Site and 

access to weather forecast information were key negative determinants of inorganic 

fertilizer adoption. The adoption of inorganic fertilizer increased crop yields by 14%. The 

findings have incredible implications on rural livelihood as enhanced productivity could 

promote food security and improve purchasing power, thus enhancing smallholder 

farmers' capacity to cope with declining soil fertility and climate change-related 

challenges. Therefore, agricultural policies targeting improved productivity of 

smallholder sorghum farmers could enhance inorganic fertilizer adoption while 

considering the determinants. 

 

Keywords: Community welfare, Counterfactual analysis, Propensity score matching, 

drought-tolerant crop 
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4.1 Introduction 

Low soil fertility and climate change are significant global challenges facing smallholder 

farming systems (Morton, 2007; Rapsomanikis, 2015; Mugi-Ngenga et al., 2016). 

Evidence shows that the dominant climate change indicators include increased drought 

frequency and severity causing crop water stress and reduced yields in sub-Saharan 

Africa (SSA) (Shiferaw et al., 2014b; Mubiru et al., 2020). The fertility status of the soil 

could be determined through testing and farmer perceptions. Most smallholder farmers in 

SSA exhibit high poverty, approximated at 53% (Alliance for a Green Revolution in 

Africa (AGRA), 2014). The impacts of climate change and soil fertility decline could be 

adverse in most developing sub-Saharan African countries (SSA) due to the lack of 

capacity by most of the community members to cushion themselves against these impacts 

(Karienye and Macharia, 2020). The over-dependence by most smallholder farmers on 

rain-fed agriculture aggravates the situation culminating in reduced agricultural 

productivity and increased food insecurity (Devendra, 2012; Raimi et al., 2017). The high 

poverty levels could exacerbate the effects of climate change and soil fertility decline due 

to the low capacity to invest in adopting new agricultural technologies. Therefore, 

promoting the adoption of climate-resilient crops and inorganic fertilizer could be a good 

entry point in enhancing the twin agenda of climate change adaptation and soil fertility 

amelioration. 

 

Against the above challenges facing smallholder farming systems and the need to feed 

the growing population, there is a need to improve productivity. The "orphan crops" are 

crops that researchers have neglected, play a central role in enhancing food security and 

spurring sustainable agriculture under the changing climate (Mabhaudhi et al., 2019). In 

Kenya, one of the "orphan crops" is sorghum (Sorghum bicolor (L.), commonly grown in 

arid and semi-arid lands (ASALs) and referred to as "poor man's crop." The ASALs face 

numerous challenges, including severe and frequent drought, water scarcity, and soil 

degradation, which culminate in high poverty, food insecurity, and malnutrition 

(Karienye and Macharia, 2020). The growth of climate-smart crops such as sorghum 

could be vital in promoting food security and community wellbeing. Traditionally, 

sorghum has been grown for subsistence purposes in Kenya (Muui et al., 2013; 
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Chepng'etich et al., 2015). The crop is predominantly grown in Western Kenya by 

approximately 80% of the smallholder farming households (Kenya Ministry of 

Agriculture, Livestock, and Fisheries), MOALF, 2016). Recently, there have been 

concerted synergies by both governmental and non-governmental organizations, 

including County Governments, One Acre Fund, Cereals Growers Association (CGA), 

and Farm to Market Alliance (FtMA), towards sorghum commercialization (MOALF, 

2016; Njagi et al., 2019). Despite the synergies to enhance sorghum access to the market, 

its productivity remains low. 

 

Sorghum is the second most important cereal crop after maize across Kenyan agro-

ecosystems (Mitaru et al., 2006). Sorghum could enhance the agricultural productivity of 

smallholders living in ASALs. However, sorghum productivity in Western Kenya 

remains relatively low (Muuii et al., 2013; Okeyo et al., 2020a), probably due to 

continuous cropping without nutrient replenishment. The low sorghum productivity is 

exacerbated by numerous challenges including limited utilization of inorganic fertilizer 

and socioeconomic, biophysical, and institutional factors (Kebeney et al., 2015; Mbanda-

Obura et al., 2017; Okeyo et al., 2020a; Okeyo et al., 2020b). Promoting inorganic 

fertilizer adoption while considering smallholders' dynamics in policy implementation 

could enhance the livelihoods of the sorghum producers.  

 

Adopting inorganic fertilizer could considerably enhance community welfare, as Donkor 

et al. (2019) reported in Nigeria. However, there is a shortage of literature on the 

determinants and effects of inorganic fertilizer adoption on productivity among 

smallholder sorghum cropping systems in most developing countries, including Kenya. 

Though adoption of inorganic fertilizer could upsurge productivity, the low application 

rates recorded among smallholder farmers could contradict outputs (Kibunja et al., 2017; 

Mairura et al., 2022a). Further, the high cost of inorganic fertilizer limits adoption among 

smallholder farmers in Kenya (Mugwe et al., 2009; Jena et al., 2021). Therefore, the 

objective was to evaluate the effects of inorganic fertilizer adoption on sorghum 

productivity among smallholder farmers in Siaya County, Western Kenya. This study 

assessed i) the determinants of inorganic fertilizer adoption and sorghum productivity and 
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ii) the effects of inorganic fertilizer adoption on sorghum yields. The study hypothesized 

that i) socioeconomic, biophysical, and institutional factors significantly determine 

inorganic fertilizer adoption and sorghum yields of adopter and nonadopters, and ii) 

inorganic fertilizer adoption significantly increases sorghum yields among smallholder 

farmers in Western Kenya. 
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4.2 Methodology 

4.2.1 Study location 

The research used primary data collected from smallholder sorghum farmers of Alego 

Usonga and Ugenya sub-Counties of Siaya County, Western Kenya (Figure 4.1). The 

sub-Counties lie under low midlands (LM1, LM2, LM3, LM4, and LM5) and upper 

midland (UM1), (Jaetzold et al., 2010). The site experiences bimodal rainfall, with long 

rains occurring between March to June and short rains between September and December 

every year. The long-term annual rainfall amount ranges between 800 to 2000 mm, while 

the average long-term yearly temperature ranges between 20.9 and 22.3 °C. The primary 

soil type is Ferrasols, with low to moderate inherent soil fertility and thus cannot sustain 

crop production without external inputs. The main food crops grown in the study area 

include sorghum (Sorghum bicolor), maize (Zea mays), beans (Phaseolus vulgaris), 

cassava (Manihot esculenta), sweet potato (Ipomoea batatas), and cowpea (Vigna 

unguiculata). The Alego-Usonga and Ugenya sub-Counties have 224,343 and 134,354 

persons (Kenya National Bureau of Statistics (KNBS), 2019), with a population density 

of 375 and 415 persons per km2, respectively. The smallholder farmers in the study area 

face high poverty levels, food insecurity, and increased population density challenges. 
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Figure 4.1 Map of the study area indicating sampled households 

 

4.2.2 Sampling procedure 

The study used cross-sectional survey in implementation and a multistage sampling 

procedure to select the farmers included in the survey. First, Siaya County was selected 

based on the predominance of sorghum production and previous efforts to commercialize 

sorghum production. Secondly, a meeting was held with the County Government of Siaya 

agricultural officers drawn from the Agricultural Department to select the dominant 

sorghum-growing sub-Counties and settled on the Alego-Usonga and Ugenya sub-

Counties. Thirdly, the study employed total sampling to collect data from all the ten 



72 

 

wards in the sub-Counties. Fourth, the number of households sampled in each ward was 

determined using a proportionate to size sampling procedure. Finally, the individual 

households were sampled using a random sampling procedure. The sampling frame was 

obtained from the ward agricultural officers. The sample size was determined following 

the method described by Cochran (2007), Equation 4.1. 

 

) 

 

Whereby: ss = Sample size, z = z value of 1.96 for 95% confidence level, p = probability 

of picking a choice, expressed as decimal (0.5), q = 1-p and E = 5.65 % allowable error, 

expressed as decimal (0.0565). Therefore, the sample size comprised of 300 smallholder 

sorghum farmers.  

 

A semi-structured interview schedule was administered face-to-face during data 

collection. Five enumerators were recruited and trained from the local community in each 

sub-County who were eloquent in English and vernacular. They were taught how to use 

the Open Data Kit (ODK) mobile App and question interpretation. Before the actual data 

collection, the research tool was pretested and modified. The final semi-structured 

interview schedule had questions on sorghum cropping systems, inorganic fertilizer 

adoption, and explanatory variables, including socioeconomic, institutional, and 

biophysical factors (Table 4.1).  

 

Regarding institutional factors, a low proportion of 7%, 13%, and 19% of sampled 

sorghum farmers received inputs on credit, was agriculturally trained, and were members 

of sorghum associations. However, a higher proportion, 84%, received weather forecast 

information. The majority of the sampled sorghum farmers perceived soil fertility as 

moderate (63%), soil erosion low (57%), and resided in the Alego Usonga sub-County 

(60%), Table 4.1).  
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Table 4.1 Description of study variables  
Variable Definition Mean SE# Minimum Maximum 

Dependent 

variables 

     

Sorghum 

productivity 

Sorghum yields in (kg ha-1) 
1118.32 46.66 32.93 4446.00 

Log sorghum 

productivity 

Log of sorghum yields (kg ha-1) 3.05 1.67 1.52 3.65 

Treatment 

variable 

     

Inorganic fertilizer 

adoption 

Household adopted inorganic fertilizer 

(1=yes) 

0.68 0.03 0 1 

Predictor 

variables 

     

Sex Sex of the household head (1=male) 0.38 0.03 0 1 

Literate Household head had schooled (1=yes) 0.86 0.02 0 1 

Family size Household size 5.78 0.17 1 15 

Main occupation 

hhh 

Household head main occupation farming 

(1=yes) 

0.86 0.02 0 1 

Farming 

experience 

Household head farming experience (years) 22.56 0.84 1 70 

Hired labor Household employed hired labor (1=yes) 0.48 0.03 0 1 

Remittance receipt Household received remittance (1=yes) 0.34 0.03 0 1 

Group 

membership 

Household was a member of agricultural 

association (1=yes)  

0.19 0.02 0 1 

Credit access Household received agricultural credit 

(1=yes) 

0.07 0.02 0 1 

Agricultural 

training 

Household received agricultural training 

(1=yes) 

0.13 0.02 0 1 

Sorghum price Prevailing market sorghum price (KES a) 43.70 0.66 25 100 

Weather 

information 

receipt 

Household received weather forecast 

information (1=yes) 

0.84 0.021 0 1 

Sorghum land 

holding 

Total farm size under sorghum (ha) 0.22 0.01 0.04 1.21 

Perceived change 

in climate 

Household head perceived change in climate 

(1=yes) 

0.96 0.01 0 1 

Perceived soil 

fertility poor 

Household head perceived soil fertility status 

as poor (1=yes) 

0.24 0.03 0 1 

Perceived soil 

fertility moderate 

Household head perceived soil fertility status 

as moderate (1=yes) 

0.63 0.03 0 1 

Perceived soil 

fertility is good 

Household head perceived soil fertility status 

as good (1=yes) 

0.12 0.02 0 1 

Perceived soil 

erosion low 

Household head perceived soil erosion as 

low (1=yes) 

0.57 0.03 0 1 

Perceived soil 

erosion high 

Household head perceived soil erosion as 

high (1=yes) 

0.06 0.01 0 1 

Sorghum variety 

improved 

Household planted improved sorghum seeds 

(1=yes) 

0.10 0.02 0 1 

Sorghum seeds 

quantity 

The quantity of seeds planted per acre (Kg 

ha-1) 
11.49 0.32 1.24 29.64 

Site Household located in Alego Usonga sub-

County (1) and Household located in 

Ugenya (0) 

0.60 0.03 0 1 
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# SE indicates the standard error, aKES is Kenya shilling at exchange rate was US $1 = KES 

109.68.  

 

The descriptive characteristics of the sampled sorghum farmers were expressed as mean 

(Table 4.1). All the variables included in this study were selected based on literature 

(Coulibaly et al., 2017; Donkor et al., 2019; Martey et al., 2019; Marenya et al., 2020). 

The average sorghum productivity was 1118.32 kg ha-1. The inorganic fertilizer adoption 

rate was 68%. The summary statistics indicated that 38% of the sampled sorghum 

farmers were male, while both literate and farmers whose main occupation was farming 

were 86% (Table 4.1). The descriptive socioeconomic statistics indicated that the average 

family size, farming experience, sorghum prices, sorghum landholding, and sorghum 

seed quantity were 5.78, 22.56 years, 43.70 KES (0.40 US$), 0.22 ha, and 11.49 kg ha-1 

respectively (Table 4.1). The low proportion of households, 10%, 34%, and 48%, used 

improved seeds, remittance, and hired labor in sorghum production. 

 

4.2.3 Conceptual framework and estimation strategies 

Smallholder sorghum farmers in Western Kenya are experiencing the challenge of 

declining soil fertility (Kebeney et al., 2015). To enhance sorghum productivity while 

facing declining soil fertility, the smallholder farmers adopt soil fertility ameliorating 

technologies such as inorganic fertilizer application. A conceptual framework was 

developed to illustrate the effects of inorganic fertilizer adoption on sorghum yield. It is 

noteworthy that smallholder sorghum farmers could adopt inorganic fertilizer if the utility 

arising from adoption is greater than not adopting (Meyer, 2002; Montes de Oca Munguia 

et al., 2021). Therefore, the adoption of inorganic fertilizer is a decision process 

influenced by various factors, including socioeconomic, biophysical, and institutional 

factors (Figure 4.2). 
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Figure 4.2 Conceptual framework for inorganic fertilizer adoption effect on sorghum 

yields: Modified from Donkor et al. (2019) 

 

Adopting inorganic fertilizer and socioeconomic, institutional, and biophysical factors 

influence sorghum yields. Inorganic fertilizer adoption increases soil fertility, thus 

hypothesized to increase sorghum yields. Due to the high cost, the low application rates 

of inorganic could lower the full potential of yield improvement. The effects of inorganic 

fertilizer adoption on sorghum yields could be modeled using propensity score matching 

(Rosenbaum and Rubin, 1983). However, the propensity score matching doesn't control 

for unobserved bias. Therefore, this study is more appropriate to use endogenous 

switching regression that could control for both observable and unobservable biasness. 

The modeling approach would estimate the actual and counterfactual implication of 

inorganic fertilizer adoption on both sorghum yields, i.e. if an adopter chose not to adopt 

and if non-adopters decided to adopt. The counterfactual scenario is essential for 

estimating the average treatment effects of both treated and untreated. 

 

Adopting inorganic fertilizer among smallholder sorghum farmers is a decision process 

based on utility maximization theory. Therefore, smallholder sorghum farmers could only 

adopt inorganic fertilizer if the benefits are superior to not adopting. This could be 

expressed in an equation as a farmer decides to adopt inorganic fertilizer if the utility of 



76 

 

adopting (Uiy) exceeds that of not adopting (Uiz). The difference ) between the two 

utilities is described in equation 4.2. 

 

Uiy-Uiz > 0     (4.2) 

 

The  is a latent variable indicating the expected benefits of inorganic fertilizer 

adoption. The latent variables can be described using observable variables, as shown in 

equation 4.3. 

 

  (4.3) 

 

Where A is a binary variable of the decision to adopt inorganic fertilizer as 1 indicates 

adopters and 0 non-adopters. W is a vector of factors influencing the decision to adopt 

inorganic fertilizer, such as socioeconomic, institutional, and biophysical; α is a vector of 

parameters to be estimated, and  is a random error term. 

 

Similar to Donkor et al. (2019) and Martey et al. (2019), it was expected the adoption of 

inorganic fertilizer to influence smallholder farmers' sorghum yield. The productivity is 

expressed as a function of a vector, X, of variables including socioeconomic, 

institutional, and biophysical factors and an endogenous variable (A) of inorganic 

fertilizer adoption Equation 4.4 

 

    (4.4) 

 

Whereby Yi indicates outcome variables, sorghum yields, A shows the binary variable of 

the decision to adopt inorganic fertilizer, indicates parameters to be estimated, 

and  represents the error term. 
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Various methodologies have been used to evaluate the impact of agricultural technology 

adoption on farmers' well-being, including crop yields (Donkor et al., 2019; Jena, 2019; 

Martey et al., 2019). However, the best method is tailored to treatment allocation, i.e., 

whether the fertilizer adopters and non-adopters were randomized. In this study, the 

adoption of inorganic fertilizer among sorghum farmers was not randomized. This 

implied that both adopters and non-adopters were not equally and randomly exposed to 

inorganic fertilizer technology. Therefore, the sampled sorghum farmers across the study 

area could have different characteristics. Because adopters and non-adopters could have 

different characteristics, a direct comparison of means was not plausible (Rosenbaum and 

Rubin, 1985). 

 

Further, the sorghum yields are influenced by inorganic fertilizer adoption and 

socioeconomic, institutional, and biophysical factors as described in the conceptual 

framework (Figure 4.2). Therefore, predicting sorghum yields using a linear model such 

as ordinary least square (OLS) could be biased. Previous studies have highlighted 

suitable models for this kind of data, including propensity score matching (PSM) and 

endogenous switching regression (Jena, 2019; Martey et al., 2021). The main drawback 

with propensity score matching is its inability to account for unobservable bias (Khonje 

et al., 2015). Therefore, the study used the empirical research's endogenous switching 

regression (ESR) analysis and the propensity score matching for robustness check similar 

to Martey et al. (2021). 

 

4.2.4.1 Robust check 

The study employed a second-order stochastic dominance (SD) analysis to evaluate the 

superiority of inorganic fertilizer adoption on sorghum yields. The analysis is used to test 

for the common support condition. The SD analysis assumes that smallholder farmers are 

risk-averse and adopt superior technology to maximize the expected utility. Therefore, 

the SD analysis shows the dominance of adoption relative to non-adoption graphically 

(Mutenje et al., 2019; Martey et al., 2021).  
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Propensity score matching (PSM) is an analytical technique that mimics an experiment 

design by matching the treated with untreated units based on the propensity of adopting 

superior technology while accounting for covariates and removing all the unmatched 

units (Rosenbaum and Rubin, 1983; Donkor et al., 2019; Martey et al., 2019). Previous 

studies (Shiferaw et al., 2014a; El-Shater et al., 2016; Jena, 2019) have used PSM to 

examine the effects of agricultural technologies on yield. The first stage in PSM estimates 

the propensity score of inorganic fertilizer adoption using the probit model.  

 

The second step involves estimating the average treatment effects on treated (ATT), in 

this case, the sorghum yields for adopters and non-adopters using matching techniques 

including PSM, inverse probability weighting (IPW), and near neighbor matching 

(NNM). The propensity score is defined as the conditional probability of receiving 

treatment, i.e., inorganic fertilizer, given the pre-treated characteristics described in 

Equation 4.5  

 

    (4.5) 

 

Where Ai = (0, 1) is the indicator of exposure to inorganic fertilizer treatment, and X is 

the multidimensional vector of pre-treatment characteristics. Therefore, the ATT can be 

estimated as shown in equation 4.6. 

 

ATT=E  - E   (4.6) 

 

Where ATT is the average treatment effect on treated, Y1i indicates the outcome when the 

household i adopted inorganic fertilizer (A=1), and Y2i shows the outcome when the 

household i did not adopt inorganic fertilizer (A=0). However, the PSM cannot estimate 

the counterfactual effects, including if non-adopters adopted or adopters did not adopt 

(Maina et al., 2020; Aweke et al., 2021; Habtewold, 2021). 
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4.2.4.2 Endogenous switching regression 

The study employed endogenous switching regression (ESR) modeling to account for the 

selection bias similar to previous studies (Manda et al., 2019; Habtewold, 2021) on 

agricultural technology adoption effects on wellbeing. The sorghum yields can be 

expressed based on two ESR regimes; 1 inorganic fertilizer adoption and 2 inorganic 

fertilizer nonadoption Equation 4.7a & 4.7b. 

 

  (4.7a) 

 

  (4.7b) 

 

Where Y1i and Y2i are the outcome variables of productivity for inorganic fertilizer 

adopters and non-adopters, respectively, β1 and β2 vectors of parameters to be estimated, 

X1i and X2i are the vector determinants of the productivity from ith household. At the 

same time, e1i and e2i are the error terms.  

 

An exclusion restriction variable is introduced in the choice model (Eq. 3). Like Martey 

et al. (2019), weather forecast information receipt was used as an instrumental variable. 

Weather forecast information receipt can make farmers anticipate potential adverse 

effects, including yield loss, and could adopt agricultural technologies. Therefore, it 

could directly influence the adoption of inorganic fertilizer but is unlikely to affect 

sorghum yields directly. The admissibility of the instrument was assessed by a 

falsification test similar to Donkor et al. (2019). The falsification test is used to confirm 

the use of a selection instrument. If the selected variable is valid, it significantly 

influences the decision variables but with no significant influence on outcome variables. 

The study revealed that weather information receipt significantly influenced inorganic 

fertilizer adoption (eq. 3) but did not influence sorghum yields (eq. 7b), Appendix 2). 

Thus, the instrumental variable was valid. 
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The three error terms for Equations 3, 7a, and 7b are assumed to have a trivariate normal 

distribution with mean vector zero and covariance matrix described by Di Falco et al. 

(2011) Equation 4.8. 

 

cov  =    (4.8) 

 

Whereby σ2ε = var (εi), σ
2e1 = var (e1), σ

2e2 = var(e2), σe1ε = cov (e1,ε), and σe2ε = cov 

(e2, ε). In this study, the covariance between e1 and e2 is not defined since Y1 and Y2 are 

never observed simultaneously (Maddalla, 1983). Following Martey et al. (2021), the two 

error terms can be expressed as described in equation 4.9a – 4.9b. 

 

E  =   for inorganic fertilizer adoption   (4.9a) 

 

E   =   for inorganic fertilizer non-adoption  (4.9b) 

 

Here  and  are the inverse mill ratio (IMR) estimated from equation 3 and further 

incorporated in regime Equations7a and 7b to account for the selection bias in the ESR. 

Therefore, the regimes for the outcome variable can be described as shown in Equations 

4.10a &4.10b. 

 

 =  +  +  if    =  1 for inorganic fertilizer adoption  (4.10a) 

 

 =  +  +  = 0 for inorganic fertilizer non adoption (4.10b) 

 

If the  and are significant and indicate the presence of an endogenous switching. 

Full information maximization likelihood (FIML) is superior to the two-step procedure 

(Lee and Trost, 1978; Lokshin and Sajaia, 2004). The ESR framework was used to 
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estimate the average treatment effects on inorganic fertilizer adopters (ATT) and non-

adopters (ATU) by associating both actual and counterfactual outcomes similar to 

Donkor et al. (2019) as illustrated in equations 4.11a –4.11d. 

 

Inorganic fertilizer adopters (actual) 

     (4.11a) 

 

Inorganic fertilizer non-adopters (actual) 

     (4.11b) 

 

Inorganic fertilizer adopters if they decided not to adopt (counterfactual) 

     ( 4.11c) 

 

Inorganic fertilizer nonadopters if they decided not to adopt (counterfactual) 

     (4.11d) 

 

The average treatment on treated (ATT) was calculated as equation 4.11a – 4.11c and 

average treatment effects on untreated as 4.11d -4.11b as shown in equations 4.12a & 

4.12b. 

 

ATT ) (4.12a) 

 

) (4.12b) 

 

The overall average treatment effects on adopters and non-adopters are expressed in 

Table 4.2. The transitional heterogeneity H3 was calculated to determine whether the 

actual inorganic fertilizer adopters affected sorghum yields compared with the non-

adopters if they decided to adopt. Further, H1 and H2 the base heterogeneity were 
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calculated to compare the effects of inorganic fertilizer adoption decisions described in 

Equations 4.13a & 4.13b. 

 

= E -E = )  (4.13a) 

 

-E = ( ) +  (4.13b) 

 

Table 4.2 Estimation of average treatment and heterogeneity effects 

Sampled households Inorganic fertilizer adoption 

decision stage 

Average treatment 

effect 

To adopt Not to adopt  

Inorganic fertilizer 

adopters 

11a 

 

11c 

 

ATT=(11a-11c) 

Inorganic fertilizer 

nonadopters 

11d 

 

11b  ATU=(11d-11b) 

Heterogeneity effects H1 (11a-11d) H2 (11c-11b) H3 = (ATT-ATU) 

Slightly modified from Di Falco et al. (2011) and Martey et al. (2019). H1 and H2 are the 

base heterogeneity on inorganic fertilizer adopter and nonadopters. H3 is the transitional 

heterogeneity, ATT is the average treatment effects on adopters and ATU is the average 

treatment effects on nonadopters. 
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4.3. Results and discussion 

4.3.1 Descriptive statistics on inorganic fertilizer adoption 

The findings indicated that 68% (204 out of 300) sampled smallholder sorghum farmers 

adopted inorganic fertilizer (Table 4.3). The inorganic fertilizer adoption rates were 

similar to previous SSA studies (Mugwe et al., 2009; Macharia et al., 2014; Ricker-

Gilbert, 2020). The fertilizer application rate (15.41 kg N ha-1) was low across the 

sorghum cropping systems. The low application rate of inorganic fertilizer among 

smallholder farmers could be attributed to its high cost (Mugwe et al., 2009). Inorganic 

fertilizer adopters obtained significantly higher yields than non-adopters (Table 4.3). The 

observed mean sorghum yields of 1118.32 kg ha-1 were consistent with Okeyo et al. 

(2020), who reported sorghum yields of 1370.85 kg ha-1 in Western Kenya but lower than 

the productivity potential of 2000 to 5000 kg ha-1 (Karanja et al., 2014). Inorganic 

fertilizer adopters and non-adopters were significantly differentiated by several 

explanatory variables: family size, hired labor, household head main occupation, soil 

fertility perceptions, group membership, access to inputs on credit, agricultural training, 

and improved sorghum varieties, farmer soil perceptions, and site. 
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Table 4.3 Descriptive statistics by inorganic fertilizer adoption 
Variable 

 

Adopters (IA) 

N=204 

Nonadopters (IN) 

N=96 

Diff 

(IA-IN) 

 Mean SE Mean SE  

Dependent variables      

Sorghum productivity 1183.20 58.32 980.42 75.41 202.79** 

Log sorghum productivity 3.07 1.77 2.99 1.88 0.08** 

Predictor variables      

Sex 0.38 0.03 0.39 0.05 -0.01 

Education 0.88 0.02 0.82 0.04 0.05 

Family size 6.05 0.20 5.19 0.31 0.87** 

Main occupation hhh 0.86 0.02 0.86 0.04 -0.01 

Farming experience 21.31 0.98 25.21 1.56 -3.89** 

Hired labor 0.54 0.03 0.36 0.05 0.18*** 

Remittance receipt 0.33 0.03 0.36 0.05 -0.03 

Group membership 0.22 0.03 0.14 0.04 0.08* 

Credit access 0.09 0.02 0.02 0.02 0.07*** 

Agricultural training 0.16 0.03 0.08 0.03 0.07* 

Sorghum price# 44.79 0.89 41.40 0.75 3.39*** 

Weather information receipt 0.82 0.03 0.87 0.03 -0.05 

Sorghum land holding 0.23 0.02 0.22 0.02 0.01 

Perceived soil fertility poor 0.29 0.03 0.14 0.04 0.16*** 

Perceived soil fertility moderate 0.58 0.03 0.75 0.04 -0.17*** 

Perceived soil fertility good 0.13 0.02 0.11 0.03 0.01 

Perceived soil erosion low 0.55 0.03 0.59 0.05 -0.04 

Perceived soil erosion high 0.05 0.02 0.07 0.03 -0.02 

Sorghum variety improved 0.12 0.02 0.05 0.02 0.07** 

Sorghum seeds quantity 11.39 0.40 11.71 0.57 -0.32 

Site 0.49 0.04 0.84 0.04 -0.36*** 

#Exchange rate was US $1 = KES 109.68. 

***, **, * significant at 1%, 5% and 10% level of significance 

 

4.3.2 Determinants of inorganic fertilizer adoption 

Inorganic fertilizer adoption was significantly determined by hired labor, access to 

agricultural training on sorghum production, soil fertility perception, weather forecast 

information receipt, and site (Table 4.4). Hired labor positively influenced the adoption 

of inorganic fertilizer at a 1% significance level. The findings implied that the likelihood 

of sorghum farmers adopting inorganic fertilizer increased with the increased utilization 

of hired labor. Meticulous application of inorganic fertilizer in its right amounts, from the 

suitable sources, at the right time, and in the right place calls for additional labor 

(Johnston and Bruulsema, 2014). Higher adoption of inorganic fertilizer among 

households who had access to hired labor could be attributed to the increased labor 

requirements. However, it is worth noting that hired labor comes with additional costs 
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that could reduce the benefits attributed to inorganic fertilizer adoption. The finding 

agreed with several studies across SSA (Mugwe et al., 2009; Udimal et al., 2017; 

Mwaura et al., 2021) that hired labor is a significant positive determinant of agricultural 

productivity technologies adoption. 

 

Agricultural training significantly and positively influenced the adoption of inorganic 

fertilizer in Western Kenya. The findings implied that the likelihood of adopting 

inorganic fertilizer increased with better access to agricultural training. The increased 

adoption  n of inorganic fertilizer could be attributed to agricultural training that transfers 

reliable knowledge to farmers on the benefits and timing of inorganic fertilizer 

application. Further, agricultural training improves farmers' know-how on the sources of 

agricultural inputs and plays an essential component in instilling agricultural skills and 

building the target group's capacity (Macharia et al., 2014; Musafiri et al., 2020a; 

Musafiri et al., 2022a). Several studies have found the training to be a significant positive 

predictor of adoption of agricultural technologies, attributed to the transfer of knowledge 

on best management practices (Jawid and Khadjavi, 2019; Okeyo et al., 2020b; Mucheru-

Muna et al., 2021; Mairura et al., 2021). 

 

Soil fertility perception had a significant and positive influence on inorganic fertilizer 

adoption. Farmers' perception, especially on soil fertility, plays a central role in shaping 

the adoption of technologies to alleviate the status. Smallholder farmers could directly 

connect their reduced agricultural productivity to poor soil fertility. Declining soil 

fertility is the main drawback of agricultural productivity in SSA (Kiboi et al., 2019; 

Mwaura et al., 2021); thus, farmers who perceived the soil fertility as poor could have 

adopted inorganic fertilizer to enhance crop production. The adoption of inorganic 

fertilizer among smallholder farmers who perceived soil fertility as poor could be 

attributed to the need to improve sorghum yields. The finding agreed with Odendo et al. 

(2010) and Musafiri et al. (2022a), who reported that most households in Western Kenya 

perceived soil fertility as declining, thus affecting crop yields. Further, the findings 

collaborated with Desbiez et al. (2004), who found smallholder farmers' perceptions of 
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soil fitness to be holistic to the field condition and thus could directly determine the 

adoption of soil fertility ameliorating practices, including inorganic fertilizer. 

 

Weather forecast information receipt significantly and negatively influenced inorganic 

fertilizer adoption. This implied that the likelihood of adopting inorganic fertilizer 

increased with a reduction in weather forecast information receipt. This condition 

suggests using weather forecast information, including rainfall amount, onset, and 

cessation, to manage the cropping calendar. The weather forecast information could be 

used in agronomic activities such as land preparation, planting, pesticide application, and 

harvesting. Though the weather forecast information could not improve inorganic 

fertilizer adoption, it could be utilized to enhance agricultural productivity through 

climate change adaptation (Musafiri et al., 2022b). 

 

Site negatively determined inorganic fertilizer adoption among smallholder farmers. 

Smallholder farmers residing in the Alego-Usonga sub-County had a lower likelihood of 

inorganic fertilizer adoption than their counterparts in the Ugenya sub-County. The lower 

adoption of inorganic fertilizer in Alego-Usonga could be attributed to differences in 

climatic conditions. Additionally, the geographical location highlights differences in 

institutional, socioeconomic, and biophysical characteristics that could influence the 

adoption of agricultural innovations. Similar findings were reported by Donkor et al. 

(2019) and Mairura et al. (2022a), who found that site significantly influences the 

adoption of agricultural technologies in Nigeria and Kenya, respectively.  
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Table 4.4 Determinants of inorganic fertilizer adoption and sorghum productivity among 

smallholder farmers in Western Kenya 

Variable 

  
Log yield (Kg ha-1)  

  

  Selection Non-adopters Adopter  

  

Sex -0.173(0.207) -0.035(0.079) 0.032(0.043)   

Education 0.288(0.313) 0.328***(0.10

) 

0.041(0.065)   

Education 0.134(0.413) 0.169(0.141) 0.032(0.091)   

Farming experience -0.411(0.311) 0.275**(0.121

) 

-0.044(0.060)   

Hired labor 0.857***(0.22) -0.026(0.088) 0.078(0.053)   

Remittance receipt -0.131(0.203) -0.047(0.071) -0.009(0.044)   

Group membership 0.023(0.294) 0.100(0.109) 0.018(0.060)   

Credit access 0.229(0.503) -0.333(0.230) -0.058(0.082)   

Agricultural training 0.510***(0.39) 0.201(0.142) 0.058(0.065)   

Sorghum land holding -0.086(0.240) -0.245*** 

(0.088) 

-0.131*** 

(0.049) 

  

Sorghum variety improved 0.304(0.339) -0.218(0.135) 0.193***(0.066)   

Sorghum seeds quantity 0.258(0.438) 0.243(0.157) 0.225**(0.094)   

Perceived soil erosion low -0.237(0.188) -0.035(0.071) -

0.129***(0.041) 

  

Perceived soil fertility poor 0.723***(0.24) -0.099(0.127) -0.031(0.053)   

Site -

1.439***(0.22) 

0.192(0.129) 0.081(0.067)   

Weather information receipt -0.848*** 

(0.28) 

      

Constant 2.420***(0.93) 1.38*** 

(0.31) 

2.386***(0.159)   

rho_1    -0.582** 

(0.29) 

   

rho_2    0.029(0.404)   

Summary statistics         

LR test of independent 

equations 

12.05***    

Wald chi2 49.50***       

Prob>chi2 0.0000       

Log likelihood -154.567       

Value is parenthesis are standard error, *. **. *** Significance at 10%, 5%, and 1% level of significance.  

 

4.3.3 Determinants of sorghum yields 

The findings showed a Likelihood ratio test of independent equations of 12.05*** for 

sorghum productivity (Table 4.4). The results implied that the three equations 3, 7a, and 
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7b were dependent, and if it was assumed the equations were independent, could have 

obtained biased estimates. The rho_1 (-0.582**) for non-adopters was significant at a 5% 

significance level. Thus, the application of ESR was plausible. The Wald chi-square test 

value of 49.50 for sorghum yields was significant at a 1% significance level, indicating 

independent variables included in the model jointly explained variations in sorghum 

yields. 

 

Education of the household head exerted a significant positive effect on sorghum yields 

at a 1% significance level for inorganic fertilizer non-adopters. The finding implied that 

educated inorganic fertilizer noadopters were likely to have higher sorghum yields. 

Literate inorganic farmers could have improved technical know-how and external source 

of income to purchase farm inputs, consequently improving land productivity. The 

increased sorghum yields among non-adopters could be attributed to improved 

knowledge of other agronomic management practices such as organic farming. 

Theoretically, educated farmers are more likely to access information about agricultural 

innovations (Mulwa et al., 2017). The finding agreed with Paudel et al. (2019), who 

reported an increase in crop yield with an increase in education years among rice farmers 

of Nepal. However, the findings contradict Ojo and Baiyegunhi (2019), who found 

education negatively predicted the net returns of rice farmers in southwest Nigeria.  

 

Farming experience significantly affected sorghum yields among inorganic fertilizer non-

adopters at a 5% level of significance. The findings indicated that an increase in farming 

experience increased sorghum yields among inorganic fertilizer non-adopters. 

Agricultural farming is an engaging exercise, and as farmers gain experience, they 

become knowledgeable on the management practices to increase yield. The increased 

yield among non-adopters who had higher farming experience could be attributed to 

utilizing the gained expertise and technical knowledge in integrating farm inputs and 

overall management. The findings agreed with Donkor et al. (2019) and Martey et al. 

(2019), who indicated that experience positively influenced cassava and rice yields in 

Nigeria and Ghana. 
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Sorghum land holding negatively determined yields for adopters and non-adopters of 

inorganic fertilizer. This implied that sorghum yields among inorganic fertilizer adopters 

and non-adopters increased with a decline in land holding. Farmers with smaller land 

sizes could practice intensification practices, thus increasing their productivity. The lower 

yields among farmers with larger land sizes could be attributed to the inability to apply 

required nitrogen rates due to the high cost. The findings were similar to Paudel et al. 

(2019), who documented that land size had a negative effect on rice yields in the mid-

hills of Nepal. 

 

Improved sorghum variety utilization positively influenced sorghum yields for inorganic 

fertilizer adopters. The findings implied that inorganic fertilizer adopters who utilized 

improved sorghum varieties had higher yields than those who did not. Improved verities 

are developed to increase agricultural productivity more than the local ones. Therefore, 

the higher yields among smallholder farmers who adopted improved sorghum varieties 

could be attributed to their suitability to promote food security. Several studies in SSA 

have found that adopting enhanced crop varieties significantly improves the welfare of 

smallholder farmers including increased yields (Shiferaw et al., 2014a; Khonje et al., 

2015; Manda et al., 2019). 

 

The number of seeds planted significantly positively influenced sorghum yields among 

inorganic fertilizer adopters. The findings implied that an increase in seed quantity 

increases sorghum yields among inorganic fertilizer adopters. Increased seed quantity 

leads to enhanced plant population per unit area, thus increased productivity. However, 

high seed quantity beyond recommended planting density could lead to lower 

productivity due to the increased competition for resources, including nutrients. 

Agricultural training should be enhanced to educate farmers on the recommended seed 

quantity. 

 

Smallholders' soil erosion perceptions significantly negatively affected sorghum yields 

among inorganic fertilizer adopters. This implied that the likelihood of increasing 

sorghum yields decreased with low soil erosion perceptions. Soil erosion leads to a 
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reduction in soil fertility as the topsoil is eroded together with the nutrients. The reduced 

yields among smallholders who perceived the soil erosion to be low could be attributed to 

limited utilization of conservation practices leading to poor soil fertility, culminating in 

lower yields. The findings were consistent with Saguye (2017) and Tesfahunegn et al. 

(2020), who found farmers' perceptions of soil erosion influential in adopting 

conservation practices, thus improving land productivity. 

 

4.3.4. Inorganic fertilizer adoption effects on sorghum yields 

The results showed that inorganic fertilizer adoption had positive significant average 

treatment effects on sorghum yields at a 1% level (Table 4.5). Inorganic fertilizer 

adopters had a higher log of sorghum yields (2.97) than if they did not adopt (2.55). 
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Table 4.5 Inorganic fertilizer adoption effects on sorghum yields: ESR results 

Outcome variable Sampled household type Household adoption decision 

stage 

Average treatment 

effect 

 

To adopt Not to adopt  

Log sorghum yield Inorganic fertilizer Adopters (IA) 2.97 2.55 ATT=0.42(0.02)***  

(kg acre-1) Inorganic fertilizer non-adopters 

(IN) 

2.96 2.88 ATU=0.09(0.03)***  

 Heterogeneity effect (IA-IN) H1=0.01 H2=-0.33 H3=0.33  

*** indicate significance at 1%, ATT is the average treatment effects on treated, ATU represents average treatment effects on 

untreated, H1 and H2 are base heterogeneity, and H3 represent transitional heterogeneity, ESR is the endogenous switching 

regression 
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Inorganic fertilizer adoption increased sorghum yields by 14%. The results implied that 

inorganic fertilizer adoption improved community welfare through enhanced sorghum 

yields. The findings corroborate with several studies across SSA Donkor et al. (2019), 

Khonje et al. (2018) and Martey et al. (2019) that found that the adoption of agricultural 

technologies significantly improved smallholder farmers' yields.  

 

The findings revealed a positive base heterogeneity for adopters (H1) and negative for 

non-adopters (H2) for sorghum yields (Table 4.5). The findings for H1 implied the 

influence of inorganic fertilizer adoption was greater for adopters than non-adopters if 

they decided to adopt. The negative H2 indicated that the effect of inorganic fertilizer on 

adopters, if they chose not to adopt, was lower than non-adopters. The transitional 

heterogeneity (H3) was positive for sorghum yields. This implied that inorganic fertilizer 

adopters had higher yields than non adopters could if they adopted. The finding indicated 

that adopting agricultural technologies, including inorganic fertilizer, positively affected 

sorghum yields. Therefore, smallholder farmers in Western Kenya could cope with a high 

poverty rate, climate change, and soil fertility decline by adopting inorganic fertilizer to 

enhance their livelihoods. The income generated could be used to uplift the rural 

livelihoods through increased food security and purchasing power. 

 

4.3.5 Robustness check 

The study revealed a good overlap of propensity scores for inorganic fertilizer adopters 

and non-adopters (Figure 4.3). The propensity score distribution highlighted that the 

common support region condition was satisfied. This implied that the use of propensity 

score matching (PSM) was plausible similar to Wossen et al. (2017) and Mojo et al. 

(2017). 
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Figure 4.3 Distribution of inorganic fertilizer adopters and nonadopters for sorghum yields a) propensity score distribution, b) 

common support region 
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Table 4.6 Treatment effects from different matching algorithms 

Matching algorithm Log productivity (Kg ha-1)  

 ATT Robust Std. Error  

Propensity score matching 0.105 0.039***  

Inverse probability weighing 0.079 0.041*  

Nearest Neighbor Matching 0.074 0.044*  

Significance at 10% and 1% level of significance is indicated by *. ***, respectively 

 

Different matching algorithms showed a significant positive increase in sorghum yields 

under inorganic fertilizer adoption (Table 4.6). This implied that inorganic fertilizer 

adoption increased sorghum yields among smallholder farmers. The increased 

productivity could improve the rural households through enhanced food and nutritional 

security. The findings were consistent with previous studies by Donkor et al. (2019), 

Martey et al. (2019), and Marenya et al. (2020), who highlighted the adoption of 

agricultural technologies improved yields, including cowpeas, cassava, and maize across 

SSA countries. 

 

4.4 Conclusion and policy implications 

Soil fertility decline and climate change are significant hurdles facing smallholder 

farmers in Western Kenya. The study assessed the determinants and effects of inorganic 

fertilizer adoption on sorghum yield. The main determinants of inorganic fertilizer 

adoption among sorghum farmers were hired labor, agricultural training, farmers' soil 

perceptions, site, and weather forecast information receipt. The average treatment effects 

on treated (ATT) indicated that inorganic fertilizer adoption increased sorghum yields by 

14%. The findings showed a positive transitional heterogeneity thus, inorganic fertilizer 

adopters had higher productivity than non-adopters if they decided to adopt. The results 

highlight the importance of inorganic fertilizer adoption on increasing food security 

among smallholder farmers. The study revealed that different factors influence sorghum 

productivity among adopters and non-adopters. The research recommends agricultural 

subsidies enhance inorganic fertilizer adoption and improve application rates among 

sorghum farmers. Policymakers need to target promoting agricultural training and 
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consider farmers' perceptions of soil fertility and site to enhance inorganic fertilizer 

adoption and sorghum productivity. 
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CHAPTER FIVE 

ADOPTION OF CLIMATE-SMART AGRICULTURAL PRACTICES AMONG 

SMALLHOLDER FARMERS IN WESTERN KENYA: DO SOCIOECONOMIC, 

INSTITUTIONAL, AND BIOPHYSICAL FACTORS MATTER?2 

Abstract 

Rigorous efforts should be channeled to the current low adoption of climate-smart 

agricultural practices (CSAPs) in sub-Saharan African countries to improve food 

production. The question is, what determines the adoption level and intensity of CSAPs 

among smallholder farmers in Kenya? Hence, the objective was to assess the 

determinants of climate-smart agricultural practices adoption level and intensity among 

smallholder farmers in Siaya County. The study used data collected from 300 smallholder 

farmers in Western Kenya to assess smallholders' CSAPs adoption determinants while 

considering their joint adoption. The CSAPs considered were animal manure, soil water 

conservation, agroforestry, crop diversification, and crop-livestock integration. 

Multivariate and ordered probit models was used to assess the determinants of joint 

adoption of CSAPs in Western Kenya. The study established complements and 

substitutes between CSAPs. The multivariate probit analysis revealed that the household 

head's gender, education, age, family size, contact with extension agents, access to 

weather information, arable land, livestock owned, perceived climate change, infertile 

soil, and persistent soil erosion influenced CSAPs adoption. The ordered probit model 

revealed that gender, arable land, livestock owned, soil fertility, and constant soil erosion 

were crucial determinants of CSAPs adoption. The findings implied that policymakers 

and relevant stakeholders should consider farmer, institutional, and biophysical factors in 

upscaling or promoting the adoption of CSAPs. 

 

Keywords: Soil fertility decline, Climate-smart agriculture, Climate change, Multivariate 

probit model, Ordered probit model 

                                                 
2
 Musafiri, C.M., Kiboi, M., Macharia, J., Ng'etich, O.K., Kosgei, D.K., Mulianga, B., Okoti, M. & Ngetich, F.K. 

(2022). Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: do 

socioeconomic, institutional, and biophysical factors matter? Heliyon, 8(1), p.e08677. 

https://doi.org/10.1016%2Fj.heliyon.2021.e08677  

https://doi.org/10.1016%2Fj.heliyon.2021.e08677
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5.1 Introduction 

Climate change is a major significant hurdle to agricultural production globally. The 

climate change impacts on agricultural production are predominant in developing 

countries such as sub-Saharan Africa (SSA), where agriculture is rain-fed dependent 

(OECD & FAO, 2016; Van Ittersum et al., 2016). Climate change manifests as dry spells, 

meteorological droughts, flooding, unreliable rainfall, cropping calendar changes, and 

increased atmospheric temperature (Bryan et al., 2013; Ochieng et al., 2017). Climate 

change induces crop failure and livestock losses culminating in food insecurity and 

posing severe threats to society's wellbeing (Thornton & Herrero, 2015). Despite the 

climate change impacts on the agricultural sector, producing more food is essential for 

the increasing population in SSA countries, Kenya included. Therefore, interventions 

such as adopting climate-smart agricultural practices (CSAPs) among smallholder 

farmers are crucial. 

Smallholder farmers are faced with multiple climate change shocks, including floods, 

erratic rains, dry spells, and drought, among others (Bozzola et al., 2018; Mairura et al., 

2021). The climate change shocks significantly affect their agricultural productivity, 

including total crop failure and livestock losses. Therefore, smallholder farmers adopt 

single or multiple agricultural practices to cope with the impacts of climate change 

(Thornton & Herrero, 2015; Mairura et al., 2021). The CSAPs such as animal manure, 

soil water conservation, agroforestry, crop diversification, and crop-livestock integration 

improve food security and community welfare (Ngetich et al., 2014; Thornton & Herrero, 

2015; McCord et al., 2015; Kiboi et al., 2019; Reppin et al., 2020). The above CSAPs 

were selected based on the literature and expert knowledge of the study area. Despite the 

novel gains from CSAPs in enhancing food security and community wellbeing, their 

adoption levels remain relatively low (Ogada et al., 2014). This adoption varies across 

practices, and regions and the rates range from low to high (Bryan et al., 2013; Ndiritu et 

al., 2014; Kanyenji et al., 2020; Mogaka et al., 2021). However, there is limited literature 

on adopting the combination of agricultural practices such as animal manure, soil water 

conservation, agroforestry, crop diversification, and crop-livestock integration in Western 

Kenya to mitigate the impacts of climate change. Therefore, assessing the adoption levels 
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and intensity of CSAPs is vital in promoting policy formulation, technology 

dissemination, and improving livelihoods.  

 

Smallholder farmers adopt CSAPs to cope with climate change shocks. Smallholder 

farmers are faced with complex decisions either not to adopt or adopt a single or 

combination of technologies for climate change mitigation and adaptation (Ndiritu et al., 

2014). The adoption of CSAPs is mainly driven by expected utility (Rabin,2013), where a 

farmer could adopt a practice if the pay-off is better than not adopting. However, 

smallholder farmers are also faced with the decision to adopt a bundle of CSAPs 

(Kpadonou et al., 2017; Mulwa et al., 2017). The adoption of a specific practice could be 

conditioned to another. Therefore, assessing the determinants of the adoption of CSAPs 

should test the assumption of the interdependencies between them (Oyetunde-Usman et 

al., 2021). Previous studies found interdependencies between practices while estimating 

determinants of simultaneous adoption of agricultural innovation, thus assuming 

independence between them could produce biased outcomes (Teklewold et al., 2013; 

Ndiritu et al., 2014; Mulwa et al., 2017; Ehiakpor et al., 2021). Adopting CSAPs could be 

influenced by geographical location, farmer demographics, institution traits, biophysical 

factors, and the practice under consideration. Since smallholders could consider the 

combination of technologies, exploring the determinants of adoption intensity is equally 

essential. 

 

Despite the potential of integrating CSAPs to improve food security and community 

wellbeing, adopting a bundle of practices is limited by various factors such as high initial 

cost and technical know-how. Therefore, a smallholder farmer could adopt none, single, 

or several practices based on the ability. This justifies the need to evaluate determinants 

of CSAPs adoption among smallholder farmers across diverse locations to design pro-

farmer policies that could foster intervention adoption and improve food security against 

the backdrop of changing climate. The objective was to assess the determinants of 

climate-smart agricultural practices adoption level and intensity among smallholder 

farmers in Siaya County. The study responded to the following research question: what 

determines the smallholders' adoption of multiple interrelated CSAPs in Western Kenya? 
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5.2 Methodology 

5.2.1 Study area 

The study was conducted in Alego-Usonga and Ugenya sub-Counties in Siaya County, 

Western Kenya. Alego-Usonga and Ugenya sub-Counties cover 599 km2 and 324 km2, 

respectively, 36.48% of Siaya County. Alego-Usonga and Ugenya are inhabited by 

224,343 and 134,354 persons, respectively, 36.11% of the Siaya County population 

(KPHC, 2019). The study area is located in diverse agro-ecological zones, including 

Upper midland (UM1) and low midlands (LM1-5) (Jaetzold et al., 2010) 

 

The elevation ranges from 1140 to 1500 m above sea level. The site experience long-term 

annual temperature and rainfall ranging from 20.9 to 22.3 °C and 800 to 2000 mm 

(Jaetzold et al., 2010). The rainfall is bimodally distributed, where long rains occur from 

March to June and short rains from September to December each year. This results in two 

full cropping seasons per year. The main economic activity is crop and livestock farming. 

However, the rainfalls are highly erratic and unpredictable, leading to crop-livestock 

losses and food insecurity. The main climatic hazards in the study area include dry spells, 

flooding, and heat stress (Mairura et al., 2021). The threats significantly affect crop and 

livestock production. Therefore, smallholder farmers are forced to explore different 

CSAPs to mitigate the adverse climate change impacts. Most of the smallholder farmers 

in the area grow orphan crops such as cassava (Manihot esculenta), millet (Panicum 

miliaceum), sorghum (Sorghum bicolor), cowpea (Vigna unguiculata), chickpea (Cicer 

arietinum), and groundnut (Arachis hypogaea). They also grow food crops such as 

common bean (Phaseolus vulgaris) and maize (Zea mays). The predominant livestock 

reared includes goat, sheep, cattle, and poultry. Fishing is also a joint economic activity 

in the study area.  

 

5.2.2 Study variables description 

Smallholder farmers were requested to explain their encounters with the changing climate 

over the last ten years. Following the experience of smallholder farmers with climate 

change, they were asked to enumerate CSAPs they had adopted. The main CSAPs 

adopted by smallholder farmers to improve agricultural productivity and cope with 
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climate change included the use of animal manure, agroforestry, soil water conservation, 

crop diversification, and crop-livestock integration (Table 5.1). The practices mentioned 

were consistent with literature (Bryan et al., 2013; Kpadonou et al., 2017; Mulwa et al., 

2017; Ochieng et al., 2017; Oyetunde-Usman et al., 2021). The five CSAPs were used as 

the outcome variables. The adoption intensity indicates the number of CSAPs adopted by 

a smallholder farmer (Table 5.2). 

 

The relied on available literature on CSAPs adoption in selecting independent and 

dependent variables (Mutoko et al., 2014; Ndiritu et al., 2014; Kassie  et al., 2015; 

Mulwa et al., 2017; Sileshi et al., 2019; Ehiakpor et al., 2021). The five CSAPs, animal 

manure, agroforestry, soil water conservation, crop diversification, and crop-livestock 

integration, were measured as 1 if the smallholder farmer adopted a specific practice and 

0 if otherwise. Specifically, socioeconomic, institution and biophysical factors were 

incorporated as determinants of CSAPs adoption (Table 5.3). 

 

5.2.3 Sampling procedure and sample size 

The study employed a cross-sectional survey and multi-stage sampling procedure in 

sampling the smallholder farmers. First, Siaya County in Western Kenya at the first stage 

was purposely selected due to the high poverty levels, food insecurity, and climate-

related shocks (MoALF, 2016). At the second stage, two sub-Counties: Alego-Usonga 

and Ugenya, from the six total sub-Counties, including Bondo, Gem, Rarienda, and 

Ugunja in Siaya County were selected because of climate risk dominance. Whole 

sampling procedure was implemented to collect data from the six and four wards in 

Alego-Usonga and Ugenya sub-Counties at the third stage. The study used proportionate 

to size sampling procedure in determining household heads sampled per ward. Finally, 

random sampling procedure was employed to collect data from 300 smallholder farming 

households in the two sub-Counties. The target population was 57, 553 and 33, 565 

smallholder households in Alego-Usonga and Ugenya sub-Counties. Cochran formula 

was used in sample size calculation. The sample size of the 300 smallholders was 

sampled based on a 5% level of significance, and a 5.65% confidence interval, as 

described by Cochran (2007). 
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5.2.4 Household interview  

The study used a semi-structured interview schedule for data collection. Before the actual 

data collection, the interview schedule was pre-tested using ten randomly selected 

smallholder farmers. Following feedback from the pre-testing, the interview schedule was 

modified and adjusted. The interview administration involved ten recruited and trained 

enumerators. The interview schedule had questions on CSAPs adopted, and smallholder 

farmers' socioeconomic, institutional, and biophysical variables. Smallholder farmers 

were requested to voluntary consent before participating in the study. The interview was 

administered to the household head.  

 

5.2.5 Multivariate probit model 

Smallholder farmers could decide to adopt multiple CSAPs to improve food production 

and mitigate climate change impacts. To evaluate determinants of CSAPs adoption, the 

study assumed interdependencies between error terms of different practices, including 

animal manure (M), agroforestry (A), soil water conservation (S), crop diversification 

(D), and crop-livestock integration (L). Therefore, using a model that could 

simultaneously estimate the determinants of practices is imperative. A multivariate probit 

(MVP) model was used to assess the determinants of smallholders' simultaneous adoption 

of CSAPs. The MVP model estimates the determinants of simultaneous CSAPs adoption 

while the individual probit model considers one practice at a time (Belderbos et al., 

2004). The correlation of error terms where a positive sign represents complements or a 

negative sign indicates substitutes across different CSAPs (Mulwa et al., 2017; 

Oyetunde-Usman et al., 2021). The MVP model can be presented in two systems 

equations. Following Kpadonou et al. (2017) let Ua indicate the utility of adopting jth 

practice and Un otherwise. Smallholders can adopt the jth approach if Yij=Ua-Uo>0. 

Therefore, net utility Y*ij, a farmer obtains for adopting the jth practice, is a latent 

variable that can be predicted by the experimental factors and the multivariate normally 

distributed error terms (εi) equation 5.1: 

 

  (5.1) 
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Where Xi indicates a vector of independent variables, j climate-smart agriculture practice, 

 Vector coefficient, and εi error term. 

 

According to utility maximization theory, smallholder farmers could adopt CSAPs if the 

expected benefits are higher than non-adoption. This can be presented as an observable 

dichotomous outcome for each choice of CSAPs adopted by smallholder farmers could 

be described as shown in equation 5.2: 

 

 (5.2) 

Where, Indicates a binary observable variable for the adoption of jth practice by the ith 

farmer. Suppose adoption of CSAPs is assumed to co-occur; the error terms of the 

equation can be described using a variance-covariance matrix (equation 5.3).  

 

  (5.3) 

Where rho  is a pairwise correlation between any two CSAPs, the sign between the 

two practices shows the relationship. As stated earlier, a positive sign represents 

complements, and a negative one indicates substitutes.  

 

5.2.6 Ordered probit model  

From the MVP model, smallholder farmers adopt CSAP with higher utility than non-

adoption. The MVP model considers smallholder farmers' adoption of specific CSAP 

conditional to other practices based on expected utility. The intensity of adoption is a 

count data that could be analyzed using Poisson regression. The Poisson regression is 

based on the assumption that all the events have the same probability of occurrence. 

However, the adoption intensity of CSAPs doesn't have the same chance of happening. 
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The propensity of adopting the first CSAP could be different from the subsequent 

adoption of the practices (second to fifth) because smallholder farmers gain experience 

upon the first adoption. The smallholder farmers could have achieved better pay-off upon 

adopting the first practice and could be willing to adopt a combination of approaches to 

maximize the utility. Notably, the adoption of the practices could also differ based on 

their nature, including labor requirements, practical knowledge requirements, initial 

investments, and whether the benefits expected are in the short term or long term. 

However, smallholder farmers combine multiple CSAPs to increase the utility than those 

who adopt none, single, or few practices (Kpadonou et al., 2017). The adoption intensity 

(number of CSAPs adopted by ith farmer) was considered as an ordinal variable that 

could be analyzed using the ordered probit model. The model allows for estimating 

determinants of ordinal variables (adoption intensity that 1, 2, 3, 4, and 5 CSAPs). The 

ordered outcome could be assessed as a latent variable Y*, where Y* is the unobservable 

measure of smallholders' CSAPs adoption intensity (Cameron & Cameron, 2015; 

Oyetunde-Usman et al., 2021) as described in equation 5.4. 

 

  5.4 

For the ith smallholder farmer where normalization is that the regressors x do not include 

and intercept, the adoption intensity increases with Y*. The probability of observing a j 

outcome could be described by equation 5. 

 

 5.5 

The coefficient 1, 2… j-1 were estimated jointly with the cut points 1, 2, …, j where 

j is the number of the possible outcomes. Ui is assumed to be normally distributed with a 

standard normal cumulative distribution function. The ordered probit model is pooled and 

works under the assumption that the unobserved heterogeneity is uncorrelated with the 

independent variables. Previous studies have adopted plot-level analysis to control 

unobserved heterogeneity that may affect the estimates using fixed or pseudo- fixed-

effect models (Kpadonou et al., 2017). However, using plot-level analysis is not feasible 

in this study because of the nature of the data. 
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5.3 Results and discussions 

5.3.1 Descriptives of the smallholders 

The descriptive characteristics of variables used in modeling are presented in Table 5.1 

and Table 5.2. The study revealed a wide range of smallholders' CSAPs adoption rates in 

Western Kenya (Table 5.1). The adoption level of individual CSAPs ranged between 

30% for agroforestry to 78% for crop diversification. The findings indicate that the 

adoption of individual CSAPs widely varies among smallholder farmers. The results were 

consistent with Ogada et al. (2014), who reported a varied adoption rate of agricultural 

practices in Western Kenya. 

 

Table 5.1 Climate-smart agricultural practices adopted by smallholder farmers. 

CSA practices Description Mean Std Dev. 

Animal manure Dummy=1 if the household adopted 

animal manure, 0 otherwise 

0.32 0.27 

Soil water conservation  Dummy=1 if the household adopted soil 

water conservation, 0 otherwise 

0.65 0.48 

Agroforestry Dummy=1 if the household adopted 

agroforestry, 0 otherwise 

0.30 0.46 

Crop diversification Dummy=1 if the household adopted crop 

adjustments, 0 otherwise 

0.78 0.42 

Crop-livestock integration Dummy=1 if the household adopted crop 

livestock integration, 0 otherwise 

0.44 0.30 

 

The adoption intensity of CSAPs ranged between zero to five (Table 5.2). Though some 

farmers (2.7%) adopted all the five CSAPs, a few farmers (2%) did not utilize any of the 

practices. Approximately 98% of the smallholder farmers practiced at least one CSAP. 

The findings agreed with Ndiritu et al. (2014), Kpadonou et al. (2017), Sileshi et al. 

(2019), and Ehiakpor et al. (2021), who reported high adoption rates of at least one 

CSAP. However, the adoption rates and intensity widely varied across the specific 

practice. Most (80%) of the smallholder farmers adopted one to three CSAPs, and 15% 

implemented four of the five practices. Only 2.7% of the sampled farmers adopted all the 

five CSAPs. The findings implied a great potential to improve the adoption of agriculture 

practices for enhanced food and nutritional security, coping with climate change, 

reducing soil erosion, and uplifting economic gains among smallholder farmers. The 
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simultaneous adoption of CSAPs needs to be interwoven with socioeconomic, 

institutional, and biophysical characteristics to improve society's welfare. 

 

Table 5.2 Adoption intensity of climate-smart agriculture practices among smallholders. 

Intensity of adoption 

(Number of technologies) 

Frequency Percentage (%) 

0 6 2.00 

1 45 15.00 

2 105 35.00 

3 91 30.33 

4 45 15.00 

5 8 2.67 

Total 300 100 

 

The socioeconomic, institutional, and biophysical variables displayed the profile of the 

sampled respondents (Table 5.3). The results showed that 38% of the sampled household 

heads were male and 68% female. These results implied that most of the farming 

population in Siaya County were female. Additionally, most (86%) of the sampled 

household heads were literate. The literacy level implied that most smallholder farmers 

residing in Western Kenya could effectively comprehend new agricultural innovations. 

Results revealed that smallholders had an average age of 51.9 years. This is consistent 

with previous studies in Western Kenya of Mutoko et al. (2014) and Wetende et al. 

(2018), who found the sampled households' heads were still in the active age bracket. 

However, the population was beyond the youths' frame of 35 years and below, implying 

that youths were not actively participating in agricultural production. Additionally, 

smallholder farmers had an average family size of 5.78 members, an essential variable 

indicating farm labor availability. 

 

The findings demonstrated a low access to extension agents of 13% (Table 5.3). 

However, most sampled household heads received weather forecast information (86%) 

and perceived change in climate (96%). The smallholder farmers had small landholdings 

(1.23 acres) and tropical livestock units (3.35). Additionally, only a few household heads 

perceived their soil status as problematic, that is, 24% infertile soil and 6% persistent soil 

erosion. 
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Table 5.3 Descriptive statistics of the sampled households among smallholder farmers in Western Kenya 

Variable Description Mean Std Dev. 

Gender of the household head (hhh) Dummy=1 if male, 0 female 0.38 0.49 

Education status of the household head(hhh) Dummy=1 if attained formal education, 0 otherwise 0.86 0.35 

Age of the household head (hhh) Age of the household head in years 51.91 13.74 

Family size Number of family members 5.78 2.91 

Contact with extension agent Dummy= 1 if yes, 0 otherwise 0.13 0.34 

Access to weather information Dummy= 1 yes, 0 otherwise 0.84 0.37 

Arable land size Total arable land size in acres 1.23 0.90 

Owned livestock Total livestock unit# 3.35 3.83 

Perceived climate change  Dummy=1 yes, 0 otherwise 0.96 0.19 

Soil fertility Dummy=1 infertile, 0 fertile 0.24 0.43 

Persistent soil erosion Dummy=1 yes, 0 otherwise 0.06 0.24 

# Total livestock unit for cow, sheep, goat, and chicken calculated using a conversion of 0.7, 0.1,0.1, and 0.01 following 

Jahnke (1982).and Musafiri et al. (2020a). 
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5.3.2 The compliments and substitutes of climate-smart agricultural practices 

The likelihood ratio test (chi2 = 658.201, p < 0.0001) of the error terms of different 

CSAPs equations from the MVP model was significant at a 1% level of significance, thus 

rejecting the null hypothesis that the equations were independent (Table 5.4). The results 

indicated that the equations for adopting individual CSAP were interdependent. 

Therefore, alternative hypothesis of the interdependence between error terms of CSAPs 

was accepted. The results justified using the MVP model in analyzing the determinants of 

adopting the CSAPs. The findings showed both positive and negative correlation 

coefficients indicating both complements and substitutes between CSAPs. The findings 

were similar to Ndiritu et al. (2014), who reported complements and substitutes between 

sustainable intensification practices among smallholders in Kenya. The research 

established compliments between soil water conservation and animal manure, 

agroforestry and animal manure, crop diversification and soil water conservation, crop-

livestock integration, and crop diversification. The complements of CSAPs could be 

attributed to the desire to improve agricultural productivity, adapt to climate change, and 

enhance income (Oyetunde-Usman et al., 2021). The CSAPs used as substitutes among 

the smallholder farmers included crop diversification and animal manure, crop-livestock 

integration and soil water conservation, crop-livestock integration, and agroforestry. Crop 

diversification and crop-livestock integration involve agricultural intensification. To 

boost farming revenues, farmers may find it less economical to combine farming 

revenues with animal manure, agroforestry, and soil water conservation. 
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Table 5.4 Correlation coefficients of the climate-smart agricultural practices (estimation 

from multivariate probit model) 

CSA practice 

Coefficien

t 

Std. 

Err.  

p 

value 

Soil water conservation and animal manure (rho21) 0.127*** 0.095 0.008 

Agroforestry  and animal manure (rho31) 0.118** 0.098 0.048 

Crop diversification and animal manure (rho41) -0.122*** 0.104 0.003 

Crop-livestock integration and animal manure (rho51) -0.087 0.092 0.435 

Agroforestry  and soil water conservation (rho32) 0.028 0.103 0.786 

Crop diversification and soil water conservation (rho42) 0.474*** 0.090 <0.001 

Crop-livestock integration and soil water conservation 

(rho52) -0.124*** 0.096 0.001 

Crop diversification  and agroforestry (rho43) 0.044 0.107 0.682 

Crop-livestock integration and agroforestry (rho53) -0.173*** 0.089 0.001 

Crop-livestock integration and crop diversification (rho54) 0.178*** 0.100 0.003 

Likelihood ratio test of rho21 = rho31 = rho41 = rho51 = rho32 = rho42 = rho52 = rho43 

= rho53 = rho54 = 0: chi2(10) = 125.5427 Prob > chi2 = 0.0001 

** p<0.05 

***p<0.01 

 

5.3.3 Determinants of climate-smart agriculture practices adoption 

The study assessed factors that determined individual or simultaneous adoption of 

CSAPs. The Wald chi2 = 102.63, p=0.0001 was significant (Table 5.5), justifying the 

plausibility of MVP analysis. Therefore, the null hypothesis that CSAPs such as animal 

manure, soil water conservation, agroforestry, crop diversification, and crop-livestock 

integration were independent, was rejected. The results indicated that the practices were 

interdependent, and using the individual probit model produced biased estimates.  

 

The adoption of CSAPs is influenced by socioeconomic, institutional, farmer perceptions, 

and biophysical factors (Table 5.5). Household head's gender negatively influenced 

agroforestry adoption. The finding suggests that females had a higher propensity to adopt 

agroforestry than males. The negative prediction was against the previous literature that 

male dominates farming resources and could be attributed to female empowerment 

(Kiptot and Franzel, 2012; Oyetunde-Usman et al., 2021). Given that the dominant 

cropping enterprise in the study area is sorghum, female households' increased adoption 

of agroforestry could be attributed to the crop being referred to as a poor man's crop'. The 

finding agreed with Kiptot and Franzel (2012), who found that women highly practice 
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agroforestry with crops of little or no commercial value. Smallholder farming in Western 

Kenya is women-dominated (Table 5.3). Most agricultural empowerment programs target 

women (Diiro et al., 2018) thus enhancing good farming practices among female farmers. 

The findings underscore the responsibility of women in climate change adaptation and 

sustainable agriculture. 

 

The results revealed that the household head's education level positively determined 

animal manure adoption (Table 5.5). This implied that literate smallholder farmers had 

higher chances of applying animal manure in their farms than illiterate ones. The 

observation may be because the educated farmers may know the correct methods and 

amounts of animal manure application. The findings agreed with Kassie et al. (2015) and 

Kanyenji et al. (2020), who highlighted the importance of education in adopting animal 

manure. However, the findings contradicted Oyetunde-Usman et al. (2021), who found 

education determinant of organic manure adoption. 
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Table 5.5 Determinants of climate-smart agricultural practices adoption among smallholder farmers in Western Kenya 
Variable Multivariate probit estimates  Individual probit estimates 

 M 

Coeff. 

(S.E) 

S 

Coeff. 

(S.E) 

A 

Coeff. 

(S.E 

D 

Coeff. 

(S.E 

L 

Coeff. 

(S.E 

 M 

Coeff. 

(S.E) 

S 

Coeff. 

(S.E) 

A 

Coeff. 

(S.E 

D 

Coeff. 

(S.E 

L 

Coeff. 

(S.E 

Gender of the hhh -0.172 

(0.177) 

0.031 

(0.176) 

-

0.511*** 

(0.182) 

0.317 

(0.192) 

-0.248 

(0.170) 

 -0.166 

(0.177) 

0.013 

(0.177) 

-

0.502**

* 

(0.183) 

0.361* 

(0.197) 

-0.252 

(0.170) 

Education status hhh 0.555** 

(0.276) 

-0.407 

(0.279) 

0.120 

(0.276) 

-0.431 

(0.307) 

0.086 

(0.261) 

 0.549** 

(0.276) 

-0.389 

(0.279) 

0.128 

(0.276) 

-0.428 

(0.310) 

0.089 

(0.261) 

Age of the hhht 0.012* 

(0.006) 

0.000 

(0.006) 

-0.005 

(0.007) 

-0.003 

(0.007) 

0.005 

(0.006) 

 0.012* 

(0.006) 

0.000 

(0.006) 

-0.005 

(0.007) 

-0.003 

(0.007) 

0.005 

(0.006) 

Family size -0.046 

(0.030) 

0.035 

(0.029) 

-0.056* 

(0.030) 

0.043 

(0.033) 

0.001 

(0.028) 

 -0.046 

(0.030) 

0.036 

(0.030) 

-0.060** 

(0.031) 

0.042 

(0.033) 

0.002 

(0.028) 

Contact with extension agent -0.440* 

(0.250) 

0.715**

* 

(0.256) 

-0.257 

(0.246) 

1.094**

* 

(0.351) 

-0.194 

(0.225) 

 -0.450* 

(0.251) 

0.736**

* 

(0.257) 

-0.251 

(0.247) 

1.147**

* 

(0.361) 

-0.180 

(0.225) 

Access to weather 

information 

-0.308 

(0.215) 

-0.269 

(0.231) 

0.467* 

(0.243) 

-0.451* 

(0.267) 

0.234 

(0.216) 

 -0.311 

(0.216) 

-0.229 

(0.230) 

0.472* 

(0.246) 

-0.477* 

(0.269) 

0.224 

(0.216) 

Arable land -0.041 

(0.100) 

-0.005 

(0.096) 

0.145 

(0.098) 

-0.096 

(0.104) 

0.171* 

(0.096) 

 -0.039 

(0.099) 

-0.010 

(0.097) 

0.150 

(0.098) 

-0.109 

(0.104) 

0.167* 

(0.095) 

Livestock owned -0.018 

(0.022) 

0.023 

(0.021) 

0.013 

(0.021) 

-0.014 

(0.022) 

0.051** 

(0.021) 

 -0.018 

(0.022) 

0.020 

(0.021) 

0.014 

(0.021) 

-0.011 

(0.023) 

0.051*

* 

(0.021) 

Perceived climate change  0.838 

(0.550) 

-1.069* 

(0.581) 

0.852 

(0.562) 

-4.631 

(1.622) 

0.440 

(0.421) 

 0.834 

(0.549) 

-1.130* 

(0.587) 

0.971* 

(0.570) 

 - 0.477 

(0.418) 

Soil fertility 0.515**

* 

(0.181) 

-0.333* 

(0.184) 

-0.013 

(0.188) 

-0.339* 

(0.195) 

-0.223 

(0.183) 

 0.512**

* 

(0.186) 

-0.378** 

(0.190) 

0.064 

(0.194) 

-0.274 

(0.199) 

-0.227 

(0.184) 

Persistent soil erosion -0.210 

(0.334) 

1.429**

* 

(0.516) 

0.534* 

(0.322) 

0.123 

(0.345) 

-0.105 

(0.326) 

 -0.223 

(0.338) 

1.351**

* 

(0.500) 

0.586* 

(0.321) 

0.080 

(0.352) 

-0.082 

(0.324) 

Constant -1.741** 

(0.757) 

1.698** 

(0.770) 

-1.316* 

(0.794) 

6.077 

(2.623) 

-

1.300** 

(0.660) 

 -1.713** 

(0.755) 

1.645** 

(0.774) 

-1.303 

(0.799) 

1.699**

* 

(0.585) 

-

1.349*

* 

(0.659) 

Number of observations = 300 Log likelihood = -848.359 Wald chi2 (56) = 102.63, Prob>chi2 =0.0001, *p<0.1 **p<0.05 ***p<0.01, robust standard 

error in parenthesis, M = Animal manure, S = Soil water conservation, A = Agroforestry, D = crop diversification, L = crop livestock integration. 
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Household head's age positively predicted animal manure adoption. The findings 

suggested that the propensity to adopt animal manure increased with age. This could be 

attributed to the possibility that old farmers have evaluated the benefits of animal manure 

application over the long term. Further, the older farmers could have larger livestock 

herds compared to their young counterparts. The results corroborated with Oyetunde-

Usman et al. (2021), who found that adoption of animal manure was positively 

influenced by age. However, the findings contradict the hypothesis that old farmers are 

risk-sensitive and reluctant to adopt agricultural innovations (Macharia et al., 2014; 

Musafiri et al., 2020a). 

 

Family size negatively predicted agroforestry adoption. The findings implied that large 

families were less likely to adopt agroforestry. Family size is an important variable as it 

signifies the availability of labor to adopt an agricultural practice. The pessimistic 

prediction of family size on the adoption of agroforestry was unanticipated because large 

family sizes could be in a position to supply labor. After all, agroforestry is a labor-

intensive technology. The results could be due to the probability of small family sizes 

using hired labor in implementing agricultural innovations. The findings corroborated 

with Kpadonou et al. (2017) and Ehiakpor et al. (2021), who reported that family size 

negatively determines agricultural practices adoption. However, the findings disagreed 

with Bryan et al. (2013), Kassie et al. (2015), and Mwaura et al. (2021), who found that 

family size positively influenced agricultural technologies utilization. 

 

The findings revealed that contact with extension agents positively influenced soil water 

conservation and crop diversification, while animal manure was negative. Extension 

agents help smallholder gain more insights into the implementation of agricultural 

technologies (Syahza, 2021). The findings could be linked to the need for technical 

know-how in implementing soil water conservation practices and crop diversification 

instead of animal manure, one of the traditional practices. The extension agents' contacts 

could have played a central role in equipping the farmers with practical skills of soil 

water conservation implementation and selecting crop diversification practices to 

improve agricultural productivity and adapt to climate change. The findings agreed with 
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Anang et al. (2020) and Emmanuel et al. (2016), who underscored extension services 

implication in enhancing agricultural interventions adoption. 

 

Access to weather forecast information positively influenced the adoption of agroforestry 

and negatively affected crop diversification. The findings implied that receiving weather 

forecast information accelerated the propensity to adopt agroforestry while decreasing the 

likelihood of implementing crop diversification. The receipt of weather forecast 

information help smallholder farmers choose CSAPs for climate change mitigation. The 

findings could be attributed to smallholders' need to implement long-term strategies for 

climate change adaptation, including agroforestry, instead of the short-term ones among 

smallholder farmers who received weather forecast information. Adopting agroforestry 

trees among smallholder farmers who received weather forecast information could be 

attributed to the multiple anticipated benefits, including improved soil carbon 

sequestration, food security, income, provision of shade and timber (Qazlbash et al., 

2021). 

 

Arable land size exhibited a significant positive influence on adopting crop-livestock 

integration. The findings suggested an increased likelihood of adopting crop-livestock 

integration with the increase of arable land size. The increased adoption of crop-livestock 

integration could be due to the need for larger farm sizes for livestock keeping and crop 

farming. The larger land size could also grow folder crops that could be used as animal 

feeds. The result could be attributed to smallholder farmers apportioning their farms to 

different technologies with more extensive farm holdings. The findings were confirmed 

by Darkwah et al. (2019), Ehiakpor et al. (2021) and Thinda et al. (2020). Notably, 

smallholder farmers with large landholdings benefit from the trade-off arising from crop-

livestock integration, such as using the crop residue as animal feed and the livestock's 

application for soil fertility amelioration. 

 

The TLU positively determined crop-livestock integration adoption. The findings 

suggested that the propensity of crop-livestock integration adoption increased with an 

increase in TLUs. The influence of TLU on crop-livestock integration could be attributed 
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to the greater need for animal feeds among households with greater TLU, thus integrating 

crops and livestock to utilize the crop residues as animal feeds. Additionally, the manure 

produced from the livestock could also be incorporated into the agricultural land, thus 

enhancing soil fertility. The findings were consistent with Kanyenji et al. (2020) and 

Ndeke et al. (2021), who found that TLU was a significant positive determinant of 

improved technologies adoption. 

 

Farmers' perceptions of climate change positively explained soil water conservation 

adoption. The findings implied that household heads who perceived climate change had a 

higher likelihood of adopting soil water conservation practices. The increased adoption 

among smallholders who perceived climate change can be attributed to the anticipated 

reduction in food production. Therefore, smallholders' awareness of climate change could 

have motivated them to implement CSAPs. The findings were in line with Joshi et al. 

(2017) and Ochieng et al. (2017). However, smallholder farmers could fail to adopt 

sustainable agricultural practices even if they perceive climate change due to the high 

investment cost required (Bryan et al., 2013). 

 

Soil fertility significantly influenced animal manure adoption but negatively affected soil 

water conservation and crop diversification adoption. This implied that smallholders 

experiencing poor soil fertility had a higher likelihood of adopting animal manure and a 

lower propensity to utilize soil water conservation and crop diversification practices. The 

finding could be attributed to improving soil fertility by using animal manure to achieve 

food security and increase income. Further, the smallholder farmers can anticipate crop 

failure or lower yields from infertile plots, thus failing to implement high investment 

practices. Soil water conservation and crop diversification are not directly linked to soil 

fertility improvement. Therefore, smallholder farmers could find it suitable to implement 

animal manure for soil fertility amendment. The findings were consistent with Fosu-

Mensah et al. (2012) and Mulwa et al. (2017), who reported that smallholders with fertile 

plots were less likely to utilize agricultural innovations. This was attributed to reduced 

chances of crop failure in fertile fields.  
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Persistent soil erosion positively determined agroforestry and soil water conservation 

adoption. This suggested that smallholders who perceived continued soil erosion had a 

higher propensity to adopt agroforestry and soil water conservation practices. The 

findings could be endorsed to control soil erosion through agroforestry and soil water 

conservation structures. Agroforestry and soil water conservation practices reduce soil 

erosion and improve soil water retention, leading to higher crop yields and income 

(Batjes, 2014; Sova, 2017). Additionally, smallholder farmers who perceived persistent 

soil erosion were more likely to experience crop failure, thus investing in CSAPs. 

 

The discussion emphasized the MPV model results. The study’s findings were compared 

with the individual probit model. The findings were pretty similar from individual and 

MVP models regarding coefficients, significance, and sign. However, the MVP model 

was more reliable than the individual probit as it explained the multiple CSAPs 

adoptions. 

 

5.3.4 Determinants of climate-smart agriculture practices intensity 

Adoption intensity is imperative among smallholder farmers to improve crop yields and 

income and mitigate climate change impacts (Ndiritu et al., 2014; Kpadonou et al., 2017; 

Oyetunde-Usman et al., 2021). The results revealed that the LR Chi2 = 125.05, Prob > 

chi2 = 0.000 was significant, suggesting that the ordered probit model was credible. 

 

The household head's gender negatively predicted CSAPs adoption intensity (Table 5.6). 

The results suggested that female-headed smallholders had a higher propensity to 

intensify agricultural practices than male-headed households. The findings contradict the 

notion that male-headed strengthen agricultural practices since they control production 

resources such as labor and land. The results conformed with the simultaneous adoption 

of CSAPs (Table 5.5). These findings could be endorsed to the availability of women 

empowerment programs in the area (Diiro et al., 2018). The results contradicted 

Oyetunde-Usman et al. (2021), who reported that male-headed households intensified 

sustainable agricultural practices and attributed it to poor access to complementary 

inputs. 
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Table 5.6 Factors influencing the number of climate-smart agricultural practices adopted 

using an ordered probit model 

Variables Coefficient Std Error p-value 

Gender of the hhh -0.340** 0.144 0.018 

Education status of hhh -0.082 0.220 0.710 

Age of the hhh 0.000 0.005 0.948 

Family size -0.007 0.023 0.752 

Contact with extension agent 0.122 0.188 0.517 

Access to weather information 0.184 0.180 0.308 

Arable land size 0.142** 0.078 0.068 

Livestock owned 0.040** 0.017 0.018 

Perceived climate change  0.155 0.338 0.648 

Soil fertility -0.260* 0.150 0.083 

Persistent soil erosion 0.669*** 0.270 0.003 

Number of observations = 300   LR Chi2 (11)  = 125.05 Prob > chi2 = 0.000  

Log likelihood  = -348.345 Pseudo R2 = 0.0347   

*p<0.1 **p<0.05 ***p<0.01 

 

Arable land positively influences CSAPs' adoption intensity. The findings suggested that 

the propensity of adopting multiple CSAPs among smallholders increased with arable 

land size. The results corroborated with section 3.3, thus highlighting the importance of 

landholding in agricultural intensification. On the other hand, livestock ownership 

significantly influenced CSAPs intensification, thus substantiating results reported in 

Table 5.5 and highlighting the importance of livestock in agricultural intensification. The 

observation is that livestock dropping was used as the source of manure. The findings 

align with Ehiakpor et al. (2021) who established that livestock ownership significantly 

influenced sustainable agricultural practices adoption intensity. This was attributed to the 

probability of selling livestock to purchase farm inputs, including agrochemicals, 

fertilizers, and improved seeds. 

 

The negative and significant prediction of soil fertility on adoption intensity implied that 

smallholder farmers who perceived infertile soil were less likely to intensify agricultural 

practices. Smallholder farmers under low soil fertility status are more likely to experience 

adverse effects of climate change, such as reduced crop yields. Poor soil fertility is a 

considerable drawback to agricultural production in SSA (Kiboi et al., 2018; Vanlauwe et 
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al., 2015). Low soil fertility execrates the effects of climate change. Therefore, the 

smallholder farmers under deprived soil fertility intensify agricultural production to 

improve crop yields and lower crop failure risks. Notably, smallholder farmers 

experiencing good soil fertility anticipate fewer climate-related stocks, such as crop 

failure, thus intensifying their agricultural production (Mulwa et al., 2017) 

 

Persistent soil erosion significantly influenced CSAPs adoption intensity, suggesting that 

smallholder farmers who perceived constant soil erosion had a higher propensity to 

intensify CSAPs. This is laudable because the smallholder farmers in erosion-prone areas 

could boost CSAPs adoption to reduce erosion compared with those in less erosion-prone 

areas. This is probably because CSAPs such as soil water conservation and agroforestry 

controls soil erosion. Hence, the joint adoption of CSAPs could reduce soil erosion 

prevalence, thus increasing crop yields and income. Therefore, the need to prioritize 

erosion control methods in agricultural fields to minimize (Irianti et al., 2020). 

 

5.4 Conclusions 

The adoption level and intensity of CSAPs varied because of differences in the 

socioeconomic, institution, and biophysical factors across sampled households. The study 

established positive and negative correlation coefficients between CSAPs, indicating that 

they acted as complements and substitutes. The critical determinants of multiple 

adoptions of CSAPs were household head's gender, education, age, family size, contact 

with extension agents, access to weather information, arable land, livestock owned, 

perceived climate change, infertile soil, and persistent soil erosion. The findings revealed 

that gender of the respondent, arable land, livestock owned, soil fertility, and continued 

soil erosion were crucial determinants of CSAPs adoption intensity. Female-headed 

households, farmers' asset base, and farm factors influenced smallholder farmers' 

adaptive capacity. 

 

Against the above background, the study recommends that policymakers design pro-

farmers policies that promote adopting multiple agricultural practices to complement 

each other in mitigating the adverse impacts of climate change. Given that numerous 
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factors determine the adoption of various CSAPs, policymakers should innovatively 

consider smallholders' perceptions of soil fertility, soil erosion, and climate change in 

optimizing CSAPs adoption. Therefore, the policymakers should target smallholder 

farmers who perceive poor soil fertility, high soil erosion, and climate change to enhance 

the adoption of CSAPs. In upscaling the adoption of CSAPs, governments and 

stakeholders should promote extension services and agricultural training for improved 

capacity building among smallholder farmers. 
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CHAPTER SIX 

SMALLHOLDERS' ADAPTATION TO CLIMATE CHANGE IN WESTERN 

KENYA: CONSIDERING SOCIOECONOMIC, INSTITUTIONAL AND 

BIOPHYSICAL DETERMINANTS3 

Abstract 

Climate change has stimulated detrimental threats to the global agricultural ecosystems. 

The study objective was to assess the determinants of climate change adaptation among 

smallholder sorghum farmers in Siaya County. Specifically, the study investigated i) the 

climate change perceptions, drivers, effects, and barriers, and ii) determinants of climate 

change adaptation among smallholder farmers in Western Kenya. The study interviewed 

300 households using a semi-structured face-to-face interview schedule. The study 

employed two indices, i.e., weighted average and problem confrontation index, and two 

regression models, i.e., Binary logistic and Poisson regression. The findings indicated 

that smallholder farmers were aware of climate change, its drivers, and its effects. The 

main barriers to climate change adaptation were unpredictable weather patterns, financial 

constraints, and limited agricultural training. Group membership and site negatively 

influenced climate change adaptation. Household head's education, experience, 

remittance receipt, access to credit on inputs, climate change perception, access to 

weather information, and cultivated farm size positively influenced climate change 

adaptation. The findings underscore the importance of tailoring smallholder farmers' 

dynamics in climate change policies to enhance adaptation. The negative prediction of 

group membership needs to be emphasized to prevent demotivating farmers from joining 

community associations. The study highlights the need to incorporate farmers' 

perceptions of climate change, climate awareness creation, and monetary assistance to 

enhance climate change resilience among smallholder farmers. 

 

Keywords: Sustainable agriculture; Farmers' perceptions; Adaptation strategies; Poisson 

regression 

                                                 
3 Musafiri, C.M., Kiboi, M., Macharia, J., Ng'etich, O.K., Kosgei, D.K., Mulianga, B., Okoti, M. & Ngetich, F.K. (2022). 

Smallholders’ adaptation to climate change in Western Kenya: Considering socioeconomic, institutional and biophysical 
determinants. Environmental Challenges, 7, p.100489. https://doi.org/10.1016/j.envc.2022.100489 

https://doi.org/10.1016/j.envc.2022.100489
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6.1 Introduction 

Climate change coupled with the demand to feed the ever-growing population is a 

foremost challenge to global agricultural ecosystems and economic development (IPCC, 

2014). The global agricultural ecosystems are significantly contingent on climate and 

susceptible to climate change (Kim, 2008). Agricultural productivity could be adversely 

impacted by the current and future projected changes in climate (Rudel et al., 2019). The 

world population is estimated to upsurge from 7.7 to 9.7 billion by 2050 (United Nations, 

2019). The demand to feed the current and future projected population has triggered 

intensive agricultural transformation, including deforestation and agrochemicals' use for 

agricultural expansion, increasing anthropogenic greenhouse gas emissions, thus 

aggravating climate change (Arora, 2019). The impacts of climate change could be more 

pronounced in developing countries, especially sub-Saharan Africa, where smallholders' 

rain-fed agriculture is the principal source of livelihood (Cooper &. Coe, 2011; Abrams, 

2018). Given the impacts of climate change on smallholder farming systems, assessing 

farmers' perceptions of drivers and climate change impacts. This could influence efficient 

and effective climate change adaptation and mitigation targeting, smallholder farmers, 

thus enhancing food security. 

 

In Kenya, the agricultural sector is the mainstay of the economy, contributing about 51% 

of the Gross Domestic Product (GDP) and providing income to approximately 80% of the 

population (United Nations Environment Programme, 2015; World Bank Group, 2018). 

The Kenyan smallholder farming systems dominate the agricultural sector, accounting for 

approximately 75% of the agricultural production and over 75% of the employment 

(Salami  et al., 2010; World Bank & International Center for Tropical Agriculture 

(CIAT), (2015). However, these smallholder farming systems are faced with a myriad of 

challenges, including climate change (Bryan et al., 2012; Mugi-Ngenga  et al., 2016; 

Wetende  et al., 2018).The increased effects of climate change among smallholder 

farmers call for enhanced adoption of adaptation and mitigation measures that result in 

improved food security (Ndiritu  et al., 2014; Kimaru-Muchai et al., 2020; Musafiri  et 

al., 2020a). Understanding smallholder farmers' perceptions of climate change, including 
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its indicators, drivers, impacts, and barriers, is pertinent to enhance climate change 

adaptation. 

 

Smallholder perceptions and awareness of climate change is the main stage in embracing 

adaptation practices (Masud et al., 2017). According to Tesfahunegn et al. (2016), 

farmers' awareness of climate change indicators and drivers is appropriate for selecting 

adaptation practices. Likewise, smallholder farmers' understanding of the impacts of 

climate change is essential in implementing adaptation practices (Kibue et al., 2016; 

Karienye & Macharia, 2020). The noticeable impacts of climate change in Kenya include 

reduced agricultural productivity, crop damage, reduced livestock production, and loss of 

property or life (Herrero et al., 2010; Parry et al., 2012; Wetende et ala., 2018). However, 

climate change perceptions, its drivers, and impacts vary with locations and socio-

demographic characteristics (Toan et al., 2014; Haq & Ahmed, 2017). Hence, the need to 

contextualize climate change perceptions, drivers, and impacts among smallholder 

farmers in Western Kenya. 

 

Smallholder farmers face various problems that restrain them from adopting climate 

change adaptation practices. As a result, the smallholder farmers continue experiencing 

various challenges, including low agricultural production (food and pastures), poor 

infrastructure, population displacement, extreme poverty, overall food insecurity, and 

tough livelihoods (Karienye & Macharia, 2020). In Kenya, National Climate Change 

Response Strategy (NCCRS) was established to address the challenges of climate change 

(Government of Kenya, 2010). To mitigate the impact of climate change in Kenyan 

socioeconomic development, the NCCSR developed a comprehensive and concerted suite 

of long-term strategies. Previous studies have pointed out poverty, unpredicted weather 

patterns, limited climate change information, high cost of inputs, funds, and high 

implementation costs as the main barriers of climate change adaptation (De Jalón et al., 

2015; Masud et al., 2017; Ochieng et al., 2017; Khan  et al., 2020). Understanding 

climate change barriers necessary for implementing adaptation policies among 

smallholder farmers – consequently, the need to study climate change barriers among 

smallholder farmers in Western Kenya. 
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Different socioeconomic, institutional, and biophysical factors determine farmers' 

adaptation practices. Previous studies detailed various socioeconomic characteristics such 

as gender, education, experience, occupation, income, and farm size, which influenced 

adaptation practices (Alemayehu & Bewket, 2017; Zulfiqar & Thapa, 2018; Ojo & 

Baiyegunhi, 2020; Qazlbash et al., 2020). Both institutional and biophysical factors, 

including credit access, agricultural training, information access, and group membership, 

have widely been documented to influence the adoption of adaptive practices (Kpadonou 

et al., 2017; Archie et al., 2018; Moroda et al., 2018; Dapilah  et al., 2021; Kimaru-

Muchai et al., 2020).This highlights the significance of diverse determinants 

consideration in designing and promoting climate change adaptation among smallholder 

farmers. 

 

Although Western Kenya is incredibly vulnerable to the effects of the changing climate, 

scientific studies on climate change are scanty. The study objective was to assess the 

determinants of climate change adaptation among smallholder sorghum farmers in Siaya 

County. Specifically, the study aimed to; i) determine the climate change perceptions, 

drivers, and consequences, and ii) assess barriers and determinants of climate change 

adaptation among smallholder farmers in Western Kenya. The following hypotheses 

guided the study i) smallholder farmers were aware of climate change, its drivers, effects, 

and barriers, and ii) socioeconomic, biophysical, and institutional characteristics of the 

smallholder farmers influence climate change adaptation in Western Kenya. 
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6.2 Materials and methods 

6.2.1 Study area description 

The study was conducted in the Alego-Usonga and Ugenya sub-Counties of Siaya 

County at an altitude between 1140 and 1500 m above sea level in Western Kenya 

(Figure 6.1). According to the Kenya National Bureau of Statistics (KNBS), (2019), 

Alego Usonga and Ugenya sub-Counties recorded 224, 343, and 134 354 persons, a 

population density of 375 and 415 persons per km2, respectively. The sub-Counties have 

six agro-ecological zones, including low midlands (LM1, LM2, LM3, LM4, and LM5) 

and Upper Midlands (UM1) (Jaetzold et al., 2010). The study area experiences a bi-

modal rainfall where long rain seasons are experienced in March through June and short 

rain seasons between September and December. Annual long-term rainfall amounts vary 

considerably across the study area from 800 to 2000 mm (Jaetzold et al., 2010). The 

climatic conditions range from semi-humid to semi-arid. The study area is characterized 

by high food insecurity and poverty (MoALF, 2016). Long-term average temperature 

ranges between 20.9 and 22.3 °C. The predominant soil type in the area is Ferrasol, with 

moderate to low soil fertility. This implies that the soil cannot sustainably feed the local 

population without applying external amendments such as organic and inorganic 

fertilizers. 
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Figure 6.1 Map of the study area. Inset (A) shows the location of Siaya County on the 

Kenyan map, Inset (B) shows the location of Alego Usonga and Ugenya in Siaya county, 

and (C) shows the sampled household distribution across the study area. 

 

The smallholders' land size is relatively smallscale at approximately 1.02 ha. Crop 

farming, fishing, and livestock keeping are the primary agricultural economic activities in 

the study area (MoALF, 2016). The primary food crops grown in the area include maize 

(Zea mays), beans (Phaseolus vulgaris), sorghum (Sorghum bicolor), millet (Panicum 

miliaceum), cowpeas (Vigna unguiculata), sweet potatoes (Ipomoea batatas), and 

groundnuts (Arachis hypogaea), while the main cash crops include; cotton (Gossypium 

barbadense), rice (Oryza sativa), and sugarcane (Saccharum officinarum). The majority 
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of the farmers are rain-fed agriculture dependent, non-mechanized, and could adversely 

be affected by the vagaries of climate change. The main livestock reared in the study area 

includes cattle, goats, sheep, poultry, donkeys, and rabbits. The study area is characterized 

by a low livestock density of approximately 2.07 tlu per household (Kassie et al., 2014). The 

residents depend on Lake Victoria and Lake Kanyaboli for fishing. 

 

6.2.2 Sampling and data collection 

The study employed a cross-section survey design and multi-stage sampling procedure to 

collect data from 300 household heads. First, purposively, selected Siaya County and the 

sub-Counties were sampled due to previous studies on climate change's impacts 

(MoALF, 2016; Wetende  et ala., 2018). Secondly, total sampling was implemented to 

collect climate change data from all the ten wards in the study area. Thirdly, a 

proportionate to size sampling procedure was utilized to determine the number of 

households sampled in each ward. As a result, this study interviewed 181 and 119 

households from Alego Usonga and Ugenya sub-Counties, respectively. Finally, a simple 

random sampling procedure identified specific households sampled in each ward. The 

study relied on a sampling frame from the respective ward agricultural officer.  

 

The sample size for empirical data collection was calculated using Eq. 6.1 as described 

by Cochran (2007). 

 

 

) 

 

Where: n = Sample size, z = z value (e.g. 1.96 for 95% confidence level), p = probability 

of picking a choice, expressed as decimal (0.5), q = 1-p and E = 5.65 % allowable error, 

expressed as decimal (0.0565). Therefore, a sample size of 300 smallholder farmers was 

selected. 
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A semi-structured face-to-face interview schedule was used during data collection. The 

interview schedule was divided into three categories – the first category comprised 

climate change perceptions questions. First, a farmer was asked to define climate change. 

This was a primary question to reveal smallholder farmers' understanding and awareness 

of climate change. To answer the study objective, smallholder farmers were informed of 

the actual definition of climate change, i.e., long-term (30 years) changes in average 

weather patterns. This was followed by closed and open-ended questions such as whether 

the farmer perceived change in climate, brainstorming on the indicators and drivers of 

climate change, and enumerating the effects of climate change. The second category was 

on barriers and adaptation to climate change. Based on literature the study developed 

questions on barriers to adopting climate change adaptation practices (Ochieng et al., 

2017; Talanow et al., 2021) The respondents were asked to select the practice(s) they had 

adopted and using a Four-Likert scale (not important (0), less important (1), moderate 

important (2), and high important (3) to rank the importance of each of the adaptation 

practice (Masud et al., 2017) to determine the importance of adopting various climate 

change adaptation practices. Similarly, a four a Likert scale (no problem (0), less problem 

(1), moderate problem (2), and high problem (3) was used to rank the barriers of climate 

change adaptation. The third category had questions on household socioeconomic 

characteristics, including household heads', institutional, and farm variables. The 

questions were digitized in Open Data Kit (ODK) mobile App for pre-testing. After pre-

testing, the interview schedule was reviewed and used in the empirical data collection. 

 

Five enumerators were recruited based on their ability to speak both English and local 

dialect languages. This ensured they could comprehend the different questions and 

explain them in the local language to the respondents. To improve the quality of the 

survey, capacity building was done among the selected enumerators through training on 

question interpretation and use of the ODK mobile App. The data was collected under 

close supervision. 
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6.2.3 Variable description 

The study had two dependent variables i) Adoption level, a dichotomous variable where 1 

is the farmer had adopted at least one adaptation practice and 0 otherwise, and ii) 

adoption intensity that is a count variable indicating the number of adaptation practices 

adopted by the farmer. The independent variables were selected based on literature 

background and characteristics of the sampled households (Ochieng et al., 2017; Musafiri 

et al., 2020a; Ehiakpor et al., 2021). Table 6.1 shows the salient dependent and 

independent variables in Table 6.1. 
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Table 6.1 Description of variables used in the study 

Variable Description Code Sign 

Dependent variables    

Adoption level Binary: 1 if a farmer adopted at least 1 adaptation practice, 0 if 

otherwise 

  

Adoption intensity Count: The number of adaptation practice adopted by a farmer   

Independent variables    

Gender of the household head Binary: 1 if the household head was a male, 0 if female Gend ± 

Education of the household head Binary: 1 if the farmer had attained formal education, 0 if 

otherwise 

Educ + 

Household head size Continuous: The number of dependents in the household H.size + 

Main occupation of the household 

size 

Binary: 1 if the household head main occupation was 

agriculture, 0 if otherwise 

Occp + 

Farming experience of the household 

head 

Continuous: duration the farmer has been in farming measured 

in years 

Exp + 

Hired labour Binary: 1 if the farmer used hired labour, 0 if otherwise Lab + 

Remittance receipt Binary: 1 if the farmer received remittance, 0 if otherwise Rem + 

Group membership Binary: 1 if farmer was a member of a community organization, 

0 if otherwise 

Grp + 

Inputs credit access Binary: 1 if the farmer had received inputs credit, 0 if otherwise Cred + 

Weather information access Binary: 1 if the farmers had received weather information, 0 if 

otherwise 

Info + 

Total cultivated land size Continuous: The total cultivated land size in acres Land size ± 

Farmers' perceptions of climate 

change 

Binary: 1 if farmer perceived change in climate, 0 if otherwise Perc + 

Total Livestock Unit  Continuous: The total livestock units TLU. ± 

Ugenya sub-County Binary: 1 if farmer sampled from Ugenya, 0 if otherwise Ugenya ± 

Alego Usonga sub-County Binary: 1 if farmer sampled from Alego Usonga, 0 if otherwise Alego ± 
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6.2.4 Statistical analysis 

The data were analyzed using STATA 15.0 software. Before statistical analysis, data 

cleaning, coding, and transformations were performed. Tropical livestock unit (TLU) for 

samllholder farming household was calculated following Jahnke (1982) of cattle (0.7), 

sheep and goat (0.1), pig (0.2), chicken (0.01), and rabbit (0.02). The study employed 

descriptive statistics including mean and standard error, t-test. Further, Pearson's 

correlation, binary logistic regression, and Poisson regression analysis were implemented. 

 

The constructs (18 for the importance of adopting various climate change adaptation 

practices and 15 for barriers of climate change adaptation) were subjected to Cronbach's 

alpha test (Cronbach, 1951).The constructs for the importance of adopting various 

climate change adaptation practices had a Cronbach's alpha coefficient of 0.80 and 0.86 

for barriers of climate change adaptation that was greater than 0.7 (Bonett & Wright, 

2015). Hence, all the constructs were reliable for the climate change adaptation analysis. 

To analyze for weighted average index (WAI) and problem confrontation index (PCI), 

the study adopted research by Masud et al. (2017) as described in equations 6.2 and 6.3. 

 

 

 

Where WAI is the weighted average index, ni is no important, li is less important, mi is 

moderately important, hi is highly important.  

 

 

 

Where PCI is problem confrontation index, np is no problem, lp is less problem, mp is a 

moderate problem, and hp is a high problem, and 0, 1, 2, and 3 is the frequency under 

each category ie., np, lp, mp, and hp.  
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A binary logistic regression model was used to estimate the likelihood of independent 

variables on adoption level similar to Mango et al. (2017), Asfaw and Neka (2017), and 

Haq & Ahmed (2017). The binary logistic regression model helps determine the effects 

of several independent variables on a dichotomous dependent variable. Before binary 

logistic regression analysis, model's credibility was tested using the correlation 

coefficients from the pair-wise correlation of independent variables and the Variance 

Inflation Factor from the multicollinearity test. The Pearson correlation analysis revealed 

correlation coefficients ≤ 0.32. The multicollinearity test revealed a variance inflation 

factor (VIF) that ranged from 1.23 to 1.48. Since the correlation coefficients were less 

than 0.5 and VIF less than 10, the independent variables were not correlated and could be 

used in the regression analysis. The binary logistic regression equation was as described 

in equation 6.4. 

 

 

 

Where p/(1-p) is the odd ratio, p is the probability of adopting at least one adaptation 

practice, i-p is the probability of the household not adopting the adaptation  practice, B0 is 

the intercept, B1, B2 … and Bn are regression coefficients while X1, X2 and … and Xn are 

the independent variables. The odd ratio explained the relationship between the 

independent variable(s) and adoption level ie., an odd ratio greater than 1 showed a 

positive relationship, and less than 1 indicated a negative relationship (Field, 2009). 

 

The number of adaptation practices adopted by individual smallholder farmers is a 

discrete non-negative integer count variable with a Poisson distribution. The number of 

practices adopted by each smallholder farmer were defined as adoption intensity. Poisson 

regression model assumes equi-dispersion, i.e., variance equals to mean (Greene, 1997). 

Prior to Poisson regression, overdispersion was tested using Deviance and Pearson 

goodness-of-fit since it causes the standard deviation to exceed the mean (Cox et al., 

2009). The deviance goodness-of-fit of 86.137 with pro>chi2(279) =1.000 and Pearson 

goodness-of-fit 89.765 with pro>chi2(279) =1.000. Both Deviance and Pearson goodness-
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of-fit were insignificant. This implied that the adoption intensity data was not 

overdispersed and had no excessive zeros, thus reliable for Poisson regression. The study 

utilized Poisson regression model as described by Nkegbe and Shankar (2014). 

 

 

 

Where Yi is the adoption intensity, λi = E(yi|xi) = Var(yi|xi) and the mean is usually 

defined λi=exp(xiβ) where xi is a vector of characteristics specific to household i, and β is 

a vector of unknown parameters to be estimated. Binary logistic and Poisson regression 

analysis were subjected to marginal effects. The marginal effects describe the expected 

change in dependent variables due to a unit change of an independent variable (Cameron 

& Trivedi , 2013; Moroda et al., 2018). 
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6.3 Results and Discussion 

6.3.1 Descriptive characteristics sampled households 

The findings revealed that 94% (282 of 300 sampled households) had adopted at least one 

adaption practice (Table 6.2). Adopters had significantly higher (87%) formal education 

than non-adopters (67%). Adopters were significantly (p<0.01) more experienced in 

agricultural farming than non-adopters. Significantly higher numbers of adopters (97%) 

perceived climate change than non-adopters (72%).  

 

Table 6.2 Descriptive characteristics the sampled smallholder farmers in Siaya County 

Variable Pooled (p)   Adopters (a)   Non-adopters (n)  Diff (a-n) 

 Mean SE   Mean SE   Mean SE    

Gend 0.38 0.03   0.39 0.03   0.22 0.10  0.17 

Educ 0.86 0.02   0.87 0.02   0.67 0.11  0.21* 

H.size 5.78 0.17   5.78 0.17   5.67 0.79  0.12 

Occp 0.86 0.02   0.86 0.02   0.83 0.09  0.02 

Exp 22.56 0.84   23.16 0.85   13.11 3.37  10.05** 

Lab 0.48 0.03   0.49 0.03   0.39 0.12  0.10 

Rem 0.34 0.03   0.36 0.03   0.17 0.09  0.19 

Grp 0.19 0.02   0.19 0.02   0.33 0.11  -0.15 

Cred  0.07 0.02   0.07 0.02   0.05 0.06  0.01 

Info  0.84 0.02   0.84 0.02   0.77 0.10  0.07 

L. size 1.23 0.05   1.24 0.92   1.03 0.65  0.22 

Perc 0.96 0.01   0.98 0.01   0.72 0.11  0.26** 

TLU 3.35 0.22   3.36 0.23   3.09 0.58  0.27 

Ugenya 0.40 0.03   0.37 0.03   0.89 0.08  -0.52** 

Alego 0.60 0.03   0.63 0.03   0.11 0.08  0.52** 

*, ** significant at 5 and 1 %, SE is the standard error of the mean 

 

6.3.2 Farmers' understanding and perceptions of local climate change 

Majority of the smallholder farming households perceived changes across different 

indicators of climate change (Figure 6.2). The change ranged between 74% (flooding 

frequency) to 99% (temperature). Regarding the sign of change, majority of the 

smallholders farming households perceived that the climate was changing towards the 

negative including decrease in rainfall frequency (82%), length of cropping calender 

(95%), and rainfall amount (96%), and an increase in flooding frequency (63%), drought 

frequency (82%) and temperature (99%). The findings suggested that smallholder 
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farming households understood the indicators of climate change. The findings were 

similar to recent studies by Mairura et al. (2021) in the Central Highlands of Kenya and 

Tesfahunegn et al. (2016) in northern Ethiopia. The findings implied that the smallholder 

farming households understood the indicators of climate change and could adopt different 

adaptation strategies. 

 

The study revealed that deforestation (79%) was the main driver of climate change (Table 

6.3). Smallholder farmers' perceptions of other drivers of climate change were low such 

as environmental pollution (mainly charcoal burning, 25%), industrialization and 

agrochemicals (13%), mining (4%), overstocking (4%), poor farming methods (3%) and 

spiritual beliefs (2%) (Table 6.3). However, 16% of the farmers were unaware of the 

drivers of climate change.  
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Figure 6.2 Smallholders understanding of climate change indicators a) perceived change 

in climate indicator, b) perceived direction of change 
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Table 6.3 Farmers' perception on the drivers of climate change 

Drivers of climate change  Frequency Per cent (%) 

Deforestation 236 79 

Environmental pollution  76 25 

Farmer unaware of drivers of climate change 47 16 

Industrialization/ agrochemicals 38 13 

Mining 11 4 

Overstocking 11 4 

Poor farming methods 8 3 

Spiritual beliefs 7 2 

N= 300, A farmer could have enumerated various climate change drivers 

 

Smallholder farmers' perception of climate change is pertinent in selecting adaptation 

practices (Gbetibouo, 2009; Mugi-Ngenga  et al., 2016). Smallholder farmers' cognizance 

of changing climate acts as a baseline for decision-making on adaptation (Masud et al., 

2017). The study revealed a high proportion (96%) of sampled households perceived 

change in the climate. This implied that smallholder farmers were aware of the changing 

climate. The findings were consistent with studies of Bryan et al. (2013), Tesfahunegn et 

al. (2016), and Alam et al. (2017), who reported a similar trend of climate change 

perception in Kenya, Ethiopia, and Bangladesh, respectively.  

 

Understanding of climate change indicators and drivers among smallholder farmers is 

essential in improving adaptation. The findings imply that smallholder farmers in 

Western Kenya were aware of the drivers of climate change. These results were in 

agreement with the findings of previous studies that found deforestation as a main driver 

of climate change (Tesfahunegn et al., 2016; Yamba et al., 2019; Doggart et al., 2020). 

Further, smallholder farming households perceived environmental pollution particularly 

through charcoal burning, industrialization and agrochemicals as important drivers of 

climate change. These drivers are reported to increase carbon dioxide (CO2) emissions 

(Ciais et al., 2014). Carbon dioxide emission is a critical agent of global warming and 

climate change (Fahey et al., 2017; Macharia et al., 2020; Musafiri et al., 2020b). 
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6.3.3 Farmers' perception of climate change effects 

Resultsrevealed reduced crop productivity (53%), crop failure (28 %), and increased food 

insecurity (24%) were the main climate change impacts (Table 6.4). The findings showed 

low proportion of farmers (between 7 and 16 per cent) perceived property destruction/ 

displacement, loss of human life, increased soil erosion, increased food prices, invasion 

of pests, diseases, weeds, and worms, and reduced livestock production as effects of 

changing climate (Table 6.4). The findings indicated that smallholder farmers in Western 

Kenya understood the effects of climate change. Understanding climate change impacts is 

fundamental in appreciating adaption practices. The findings underscore the importance 

of smallholder farmers' perceptions of climate change impacts, thus informing adaptation. 

This was consistent with the findings of Wetende et al. (2018) in Western Kenya, Yamba 

et al. (2019) in Ghana, and Kibue et al. (2016) in China, who pointed out that climate 

change had significant impacts on agricultural productivity (livestock and crops) leading 

to increased food insecurity. 

 

Table 6.4 Farmers' perception on the effects of climate change 

Effect of climate change  Frequency Percent (%) 

Reduced crop productivity 159 53 

Crop failure 85 28 

Increased food insecurity 73 24 

Property destruction/ displacement 47 16 

Loss of human life 43 14 

Increased soil erosion 42 14 

Increased food prices  33 11 

Invasion of pest, diseases, weeds, and worms 29 10 

Reduced livestock production 22 7 

N= 300, A farmer could have enumerated various climate change effects 
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6.3.4 Adoption level and intensity of adaptation practices 

Theresults showed that the adoption of different climate change adaptation practices 

ranged between 2 and 64% (Table 6.5). The majority of the farmers adopted soil water 

conservation measures (64%), early maturing crop varieties (64 %), drought-tolerant 

crops (59%), and organic fertilizer (57%). A low proportion of the farmers (2%) opted to 

abandon farming (farming to no farming). The adoption of specific adaptation practices 

across SSA countries ranges from low to high, with most smallholder farmers adopting at 

least one practice (Mango et al., 2017). The findings on the adoption level of adaptation 

practice were consistent with various studies across SSA that found a high adoption rate 

of at least one agricultural innovation (Ndiritu  et al., 2014; Nkegbe and Shankar, 2014; 

Darkwah et al., 2019). 

 

Table 6.5 Adoption level of adaptation practices to climate change among smallholder 

farmers 

Adaptation practice Number of adopters Per cent (%) 

Soil and water conservation measures 193 64 

Use of early maturing crop varieties 191 64 

Planting drought-tolerant crops 176 59 

Use organic fertilizer 172 57 

Intensifying of crop production 144 48 

Tree planting 130 43 

Livestock rearing 125 42 

Crop rotation 123 41 

Timing harvesting  117 39 

Changing planting dates 90 30 

Crop diversification 88 29 

Agroforestry 86 29 

Use mineral fertilizer 75 25 

Irrigation 73 24 

Mixed cropping 69 23 

Home gardening 44 15 

Purchase of addition land 39 13 

Reducing farm size 12 4 

Farming to no farming  6 2 
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Six (6) percent of the sampled household did not adapt to climate change (Table 6.6). The 

majority of the sampled households (50 adopters, 17%) adopted 5 adaption practices. The 

study findings revealed that 86% of the sampled household adopted two or more climate 

change adaptation practices. Given the interdependence among adaptation practices, 

smallholder farmers could adopt multiple practices. The adoption of multiple 

technologies observed in this study could be endorsed to the need to mitigating the 

vagaries of climate change. The findings agreed with previous studies that found that 

smallholder farmers adopt multiple adaptation practices to benefit from the innovation 

(Ndiritu  et al., 2014; Ojo & Baiyegunhi, 2020). 

 

Table 6.6 Adoption intensity of climate change adaptation practices among smallholder 

farmers 

Number of adaptation 

practices 

Number of  

adopters 

Per cent  

(%) 

0 18 6 

1 25 8 

2 27 9 

3 42 14 

4 46 15 

5 50 17 

6 32 11 

7 24 8 

8 17 6 

9 14 5 

10 5 2 

Total  300 100 

 

Based on the weight average index, the use of early maturing crop varieties (2.54) was 

the most important adaptation practice, while abandoning farming (0.45) was the least 

important option among smallholder farmers (Table 6.7). Moreover, the use of organic 

fertilizer, soil and water conservation measures, and drought-tolerant crops were 

important adaptation practices. The findings revealed that reducing farm size and 

abandoning farming were not important adaptation practices. These results highlight the 

importance of crop adjustment, soil, fertility, and water conservation as key interventions 

for coping with climate change. The findings were consistent with previous studies in 

SSA that have document crop adjustments, soil fertility management, soil water 
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conservation practices, and planting trees as essential adaptation practices (Bryan et al., 

2009; Ochieng  et al., 2017; Talanow et al., 2021). 
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Table 6.7 Farmers' perceptions on the importance of adaption practices among smallholder farmers 

Adaptation practice 

 

No 

important 

(ni) 

Less 

important 

(li) 

Moderate 

important 

(mi) 

High 

important 

(hi) 

*WA

I 

 

Ran

k 

 

Use of early maturing crop 

varieties 
3 33 63 201 

2.540 
1 

Use organic fertilizer 6 35 69 190 2.477 2 

Soil and water conservation 11 32 61 196 2.473 3 

Planting drought tolerant crops 18 37 62 183 2.367 4 

Tree planting 7 33 126 134 2.290 5 

Intensifying of crop production 14 60 80 146 2.193 6 

Crop rotation 16 46 103 135 2.190 7 

Livestock rearing 33 47 90 130 2.057 8 

Timing harvesting 29 50 99 122 2.047 9 

Crop diversification 17 47 142 94 2.043 10 

Mixed cropping 15 54 150 81 1.990 11 

Agroforestry 25 56 129 90 1.947 12 

Changing planting dates 41 77 86 96 1.790 13 

Use mineral fertilizer 64 45 109 82 1.697 14 

Irrigation 91 66 66 77 1.430 15 

Home gardening 62 96 98 44 1.413 16 

Purchase of addition land 92 63 105 40 1.310 17 

Reducing farm size 139 71 77 13 0.880 18 

Farming to no farming  211 50 30 9 0.457 19 

*WAI indicate weighted average index 
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6.3.5 Barriers to adoption of adaptation practices 

Smallholder farmers quoted unpredictable weather patterns (problem confrontation index, 

PCI of 732), as the primary hindrance to climate change adaptation (Table 6.8). Further, 

financial constraints and limited access to agricultural training were major drawbacks to 

adaptation. Though soil degradation, limited access to agricultural markets, credit and 

water, and limited farm size could impede adaptation, smallholder farmers perceived 

them as less problematic. The findings on climate change adaptation barriers implied that 

farmers had to highly confront the problems of unpredictable weather, financial 

constraints, and limited training in adapting to climate change. The results were 

consistent with Masud et al. (2017), Ochieng et al. (2017) Williams et al. (2019) and 

Antwi-Agyei and Stringer (2021), who found the main barriers of climate change 

adaptation comprised of unpredictable weather, high cost of inputs, financial constraints, 

and high implementation costs. Despite the challenges facing smallholder farmers in the 

study area, only 2% deserted farming. This underscores the need for adaptation among 

smallholder farming systems to increase their climate change resilience. 
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Table 6.8 Barriers to climate change adaptation among smallholder farmers 

Barriers of adaptation No Problem 

(np) 

Less Problem 

(lp) 

Moderate Problem 

(mp) 

High Problem 

(hp) 

*PCI 

 

Rank 

 

Unpredictable weather patterns 5 34 85 176 732 1 

Financial constraint 25 16 71 188 722 2 

Limited access to agricultural training 6 35 111 148 701 3 

High cost of inputs 22 40 77 161 677 4 

Lack of agricultural subsidies 20 33 98 149 676 5 

Limited access to agricultural extension  13 43 104 140 671 6 

Labour intensive technologies 12 42 111 135 669 7 

Poor soil fertility  27 43 70 160 663 8 

Limited access to farm inputs 20 44 110 126 642 9 

Limited weather information  29 36 115 120 626 10 

Soil erosion and land degradation 28 59 115 98 583 11 

Limited access to agricultural markets 27 65 112 96 577 12 

Limited credit access 34 57 120 89 564 13 

Limited access to water 39 88 103 70 504 14 

Limited farm size 77 49 115 59 456 15 

*PCI indicate problem confrontation index 
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6.3.6 Determinants of adaptation practices adoption level and intensity 

The binary logistic regression analysis showed that six variables significantly predicted 

smallholder farmers' adoption level to climate change (Table 6.9). Education level, 

farming experience, household remittance, and climate change perceptions positively 

predicted adoption level of adaptation practices among smallholder farmers. Different 

from study hypothesis, group membership and site negatively predicted farmers' adoption 

level to adaptation practices.  

 

The Poisson regression model had an estimated Pseudo R-squared of 5.1 %, Wald chi-

squared value of 86.10, and p<0.0001 (Table 6.9). This shows the significance of the 

Poisson model that was used to assess determinants of adoption intensity of climate 

change adaptation practices. The Poisson regression analysis showed seven explanatory 

variables that significantly predicted adaptation practices' adoption intensity (Table 6.9). 

Household head's education level, farming experience, access to input on credit, access to 

weather information, and cultivated land size positively predicted adaptation practices 

adoption intensity. Similar to adoption level, group membership and site negatively 

predicted the adoption intensity. 

 

The household head's education level increased the likelihood of both adoption level and 

intensity (Table 6.9). This implied that farmers with formal education were more likely to 

have a greater adoption level and intensity of climate change adaptation practices. A high 

education level could imply a greater level of knowledge acquisition and synthesis of the 

impacts of climate change. Therefore, farmers with higher education could adopt more 

climate change adaptation practices compared with their counterparts with lower 

education qualifications. The findings were consistent with Mahama et al. (2020), 

Mahmood et al. (2021), Masud et al. (2017) and Silvestri et al. (2012) who found 

education as a positive predictor of agricultural technologies adoption. However, the 

findings contradicted Qazlbash et al. (2020) who reported that education negatively 

predicted adaptation among communities in Pakistan. This was attributed to the increased 

dissemination of adaptation practices information among illiterate farmers.  
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Household head's farming experience increased the likelihood for both adaptation level 

and intensity among smallholder farmers in Western Kenya (Table 6.9). Experienced 

farmers could have reliable adaptation practices compared with those with low 

experience. Further, experienced farmers could have a higher capacity to evaluate the 

existing climate change adaptation and mitigation measures better than their counterpart 

younger farmers based on their interactions with the nature over the years. Additionally, 

the farming experience could influence risk perceptions and preferences about 

agricultural technologies and practices among farmers (Martey & Kuwornu, 2021). The 

findings were consistent with Macharia et al. (2014), Masud et al. (2017), Anang & 

Asante (2020) and Musafiri et al. (2020a), who documented that experience is a key 

determinant of smallholder households' decision making. 
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Table 6.9 Determinants of adaptation practices adoption level and intensity among 

smallholder farmers 

Variable Adoption level  Adoption intensity 

 Binary logistic regression   Poisson regression 

 Odd Ratio Marginal effect   Coefficient Marginal effects 

Gend 2.870  

(2.614) 

0.037 

(0.032) 

  0.030 

(0.051) 

0.205 

(0.345) 

Educ 8.221* 

(7.849) 
0.075* 

(0.032) 

  0.211* 

(0.081) 
1.420* 

(0.549) 

H.size 0.995 

(0.118) 

0.005 

(0.004) 

  -0.014 

(0.009) 

-0.095 

(0.058) 

Occp 1.988 

(1.891) 

0.024 

(0.034) 

  0.089 

(0.070) 

0.600 

(0.471) 

Exp 1.072* 

(0.034) 
0.002* 

(0.001) 

  0.007** 

(0.002) 
0.045** 

(0.012) 

Lab 0.983 

(0.739) 

-0.001 

(0.027) 

  0.087 

(0.051) 

0.585 

(0.343) 

Rem 8.796* 

(8.937) 
0.077* 

(0.036) 

  -0.004 

(0.051) 

-0.024 

(0.346) 

Grp 0.147* 

(0.145) 

-0.068* 

(0.035) 

  -0.150* 

(0.073) 
-1.010* 

(0.491) 

Cred  1.930 

(2.896) 

0.023 

(0.053) 

  0.341** 

(0.101) 
2.299** 

(0.684) 

Info  3.116 

(2.920) 

0.040 

(0.033) 

  0.146* 

(0.069) 
0.983* 

(0.467) 

L. size 1.598 

(1.397) 

0.017 

(0.031) 

  0.097* 

(0.047) 
0.654* 

(0.314) 

Perc 7.730* 

(7.570) 
0.072* 

(0.034) 

  0.250 

(0.151) 

1.687 

(1.016) 

TLU 1.006 

(0.095) 

0.004 

(0.003) 

  0.010 

(0.006) 

0.069 

(0.038) 

Site 0.039** 

(0.044) 
-0.115** 

(0.040) 

  -0.207** 

(0.049) 
-1.393** 

(0.334) 

Constant 0.154 

(0.254) 

    1.145** 

(0.181) 

  

Observations 300     300   

LR chi2  55.630     86.100   

prob>chi2 0.0000     0.0000   

Pseudo R2 0.428     0.051   

log-likelihood -37.139     -801.586   

Parenthesis are the robust standard errors, *, ** significant at 5 and 1 %. 
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Household heads who received remittance were more likely to adopt at least one adaption 

practice (Table 6.9). Remittance provides a supplement to farmers' earnings that could be 

used in the implementation of agricultural innovation. Therefore, smallholder farmers 

who received remittance could use the additional income to invest in agricultural 

technologies including climate change adaptation and mitigation measures. The findings 

were similar to Kpadonou et al. (2017), who found that remittance was a positive 

determinant of soil water conservation practice in West African Sahel. This was 

attributed to the provision of poor resourced farmers with cash that could be used to 

invest in agricultural technologies. 

 

The significant prediction of institutional characteristics (group membership, inputs 

credit, and weather information) on adaptation practices adoption accentuates their 

relevance in climate change adaptation (Table 6.9). The negative prediction of group 

membership on the adoption level was unexpected as it is generally known that group 

membership increases knowledge of agricultural technologies, thus increased adoption 

(Musafiri et al., 2020a; Okeyo et al., 2020b). Further, groups offer training, knowledge 

sharing, increased information access, and credit access opportunities through collective 

resource pooling among farmers. It is noteworthy that farmers' groups are objective 

specific and work towards achieving collective agenda. Therefore, the negative prediction 

of group membership could be ascribed to varied objectives, including value addition and 

commercialization as opposed to climate change mitigation. Contrary to the findings, 

previous studies in SSA have reported group membership as a positive significant 

determinant of agricultural practices adoption (Mango et al., 2017; Kimaru-Muchai et al., 

2020; Ehiakpor et al., 2021). 

 

Access to inputs on credit positively and significantly increased the adoption intensity of 

adaptation practices (Table 6.9). Farmers who accessed inputs on credit adopted more 

climate change adaptation practices than those who did not. Access to inputs credit is 

mostly preceded by agricultural training to ensure attainment of maximum returns on the 

investment, which could include promotion of activities that result to climate change 

adaptation. Therefore, the increased adoption intensity among farmers who received 
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inputs on credit could be attributed to increased exposure during the inputs utilization 

training. Further, the increased adoption intensity could be attributed to climate change 

adaptation inputs' availability among resource-poor farmers. The findings mirrored 

Tessema et al. (2018) in Ethiopia and Darkwah et al. (2019) in Ghana studies that 

articulated that credit access motivates farmers to adopt adaptation practices. Similarly, 

Kimathi et al. (2021) found credit as a positive determinant of climate resistance potato 

varieties in Meru county, Kenya, that was attributed to extension services on risk 

management that accompany credit access. 

 

Access to weather information increased the likelihood of adoption intensity among 

smallholder farmers (Table 9). Weather information includes expected rainfall amounts, 

onset, and cessation. This information is important in planning the cropping calendar 

including the type of crop, when and how to plant. Therefore, the increased adoption 

intensity among farmers who received weather information could be endorsed to 

increased know-how of the climate dynamics compared to those who did not. In 

agreement with the results of Archie et al. (2018), Zulfiqar and Thapa (2018). Moroda et 

al. (2018) found that weather forecasts and climate change information access among 

smallholder farmers significantly predicted the adoption of adaptation practices.  

 

The positive prediction of climate change perception implied that farmers who perceived 

climate change were more likely to adopt adaptation practices (Table 9). This could be 

attributed to the need to utilize climate change adaptation practices to mitigate its 

impacts. Further, the awareness of climate change is the first stage of appraising its 

impacts, thus adopting counter-strategies. The finding agreed with Kibue et al. (2016) 

and Ochieng et al. (2017) who reported that farmers who perceived change in climate 

adopted adaptation practices in China and Kenya. 

 

Farming households with larger cultivated land size had a higher likelihood of adopting 

more adaptation practices (Table 9). Households with larger farm sizes are more likely to 

experience higher losses from climate change impacts than their counterparts. To counter 

the myriad of challenges, they could choose the adoption of multiple practices that 
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increases their diversification potential and ability to spread risks over the large piece of 

land. On the contrary, smallholder farmers could be constraint in the adoption of new 

technologies due to their limited land sizes for trial implementation. The findings were 

consistent with various studies that found higher adoption among smallholder farming 

households with larger farm holdings (Alemayehu & Bewket, 2017; Esfandiari et al., 

2020; Ehiakpor et al., 2021). 

 

The study site negatively and significantly predicted both adoption level and intensity 

among smallholder farmers (Table 9). Farmers who lived in Ugenya sub-County were 

4% for adoption level and 21% for adoption intensity less likely to adapt to climate 

change compared to those who lived in Alego-Usonga sub-County. This underscores the 

importance of site-specific consideration in promoting agricultural technologies. 

Therefore, there is a need to intensify the climate change adaptation campaign in Ugenya 

sub-County to increase the adoption of adaptation practices. Similar findings were 

reported by Kpadonou et al. (2017), who found that farmers who belong in Northern 

Sahel negatively determined climate-smart technologies adoption intensity. In agreement 

with the findings, Martey and Kuwornu (2021), found that site, i.e., smallholder farmers 

in the Northern region, were less likely to adopt integrated soil fertility management than 

those in the Upper East and Upper West regions of Ghana. 

 

6.4 Conclusion and policy recommendations 

Smallholder farmers in Western Kenya are significantly affected by climate change. The 

study assessed the climate change perceptions, drivers, effects, and barriers to adaptation 

and the determinants of climate change adaptation among smallholder farmers in Western 

Kenya. In line with the hypotheses, the findings showed that smallhoders' were aware of 

climate change, its drivers, and its effects and socioeconomics, environmental and 

institutional factors determined adoption of climate change adaptation practices. The key 

barriers to climate change adaptation among smallholder farmers were unpredictable 

weather patterns, financial constraints, and limited agricultural training. Household head's 

education level, experience, group membership significantly determined both adoption 

level and intensity of climate change adaptation practices. The findings underscore the 
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importance of socioeconomic determinants in shaping farmers' adaptation to climate 

change. Further, the study highlights the significance of climate information, farmers' 

perceptions, and site on climate change adaptation. 

 

Based on the findings, three policy recommendations are highlighted. First, policies 

targeting climate change adaptation should focus on strengthening farmers and 

institutions capacity. This could be actualized through enhancing farmers' education, 

agricultural training, and improved access to weather information. Second, climate 

change policies need to be site-specific and tailored to farmers' perceptions to enhance 

climate change adaptation. Third, policymakers should consider the establishment of 

agricultural credit kit to enhance climate change adaptation. Initiating the above 

recommendations could be instrumental in improving climate change resilience and 

mitigation. 
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CHAPTER SEVEN 

SYNTHESES, CONCLUSIONS, AND RECOMMENDATIONS 

7.1 Syntheses 

The study’s broad objective was to evaluate environmental GHG emissions hotspots, 

effects of inorganic fertilizer adoption and minimum tillage on sorghum yields, and 

determinants of climate change adaptation in Western Kenya. The objectives were 

achieved by estimating the carbon footprint using Cool Farm Tool (Chapter 2). The 

effects of the adoption of minimum tillage (Chapter 3) and inorganic fertilizer (Chapter 

4) on sorghum yields were assessed. Identifying CSAPs adoption level and intensity 

(Chapter 5) and evaluating the determinants of adopting climate change adaptation 

strategies (Chapter 6) as presented in Chapters two to six. 

 

Smallholder farming systems were grouped into five farm types. Smallholder sorghum 

cropping systems in Western Kenya had lower CFT than other cropping systems in 

Kenya (Chapter 2). This was mainly due to the low use of external inputs in sorghum 

farms. The sorghum cropping systems were estimated to be net sinks of GHG emissions. 

The primary GHG emissions hotspots were fertilizer production and application in 

moderate to high fertilizer manure use intensity and on intensifying farm types. 

 

The adoption of minimum tillage and inorganic fertilizer was linked to socioeconomic, 

institutional, and biophysical determinants (Chapters 3 and 4). The study found low and 

high adoption rates of minimum tillage and inorganic fertilizer, respectively. 

Socioeconomics, institutional and biophysical factors were key drivers of minimum 

tillage and inorganic fertilizer adoption. Both minimum tillage and inorganic fertilizer 

adoption improved sorghum yields in Western Kenya. 

 

Adopting climate-smart agricultural and climate change adaptation practices was 

influenced by socioeconomic, institutional, and biophysical factors (Chapters five and 

six). The study reviewed both complements and substitutes between CSAPs. Household 

head's gender, education, age, family size, contact with extension agents, access to 
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weather information, arable land, livestock owned, perceived climate change, infertile 

soil, and persistent soil erosion influenced CSAPs adoption. Smallhoders' were aware of 

climate change and its drivers. The key barriers to climate change adaptation were 

unpredictable weather patterns, financial constraints, and limited agricultural training. 

Household heads' education level, experience, and group membership significantly 

determined both the adoption level and intensity of climate change adaptation practices. 

 

7.2 Conclusions 

Based on the study finds, the following conclusions are made: 

 Smallholder sorghum cropping systems showed a low amount of GHG balances 

in Western Kenya. 

 Minimum tillage adoption enhanced sorghum productivity among smallholder 

farmers. 

 Inorganic fertilizer application improved sorghum yields among smallholder 

farmers. 

 Smallholder farmers adopt multiple climate-smart agricultural practices to 

improve crop productivity and cope with climate shocks. 

 Socioeconomic, institutional, and biophysical determinants influence the adoption 

of climate change adaptation practices.  

 

7.3 Recommendations 

The study recommends that: 

 To enhance crop productivity and reduce greenhouse gas emissions, smallholder 

farmers should practice judicious integration of inorganic fertilizer and animal 

manure. 

 Minimum tillage adoption should be promoted among smallhoder farming 

households for increased sorghum productivity. 

 To improve sorghum yields, the use of adequate amounts of inorganic fertilizer 

should be promoted among smallholder farmers. 
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 Policymakers and relevant stakeholders should consider socioeconomic, 

institutional, and biophysical factors in upscaling or promoting adopting climate-

smart agricultural practices. 

 Smallholder farmers' perceptions of climate change, climate awareness creation, 

and monetary assistance should be considered to enhance climate change 

resilience. 

 

7.4 Areas of further research 

The study proposes the following areas of further research: 

 Direct quantification of GHGs from different climate-smart crops such as cassava, 

sorghum, millet, groundnut, and cowpeas. 

 Field studies to evaluate the influence of conservation agriculture and soil fertility 

management practices on sorghum yields. 
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APPENDICES 

Appendix 1 Variance inflation factor (VIF) of the independent variables 

Variable VIF 1/VIF 

Household and farm characteristics   

Gender 2.03 0.49 

Literacy 1.81 0.55 

Age 1.68 0.59 

Occupation 1.62 0.62 

Experience 1.46 0.68 

Household size 1.45 0.69 

Remittance 1.42 0.70 

Acreage 1.34 0.74 

Seed type 1.32 0.76 

Seed quantity 1.23 0.81 

Perceptions of soil status   

Fertility poor 1.21 0.83 

Erosion high 1.21 0.83 

Institutional  factors   

Agricultural association 1.19 0.84 

Farm credits 1.16 0.86 

Extension 1.13 0.89 

Weather information 1.10 0.91 

Geographical location    

Site 1.09 0.92 

Mean VIF 1.38   
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Appendix 2 Test for validity of instrumental variable 

Variable Inorganic fertilizer adoption  Log sorghum yields (kg ha-1) 

 Coefficient Robust std. 

error 

 Coefficient Robust std. error 

Weather information 

receipt 

-0.678*** 0.173  0.189 0.127 

Constant 2.329*** 0.851  3.296** 0.923 

 LR Chi 2 (1) = 4.76  F Value = 0.19 

***P<0.001 

 


