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DEFINITION OF TERMINOLOGIES 

Antigen 

 

An antigen is a molecule that binds to an antibody or receptors on 

immune cells. 

Apoptosis 

 

The death of cells that occur as normal and controlled. 

Morbidity 

 

Having a disease or a symptom of the disease. 

Parameter 

 

A variable that, within its range of possible values, indicates a 

group of unique occurrences within an issue. 
 

Proliferation 

 

The process by which a cell grows and divides to produce two 

daughter cells. 

Risk factors 

 

These are any attributes, characteristics, or exposure of an 

individual that increase the likelihood of developing a disease or 

injury. Anything that increases the chances of getting a disease 

such as cancer. 

Viron A virus having a capsid and an RNA core that is entirely 

ineffectual when it is outside of a host cell. A virus can spread 

from one infected host cell to another host cell through its vector 

stage, or viron. 
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ABSTRACT 

Cervical cancer is one of the most common types of cancer and it is caused mostly by 
high-risk Human Papillomavirus (HPV) and continues to spread at an alarming rate. 
While HPV impacts have been investigated before, there are currently only a scanty 
number of mathematical models that account for HPV’s dynamic role in cervical 
cancer. The objectives were to develop an in-host density-dependent deterministic 
model for the dynamics implications of basal cells, virions, and lymphocytes 
incorporating immunity and functional responses. Analyze the model using techniques 
of epidemiological models such as basic reproduction number and simulate the model 
using Matlab ODE solver. Six compartments are considered in the model that is; 
Susceptible cells (S), Infected cells (I), Precancerous cells (P), Cancerous cells (C), 
Virions (V), and Lymphocytes (L). Next generation matrix (NGM), survival function, 
and characteristic polynomial method were used to determine the basic reproduction 
number denoted as 𝑅𝑅0. The findings from this research indicated that the Disease-Free 
Equilibrium point is locally asymptotically stable whenever 𝑅𝑅0∗ < 1 and globally 
asymptotically stable if 𝑅𝑅0∗ ≤ 1 and the Endemic Equilibrium is globally 
asymptotically stable if 𝑅𝑅0∗ > 1. The results obtained show that the progression rate of 
precancerous cells to cancerous cells (𝜃𝜃) has the most direct impact on the model. The 
model was able to estimate the longevity of a patient as 10 days when (𝜃𝜃) increases 
by 8%. The findings of this research will help healthcare providers, public authorities, 
and non-governmental health groups in creating effective prevention strategies to slow 
the development of cervical cancer. More research should be done to determine the 
exact number of cancerous cells that can lead to the death of a cervical cancer patient 
since this paper estimated a proportion of 75%. 

Keywords: In-host model, functional responses, stability analysis, simulation and 
reproduction number. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information. 

Cancer is a medical condition in which the cells in the body proliferate abnormally. 

Cervical cancer is the uncontrolled invasive growth of the epithelial cells in the 

cervix, which is the lower part of the uterus that connects to the vagina (Chakraborty, 

Cao, et al., 2019). The main cause of most cervical cancer is  Human Papillomavirus 

and HPV infection is involved in the development of cervical cancer in more than 90 

percent of cases (Chakraborty, Cao, et al., 2019).  

Human papillomavirus (HPV) is the most common sexually transmitted infection 

worldwide, with a particularly high prevalence in sexually active individuals. HPV is 

is passed through skin-to-skin contact. This is often through a cut, abrasion, or a small 

tear in the skin and sexual activity without protection.  

 Human papillomaviruses (HPV) are small double-stranded DNA viruses that have a 

diameter of 52-55 nm. There are over 200 types of HPV, categorized into "low-risk" 

and "high-risk" types. Low-risk HPV types, such as HPV 6 and 11, are primarily 

associated with benign conditions like genital warts. In contrast, high-risk HPV types, 

especially HPV 16 and 18 are responsible for the majority of HPV-related cancers, 

including cervical cancer, anal cancer, and oropharyngeal cancers.

  

Cervical cancer is among the leading causes of morbidity and mortality globally. 

World Health Organization (WHO) fact sheet of 2018 reported that in 2018, around 

311,000 women globally lost their lives to cervical cancer, with an estimated 570,000 

women receiving a diagnosis. Therefore, cervical cancer is a global health concern 

and ranks as the fourth most frequent female malignancy worldwide (Kessler, 2017).  

World Health Organization fact sheet of 2010 reported that cervical cancer is the 

second most frequent cancer after breast cancer in Kenya among women between the 

ages of 15 to 44 years. Cervical cancer remains a significant health issue in Kenya, 

contributing heavily to the cancer burden. It is the second most prevalent cancer 

among women, and about nine women die from cervical cancer every day. This high 

mortality rate is primarily due to late-stage diagnosis and limited access to timely 
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screening and treatment services. In 2020, Kenya recorded 42,000 new cancer cases, 

with cervical cancer accounting for a considerable portion of these cases. As of 2023, 

cervical and breast cancers together make up 23% of all cancer-related deaths in the 

country.  

Every woman is prone to cervical cancer, but most often it occurs in people over 30 

years of age. As long as there is prompt identification, the immune system typically 

clears the majority of HPV cases in women within a year (Ryser et al.,  2015). This 

is normally aided by lymphocyte cells. Lymphocytes are a type of white blood cells 

that help the body’s immune system to fight cancer, foreign virus, and bacteria. T-

lymphocytes are responsible for annihilating virus-infected cells (Kathleen & 

Summers, 2020). The immune system combines the body's identification of foreign 

substances and its defense mechanism against them. Key players in the immune 

system are several types of white blood cells, such as lymphocytes.  

T-lymphocytes are responsible for annihilating virus-infected cells (Kathleen & 

Summers, 2020). Yet during sexual activity, viruses like HPV take advantage of 

abrasion of the vaginal or oral mucosa's epidermal lining (Verma et al., 2017) to enter 

the body.  Due to their immune-evasive behavior, diseases like HPV make it very 

difficult for the immune response to be activated (Mondaini et al., 2021). 

Some of the risk factors of cervical cancer include tobacco usage, harmful alcohol 

consumption, overweight, obesity, age, the individual’s sex, and genetic or inherited 

factors. Exposure to carcinogens in the environment, such as chemicals, radiation, 

and infectious agents, is a concern (F.Getum, et al., 2013). 

The dynamics of HPV to cervical cancer are clearly shown in Figure 1 (Stark & 

Zivković, 2018). 
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Figure 1: Progression of cervical cancer by HPV 

A mathematical model is a created micro world where entities act by well-defined 

rules and presumptions. We can investigate the general behavior of a mathematical 

model and determine the implications of our assumptions by doing mathematical 

analysis, which is frequently supported by computer simulations (Huppert & Katriel, 

2013). In-host mathematical models are used to describe how interactions between 

virus particles, host cells, and the immune system affect the viral load over time. 

No population can grow exponentially all the time. Many populations initially grow 

exponentially but due to competition for food and territory among other resources, 

the population size levels off after some time to a stable size K which is the carrying 

capacity. The carrying capacity (K) represents the highest population that the 

ecosystem is capable of supporting steadily (Weiss, 2009).  

The exponential model has drawbacks when used to forecast the long-term growth 

rate of cancer cell proliferation, therefore a logistic model was developed to address 

these issues and describe the behavior of cancer cell growth and proliferation. 

According to the logistic model equation, growth increases proportionally and 

linearly with cell size until it reaches its carrying capacity. For the volume of a cancer 

cell, a logistic equation yields an S-shaped curve (Tabassum et al., 2019). 

1.2 Statement of problem.   

Cervical cancer is among the leading diseases causing mortality worldwide with an 

estimate of 342,000 deaths in 2020. Sustainable Development Goals (SDG) targets 

3.4 and 5 to reduce premature mortality from non-communicable diseases (NCDs) by 

a third by 2030 relative to 2015 levels,  to promote mental health and well-being, and 
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to achieve gender equality and empower all women and girls respectively (Online & 

Ezzati, 2020), there is need to focus on women’s health. 

Most previous studies have modeled cervical cancer progression at the population 

level, using frameworks such as the 𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻 , 𝑆𝑆𝑈𝑈𝑈𝑈 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑈𝑈𝑈𝑈 models (Pongsumpun, 

2012a), among others. While these models provide valuable insights into the spread 

of HPV and its connection to cervical cancer, they overlook critical aspects when 

focusing on the host cell level. Studies that modeled HPV dynamics in terms of host 

cells, such as the SIVPC model (Chakraborty, Cao, et al., 2019), did not account for 

important factors like density-dependent cell populations, functional responses, or the 

maximum number of cancerous cells that lead to host mortality. 

To address these gaps, a new mathematical model was developed. This model focuses 

on in-host dynamics, incorporating density-dependent interactions between basal 

cells, virions, and lymphocytes, and examines their relation to cervical cancer 

progression. The model was analyzed using epidemiological techniques and 

simulated using Matlab's built-in ODE solver. 

1.3 Research Questions   

1. What is the logistic deterministic model of basal cells, virions, and lymphocytes 

incorporating the immune and functional response? 

2. What is the ill-posedness or the well-posedness of the proposed model? 

3. What are the simulated results of the model using Matlab inbuilt ordinary 

differential equations (ODE) solver?  

1.4 Objectives of the Study 

1.4.1 General Objectives 

To develop an in-host logistic mathematical model for basal cells, virions, and 

lymphocytes and simulate their dynamics to cervical cancer using Matlab inbuilt 

ODE solver. 
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1.4.2 Specific Objectives 

The specific objectives are to: 

1. Develop an in-host logistic deterministic model for basal cells, virions, 

and lymphocyte dynamics implications on cervical cancer in the presence 

of immune and functional response. 

2. Analyze the model using techniques of epidemiological models such as 

basic reproduction number, positivity, and determining equilibrium points 

and their stabilities. 

3. Simulate the model using Matlab inbuilt ODE solver which is based on 

the Runge-Kutta method. 

1.5 Justification of the Study  

Cervical cancer disease is a major challenge globally today. Roughly 90% of deaths 

from cervical cancer take place in less developed parts of the globe. The 

socioeconomic effects of cervical cancer are severe since African women are 

primarily affected at a relatively young age (LaVigne & Leitao, 2019). 

The study on Human Papillomavirus dynamics to cervical cancer using first-order 

nonlinear ordinary differential equations is of great significance since the findings of 

this study will provide information to individuals and also to the health community 

concerning the spread of cervical cancer and recommend necessary measures that 

will help mitigate the future spread of HPV and cervical cancer. 

1.6 Scope of the Study 

Other risk factors contribute to causes of cervical cancer, but the primary risk factor 

is Human Papillomavirus (HPV) infection (Ault, 2006). Since HPV infection is 

essentially an STI, several risk factors for cervical cancer are also linked to a higher 

chance of STI occurrence (LaVigne & Leitao, 2019). To model the dynamics of 

cervical cancer, this study is restricted to the Human Papillomavirus infection as the 

primary cause considering the in-host logistic deterministic model of basal cells, 

virions, and lymphocytes. 
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CHAPTER TWO 

 REVIEW OF LITERATURE 

2.1 Introduction 

To provide some insights into this study, this section brings to light relevant literature. 

In particular, literature that is based on mathematical modeling of Human 

Papillomavirus dynamics. It focuses on methods to stop the spread of latent 

infections, immunization, early diagnosis, education counseling, treatment of drug-

resistant strains, and the effects of awareness. Finally, the focus is directed on current 

research that will attempt to fill the gap in the literature.  

2.2 Dynamics of HPV on cervical cancer 

Pongsumpun (2012) used a deterministic mathematical model system of ODE and 

numerical simulation to investigate the dynamics of cervical cancer. The total 

population was subdivided into five compartments namely; susceptible (𝑆𝑆), 

vaccinated (𝑉𝑉), infected(𝑆𝑆), permanently recovered (𝑅𝑅𝐻𝐻), and temporarily 

recovered(𝑅𝑅𝑇𝑇). It was evident that cervical cancer infection can be eradicated by 

increasing the recovery rate and eliminated by decreasing the contact rate in the 

presence of vaccination. It was concluded that the number of infected people keeps 

decreasing if vaccination is combined with appropriate treatment. 

Asih et al. (2016) applied a 𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆 mathematical model consisting of 5 compartments 

which include: Susceptible (normal) cells (𝑆𝑆), Infected cells(𝑆𝑆), Free virus(𝑉𝑉), 

Precancerous cells(𝑆𝑆), and Cancer cells(𝑆𝑆). The study's goal was to examine the 

transition of cervical cells from normal to precancerous and cancerous states. 

According to the analysis, the solution settles into a steady state with a small number 

of precancerous cells (long-term control) and the precancerous cell population 

expanding without limit and serving as a rich source of new cancer cells 

(malignancy). Based on the findings, it was determined that drug-based preventative 

measures for cervical cancer may be implemented. It was suggested that more 

relevant biology, such as the immune system, may be included in models to help them 

become more accurate. 

Chakraborty et al. (2019) applied a 𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆-based mathematical model with five 

compartments -susceptible cells(𝑆𝑆), infected cells (𝑆𝑆), HPV virus(𝑉𝑉), precancerous 
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cells(𝑆𝑆), and cancerous cells(𝑆𝑆). The goal of the research was to characterize how 

the four types of epithelial and basal cells interact with the human papillomavirus. 

The findings suggest that the malignant cell population expands linearly for Holling 

type 1 functional response, which is an unlikely scenario. After concluding that a 

Holling type III functional response is more likely to occur in precancerous cervical 

cells, it was recommended that the model be utilized by combining the three control 

measures, employing one immunization and one treatment to reduce the spread of 

cervical cancer (tumor suppressive drug). 

Asih et al. (2019) formulated a cusp bifurcation on the cervical cancer mathematical 

model using two parameters from previous studies. The study's goal was to find a 

cusp bifurcation by combining a continuation of the maximal invasion rate parameter 

with a continuation of the infection rate. It has been observed that the parameters (the 

infection rate) and (the maximal invasion rate) are evolving into bifurcation 

parameters. It was concluded that the rate of infection was a major component in the 

development of cervical cancer and that the invasion rate was also crucial. It was 

recommended that future studies might focus on determining infection rates and 

maximal invasion levels in advance. 

Kaur et al. (2022) created a mathematical model using the ordinary least squares 

(OLS) regression method to study cervical cancer and the different risk factors that 

lead to the development of the disease. The objective of the study was to create a set 

of mathematical relationships between the two risk categories for cervical cancer: low 

risk and high risk. 

When the model was examined, it was found that the main factors that predict cervical 

cancer are Schiller, Heinselman, and Cytology. It was also found that visceral fat is a 

health indicator that is a fantastic predictor of an individual's health when doing 

casual root analysis with alternative variables, but only the self-influencing ones were 

included in the analysis.  

Sierra-Rojas et al. (2022) proposed a deterministic model of the epithelial cellular 

dynamics of the stratified epithelium of three stratums- Stratum Basale(𝐵𝐵𝐵𝐵 (𝑡𝑡)), 

Stratum intermedium (𝐸𝐸𝐵𝐵 (𝑡𝑡)) and Stratum corneum (𝑆𝑆𝐵𝐵 (𝑡𝑡)) based on three 

ordinary differential equations. The purpose of this investigation was to simulate 

HPV's behavior in cervical epithelial cells. Based on the results of the model, it is 
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clear that antiviral medications aimed at preventing new viral infections and 

inhibiting viral replication are necessary to bring down the viral transmission rate and 

the viral production rate. It was concluded that the model does not take into account 

the four layers that make up the stratified epithelium.  

2.3 Immunization and Treatment 

Kivuti-bitok et al. (2015) created a mathematical model of cervical cancer in women 

and investigated the impact of different preventative measures. The model predicted 

that the prevalence of HPV/cervical cancer is not zero, indicating that it is an 

epidemiological illness with a long time horizon. The researchers applied dynamical 

modeling in which differential equations along with boundary conditions were 

formulated. 

 The researchers concluded that the model accurately anticipated realistic 

expectations for the development of both diagnosed and undiagnosed cervical cancer, 

mortality from cervical cancer, and plausible epidemiological trends accounting for 

the effects of the different treatments. Due to its dynamic nature, the model may be 

modified as more data becomes available. 

Ndii (2020) formulated a 𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 mathematical model with six compartments-

susceptible cell density(𝑆𝑆), infected cell density(𝑆𝑆), virus density(𝑉𝑉), precancerous 

cell density(𝑆𝑆), cancer cell density(𝑆𝑆), and concentration of chemotherapy 

drugs(𝑆𝑆)). The purpose of this research was to report on the efficacy of 

chemotherapy in treating cervical cancer. Although it has the unfortunate side effect 

of killing normal cells like those lining the mouth and intestines or those that control 

growth, this study indicated that chemotherapy is efficient enough to destroy aberrant 

cells like those caused by infection, precancerous, and cancer. Therefore, it was found 

that while chemotherapy is fairly helpful in treating cervical cancer, additional 

research into more effective therapies is required particularly to lessen the negative 

effects on normal cells. 

Zhang et al. (2020) constructed a mathematical model of HPV natural history that 

was divided into six compartments: susceptible individuals (S), asymptomatic 

infectious individuals (E), symptomatic infectious individuals (𝑆𝑆1), individuals with 

persistent HPV infection (𝑆𝑆2), cancer-infected individuals (A), and recovered 
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individuals (R). The model was used to qualitatively analyze the stability of disease-

free equilibrium, the non-existence of a limit cycle, and the existence of forward 

bifurcation. 

 The results showed that the contact rate of 𝐸𝐸 (𝑡𝑡) with 𝑆𝑆 (𝑡𝑡) increased as the number 

of infected individuals increased, consequently, the increased contact rate increased 

the disease outbreak. It was concluded that when 𝑅𝑅0˂1 the disease would die out and 

when 𝑅𝑅0 > 1 the infection would experience an outbreak.  

Chakraborty et al. (2020) developed a mathematical model of cervical cancer 

dynamics at the cellular level to describe the interaction between cancerous cells, 

natural killer (NK), effector T cells, and Human Papillomaviruses (HPV). The study 

aimed to understand how lymphocytes specifically the NK cells and effector T cells 

defend the body's immunity against cancer cells and HPVs. From the results obtained, 

it was evident that NK and effector T cells are responsible for eradicating cervical 

cancer which is induced by HPV, but it was important to enhance their destruction 

power. It was concluded that NK and effector T cell-based immunotherapy holds 

great promise for cancer treatment. 

Akgül et al. (2021) constructed a compartmental model to investigate women’s 

malignant disease, cervical cancer. The aim was to discuss the transmission and 

persistence of cervical cancer in the community using the fractal fractional model. 

From the results the number of populaces 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻 (𝑡𝑡) and 𝑆𝑆𝑈𝑈𝑈𝑈  (𝑡𝑡) approaches zero as 

time grows, on the other hand, the whole population becomes susceptible at that 

stage. It was proposed that the scheme can be applied efficiently on extended fractal 

fractional predator-prey models, chemical reaction models, and reaction-diffusion 

models. 

Previous studies have overlooked key aspects of cervical cancer progression at the 

cellular level, such as density-dependent cell populations, functional responses, and 

the maximum threshold of cancerous cells that result in host mortality. To address 

these gaps, a new mathematical model was developed that captures the in-host 

dynamics of cervical cancer. This model incorporates density-dependent interactions 

between basal cells, virions, and lymphocytes, simulating their roles in cancer 

progression. The model was analyzed using epidemiological techniques and 
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simulated with Matlab's built-in ODE solver to provide deeper insights into disease 

dynamics. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction   

The goal of the project was to create an in-host density-dependent deterministic 

model that explains how the dynamics of cervical cancer are affected by the Human 

Papillomavirus, basal cells, and lymphocytes. The population of basal layer cells was 

divided into five compartments for the study. Five first-order nonlinear ordinary 

differential equations will be used to represent the progression from one compartment 

to another. The logistic equation is expressed as;  𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑉𝑉 �1 − 𝐻𝐻
𝑏𝑏
�, where, b is the 

carrying capacity (Tabassum et al., 2019). 

The Michaelis-Merten reaction or the Monod response are other names for this 

functional response. For predators with a Holling Type II functional response, the 

rate of prey consumption increases with the size of the prey population but saturates 

at some maximum level A. 

The general equation for Holling Type II functional response is 𝐴𝐴𝐴𝐴
𝐵𝐵+𝐴𝐴

 (Weiss, 2009). 

For Holling Type III, the functional response 𝐴𝐴𝐴𝐴2

𝐵𝐵2+𝐴𝐴2
, where 𝐵𝐵 is the switching value. 

This response is characteristic of predators that are below a certain prey density 

threshold, and do not eat much of the prey, but when the prey density is above the 

threshold, their feeding rate increases as the prey population increases, but eventually 

levels off to an asymptote (Weiss, 2009). 

Arditi-Ginzburg functional response  𝐴𝐴𝐴𝐴
𝐴𝐴+𝐵𝐵𝐻𝐻

 believes that the amount of prey 

consumed by each predator in a given amount of time is only determined by the 

amount of prey present. Nevertheless, it is recognized that predator density can also 

affect the pace at which each individual consumes food, an effect known as predator 

reliance (Weiss, 2009). 

3.2 Methods  

In this study, first-order nonlinear ordinary differential equations were used to create 

a logistic deterministic model for the effects of the Human Papillomavirus. The model 

of HPV infection and cancer development considered 6 compartments namely: 𝑆𝑆-
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Susceptible (normal) cells, 𝑆𝑆-Infected cells, 𝑉𝑉-Free virus, 𝑆𝑆-Precancerous cells, 𝑆𝑆-

Cancerous cells and 𝐿𝐿- Lymphocytes cells. The model will be analyzed in terms of 

positivity, equilibrium points, and their stabilities and the basic reproduction number 

will be determined using the next-generation matrix method. 

3.3 Proposed Model Description. 

3.3.1 Basal cell population.  

The population of basal cells was divided into four compartments namely: 

Susceptible cells (S), Infected cells (I), Precancerous cells (P), and cancerous cells 

(C). The total population of basal cells N (t) is given by,  𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) +  𝑆𝑆(𝑡𝑡) +

𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡). All basal cells undergo a natural death rate at 𝛿𝛿1, a logistic growth at a 

rate of r1, and a carrying capacity of K.  

HPV invades the human body through small micro-abrasions that sometimes occur 

in the cervical epithelium and infect the basal layer cells at the rate of 𝜆𝜆1. All cells 

increase from logistic cell growth. The number of infected cells decreases at the rate 

𝜂𝜂1 which is the induced death rate. HPV infection can be autoimmune and some 

infected cells again become susceptible. The infected cells become precancerous at a 

progression rate 𝛽𝛽. When the infected cells become precancerous, there is a risk of 

developing cancer. When the population of precancerous cells is at a low level, there 

is a small risk of developing cancer cells. The transition from precancerous to 

cancerous cells was considered to be governed by a saturating term 𝑓𝑓(𝑆𝑆) =
𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
  according to whether the risk is high or low and the progression risk as θ.  

3.3.2 Virion Population. 

Virions grow logistically at a rate of r2 and undergo normal death at a rate δ2. New 

HPV virions are produced at a rate 𝜂𝜂1, 𝜂𝜂2, and 𝜂𝜂3 proportional to the induced death 

rate of the infected, precancerous, and cancerous cells respectively.  

3.3.3 Lymphocyte Population. 

Lymphocytes also grow logistically at a rate of r3 and undergo a natural death 

(apoptosis) at a rate 𝛿𝛿3.  
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3.4 Assumptions of the Model 

Besides the common assumptions of any epidemiological model, the following are 

additional assumptions.This study assumed that: the number of cervical epithelial 

cells remains roughly constant, and the epithelium is replaced every 4-5 days (Engida 

Sado, 2019); All the epithelium cells are susceptible; The basal cell population grows 

logistically, with an intrinsic growth rate and a carrying capacity; There is 

significance to the recovery from natural immunity and Human Papilloma Virus 

infection is the strongest risk factor for cervical cancer.  

(i) 𝐴𝐴𝐴𝐴
𝐴𝐴+𝐵𝐵𝐻𝐻

 is Arditi-Ginzburg function predator (virions) density can also 

influence individual (Prey/Basal Cells) consumption rate, an effect 

termed predator dependence. The ratio of prey density to predator 

density will determine how virions attack Basal cells. 

(ii) 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
 is a saturation function based on Holling type III response. 

(iii) 𝐸𝐸𝐸𝐸
𝐹𝐹+𝐸𝐸

  is based on Holling type II response on the assumption that the 

rate of infected basal cell recovery increases with the immunity level, 

but saturates at some maximum level A. 

 

3.5 Description of Variables and Parameters 

Table 1: Variables Description  

Variables Description 

S(t)  Susceptible cells at time t. 

I(t) Infected cells at time t. 

P(t) Precancerous cells at time t. 

C(t) Cancerous cells at time t. 

V(t) Virions population at time t. 

L(t) Lymphocytes population at time t. 

Table 1: Description of variables 
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Table 2: Parameters Description  

Parameters Description 

𝑟𝑟1   Mitosis division rate of basal cells 

𝑟𝑟2  Division rate of virons  

𝑟𝑟3  Division rate of lymphocytes  

𝐾𝐾1  Carrying capacity  of basal cells  

𝐾𝐾2  Carrying capacity  of virons 

𝐾𝐾3  Carrying capacity  of lymphocytes 

𝐾𝐾4  The population of cancerous cells that causes a person to die 

𝜏𝜏2  The rate of infection of susceptible cells by virus 

𝛽𝛽  Progression rate from infected cells to precancerous cells 

𝜃𝜃  Progression rate from precancerous cells to cancerous cells 

𝜂𝜂1  The induced death rate of infected cells  

𝜂𝜂2  The induced death rate of precancerous cells 

𝜂𝜂3  The induced death rate of cancerous cells 

𝛿𝛿1 , 𝛿𝛿2, 𝛿𝛿3  The apoptosis rate of basal cells, virons and lymphocytes 

respectively 

D Half-saturation concentration for the progression from P to C 

𝜔𝜔1, 𝜔𝜔2,𝜔𝜔3 Number of virons that are produced by I, P and C respectively 

M The autoimmune rate of I to S 

𝛼𝛼1  Contact rate 

𝜖𝜖  Rate at which the virons are killed by the lymphocytes 

𝜏𝜏1  Rate at which virons are eliminated as they attack normal cells 

Table 2: Description of parameters 
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3.6 Proposed model flow chart and equations 

3.6.1 The proposed model flow chart  

. 

 
 Figure 2: Model flow chart 

3.6.2 Model equations 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� − 𝐴𝐴𝐴𝐴

𝐴𝐴+𝐵𝐵𝐻𝐻
+ 𝐸𝐸𝐸𝐸

𝐹𝐹+𝐸𝐸
𝑆𝑆 − 𝛿𝛿1𝑆𝑆,                                                           

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝐴𝐴𝐴𝐴

𝐴𝐴+𝐵𝐵𝐻𝐻
− 𝛽𝛽𝑆𝑆 − 𝐸𝐸𝐸𝐸

𝐹𝐹+𝐸𝐸
𝑆𝑆 − 𝜂𝜂1𝑆𝑆 − 𝛿𝛿1𝑆𝑆,                                      

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝛽𝛽𝑆𝑆 − 𝛳𝛳 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
− 𝜂𝜂2𝑆𝑆 − 𝛿𝛿1𝑆𝑆,                                             

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

= �𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝛳𝛳 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
− 𝜂𝜂3𝑆𝑆 − 𝛿𝛿1𝑆𝑆� �1 − 𝑈𝑈

𝐾𝐾4
� , 

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= {𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆} �1 − 𝐻𝐻
𝐾𝐾2
� − 𝜖𝜖 𝐿𝐿

𝐿𝐿+𝐾𝐾4
𝑉𝑉 − 𝛿𝛿2𝑉𝑉, 

 𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟3𝐿𝐿 �1 − 𝐿𝐿
𝐾𝐾3
� − 𝛼𝛼1𝐿𝐿𝑉𝑉 − 𝛿𝛿3𝐿𝐿.         

Where 𝐴𝐴 = 𝜏𝜏2 
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3.7 Model Analysis 

The model was examined by demonstrating several theorems, including those about 

the model's positivity and invariant region, equilibrium points, reproduction number, 

and stabilities. 

3.7.1 Positivity and invariant region 

If the region 𝑅𝑅 = {𝑆𝑆(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑆𝑆(𝑡𝑡),𝑆𝑆(𝑡𝑡),𝑉𝑉(𝑡𝑡)𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿(𝑡𝑡)} ∈ 𝑅𝑅6 and 𝑆𝑆(0) ≥ 0, 𝑆𝑆(0) ≥

0,𝑆𝑆(0) ≥ 0,𝑆𝑆(0) ≥ 0,𝑉𝑉(0) ≥ 0, 𝐿𝐿(0) ≥ 0 then the region is positively bounded. 

Concerning systems of equations (1)-(6), was attracted to and positively invariant. 

3.7.2 Equilibrium point 

When the differentials are equal to zero, a system is considered to be in equilibrium. 

A positive endemic equilibrium existed if and only if 𝑅𝑅𝑈𝑈  >  1, and the disease-free 

equilibrium of the system (1) through (5) was reached by equating all susceptible, 

infectious, precancerous, and cancerous to zero (Krakauer, 2009). 

3.7.3 Basic reproduction number R0 and control reproduction number RC 

When an individual with the virus is brought into contact with a population that is 

completely vulnerable, the fundamental reproduction number, 𝑅𝑅0, is the total number 

of secondary infections that result throughout an episode of the illness. To calculate 

the model's basic reproduction number (𝑅𝑅0) and control reproduction number (𝑅𝑅𝑈𝑈), 

this study employed the next-generation matrix approach (Afolabi et al., 2021). The 

transfer of infectious terms from one compartment to another was represented, 

respectively, by the non-negative matrix F and non-singular matrix V (At DFE). 

Thus, 

     𝐹𝐹 = [𝜕𝜕𝐹𝐹𝑖𝑖 (𝑋𝑋𝑖𝑖  )/𝜕𝜕 𝑋𝑋𝑖𝑖] and 𝑉𝑉 = [𝜕𝜕𝑉𝑉𝑖𝑖 (𝑋𝑋𝑖𝑖)/𝜕𝜕𝑋𝑋 𝑖𝑖]. 

The largest Eigenvalue of the matrix (FV-1) is the value of the reproductive number. 

3.7.4 Stabilities of the Equilibrium Point  

Stability is the state in which an equilibrium point remains constant across time. 

Stability can take two distinct forms: global stability and local stability. A local stable 

equilibrium point is one where all the neighbors of the equilibrium point steadily 

move in that direction over time. Furthermore, the equilibrium point is seen as 

globally stable if all of the system's components progressively move in that way over 

time.  
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We first determined the local stability of DFE using the Jacobian of the model tested 

at DFE. Next, we determined the stability of this steady state using the related 

Jacobian, which is a function of the model parameters. Finally, we evaluated the 

global stability of DFE using the Lyapunov function (Bershadsky et al., 2019). 

3.7.5 Bifurcation analysis 

The possibility of bifurcation in the model was indicated by the possible presence of 

two endemic equilibriums. The study used the center manifold theory to carry out the 

bifurcation analysis (Kumar & Nilam, 2019). 

3.8 Numerical simulation 

To further understand the effect of effective contact rate on transmission dynamics of 

implications of human papillomavirus infections, a numerical simulation of the 

model was run using the inbuilt ODE solvers in MATLAB software. 

3.9 Normalized sensitivity analysis 

Sensitivity analysis helps us assess the relative change in state variables when a 

parameter changes. This will enable us to forecast a system's dynamics. This was 

done based on the basic reproduction number. 

The  sensitivity is given by: Se𝑎𝑎𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 = % 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑜𝑜𝑑𝑑
% 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑖𝑖𝑎𝑎𝑜𝑜𝑜𝑜𝑑𝑑

   (Norton, 2008).  
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CHAPTER FOUR 

RESULTS AND INTERPRETATION 

This chapter presents the study's findings and interpretation. It has been suggested 

to numerically simulate the model using assumptions and data from the literature 

review. In this chapter, sensitivity indices are also displayed. 

This section is organized as follows: 4.1. Model analysis and 4.2 Model 

simulation. 

4.1 Model Analysis 

This sub-section is organized as follows: 4.1.1 Existence and positive in variance, 

4.1.2. Boundedness of the solution, 4.1.3 Disease-free equilibrium point, 4.1.4 Basic 

reproduction number, 4.1.5 Endemic equilibrium, 4.1.6 Stability analysis, and 4.1.7 

Bifurcation analysis. 

4.1.1 Existence and positive invariance  

Theorem 1: Solutions of the model equations (1) – (6) together with the initial 

conditions 𝑆𝑆(0) ≥ 0, 𝑆𝑆(0) ≥ 0,𝑆𝑆(0) ≥ 0,𝑆𝑆(0) ≥ 0,𝑉𝑉(0) ≥ 0, 𝐿𝐿(0) ≥ 0 are always 

positive or the model variables 𝑆𝑆 (𝑡𝑡), 𝑆𝑆( 𝑡𝑡), P(𝑡𝑡), C(t), V(t) and L(𝑡𝑡) all positive for all 

𝑡𝑡 and will remain in 𝑅𝑅6+ (Gurmu & Koya, 2019). 

Proof 

For the sake of analysis  

 𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) − 𝜏𝜏2𝐴𝐴𝐻𝐻
𝐴𝐴+𝐵𝐵𝐻𝐻

+ 𝛺𝛺1𝑆𝑆 − 𝛿𝛿1𝑆𝑆,                                                              (7) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝜏𝜏2𝐴𝐴
𝐴𝐴+𝐵𝐵𝐻𝐻

− 𝛺𝛺2𝑆𝑆,                                                                           (8) 

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝛽𝛽𝑆𝑆 − 𝛳𝛳 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
− 𝛺𝛺3𝑆𝑆,                                                           (9) 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

= �𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝛳𝛳 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
− 𝛺𝛺4𝑆𝑆� (1 − 𝑘𝑘4𝑆𝑆),                 .                           (10)                             

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= {𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆}(1 − 𝑘𝑘2𝑉𝑉) − 𝜏𝜏1𝑆𝑆𝑉𝑉 − 𝜖𝜖 𝐿𝐿
𝐿𝐿+𝐾𝐾4

𝑉𝑉 − 𝛿𝛿2𝑉𝑉,   (11) 

 𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝑟𝑟3𝐿𝐿(1 − 𝑘𝑘3𝐿𝐿) − 𝛼𝛼1𝐿𝐿𝑉𝑉 − 𝛿𝛿3𝐿𝐿,                                                                       (12)      
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Where 
1
𝐾𝐾1

= 𝑘𝑘1;
1
𝐾𝐾2

= 𝑘𝑘2;
1
𝐾𝐾3

= 𝑘𝑘3;
𝐸𝐸𝑆𝑆
𝐹𝐹 + 𝑆𝑆

= 𝛺𝛺1;𝛺𝛺2 = 𝛽𝛽 + 𝛺𝛺1 + 𝜂𝜂1 + 𝛿𝛿1;𝛺𝛺3 = 𝜂𝜂2 + 𝛿𝛿1 

          𝛺𝛺4 = 𝜂𝜂3 +, to reduce the number of parameters, therefore; 

For 𝑡𝑡 > 0, let 𝑊𝑊 = (𝑛𝑛(𝑡𝑡), 𝑛𝑛(𝑡𝑡),𝑝𝑝(𝑡𝑡), 𝑎𝑎(𝑡𝑡), 𝑛𝑛(𝑡𝑡), 𝑙𝑙(𝑡𝑡))𝑇𝑇 and 𝐹𝐹(𝑊𝑊) =

(𝐹𝐹1(𝑊𝑊),𝐹𝐹2(𝑊𝑊),𝐹𝐹3(𝑊𝑊),𝐹𝐹4(𝑊𝑊),𝐹𝐹5(𝑊𝑊),𝐹𝐹6(𝑊𝑊))𝑇𝑇,where 𝐹𝐹1(𝑊𝑊) = 𝑟𝑟1𝑆𝑆(1 −

𝑘𝑘1𝑁𝑁) − 𝜏𝜏2𝐴𝐴𝐻𝐻
𝐴𝐴+𝐵𝐵𝐻𝐻

+ 𝛺𝛺1𝑆𝑆 − 𝛿𝛿1𝑆𝑆, 𝐹𝐹2(𝑊𝑊) = 𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝜏𝜏2𝐴𝐴𝐻𝐻
𝐴𝐴+𝐵𝐵𝐻𝐻

− 𝛺𝛺2𝑆𝑆,𝐹𝐹3(𝑊𝑊) =

𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝛽𝛽𝑆𝑆 − 𝛳𝛳 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
− 𝛺𝛺3𝑆𝑆,𝐹𝐹4(𝑊𝑊) = �𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝛳𝛳 𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
−

𝛺𝛺4𝑆𝑆� (1 − 𝑘𝑘4𝑆𝑆),𝐹𝐹5(𝑊𝑊) = {𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆}(1 − 𝑘𝑘2𝑉𝑉) − 𝜏𝜏1𝑆𝑆𝑉𝑉 −

𝜖𝜖 𝐿𝐿
𝐿𝐿+𝐾𝐾4

𝑉𝑉 − 𝛿𝛿2𝑉𝑉,𝐹𝐹6(𝑊𝑊) = 𝑟𝑟3𝐿𝐿(1 − 𝑘𝑘3𝐿𝐿) − 𝛼𝛼1𝐿𝐿𝑉𝑉 − 𝛿𝛿3𝐿𝐿. Then, the system (1)-(6) 

can be written as 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑊𝑊) where 𝐹𝐹:𝑆𝑆+ → (𝑅𝑅)+6  with 𝑊𝑊(0) = 𝑊𝑊0𝜖𝜖 𝑅𝑅+6 . Thus, the 

function W is locally Lipschitzian and completely stable on 𝑅𝑅+6 .  

Therefore, the solution of the system with non-negative initial conditions exists and 

is unique. It is also evident that these solutions exist for all 𝑡𝑡 > 0 and are non-

negative, hence the region  𝑅𝑅+6  is an invariant domain of the system  (Belew & 

Melese, 2022).   

4.1.2 Boundedness of the solution 

For the system to be mathematically meaningful, it is necessary to show that its state 

variables are positive and bounded for all t. That is, the solution of the system with a 

positive initial value will remain positive for all t ≥ 0. 

Theorem 2: The positive solutions of the system of model equations (1)-(6) are 

bounded. That is, the model variables S(t), I(t), P(t), C(t), V(t) and L(t) are bounded 

for all t (Gurmu & Koya, 2019). 

Proof 

    𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑆𝑆(𝑡𝑡)                                                                  (13)                                                                                      

By differentiating equation (13) gives, 

 𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝐴𝐴 
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

                                                                                        (14)                           
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 𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� − 𝛿𝛿1𝑆𝑆 + 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴

𝐾𝐾1
� − 𝜂𝜂1𝑆𝑆 − 𝛿𝛿1𝑆𝑆 + 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴

𝐾𝐾1
� − 𝜂𝜂2𝑆𝑆 −

𝛿𝛿1𝑆𝑆 + 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� − 𝜂𝜂3𝑆𝑆 − 𝛿𝛿1𝑆𝑆(1 − 𝑈𝑈

𝐾𝐾4


𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑟𝑟1𝑁𝑁 �1 − 𝐴𝐴
𝐾𝐾1
� − ( 𝛿𝛿1𝑆𝑆 + 𝜂𝜂1𝑆𝑆 + 𝛿𝛿1𝑆𝑆 +𝜂𝜂2𝑆𝑆 + 𝛿𝛿1𝑆𝑆 + 𝜂𝜂3𝑆𝑆 + 𝛿𝛿1𝑆𝑆(1 − 𝑈𝑈

𝐾𝐾4
))     (16)  

𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑
≤ 𝑟𝑟1𝑁𝑁 �1 − 𝐴𝐴

𝐾𝐾1
�                                                                                                                                                                       

By using the separation of variables of inequality, we have  𝑑𝑑𝐴𝐴

𝐴𝐴�1− 𝑁𝑁
𝐾𝐾1
�
≤ 𝑟𝑟1𝑎𝑎𝑡𝑡        (17) 

 On integrating both sides (17) and applying the initial conditions to get the value of 

A and finally substituting the value of A, we have  𝑁𝑁(𝑡𝑡) ≤ 𝐾𝐾1
1+( 𝐾𝐾1

𝑁𝑁(0)−1)𝑎𝑎−𝑟𝑟𝑟𝑟
.           (18)                                                     

 Introducing limits, lim
𝑑𝑑→∞

𝑁𝑁(𝑡𝑡)  ≤ 𝐾𝐾1.Implying that 0 ≤ 𝑁𝑁(𝑡𝑡) ≤  𝐾𝐾1    

Also for, 𝑉𝑉(𝑡𝑡)                                                                                                                      

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= {𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆} �1 − 𝐻𝐻
𝐾𝐾2
� − 𝜏𝜏1𝑆𝑆𝑉𝑉 − 𝜖𝜖 𝐿𝐿

𝐿𝐿+𝐾𝐾4
𝑉𝑉 − 𝛿𝛿2𝑉𝑉.     (19) 

Let 𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆 = 𝑟𝑟4𝑉𝑉                                                          (20) 

𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝑟𝑟4𝑉𝑉 �1 − 𝐻𝐻
𝐾𝐾2
� − 𝜏𝜏1𝑆𝑆𝑉𝑉 − 𝜖𝜖 𝐿𝐿

𝐿𝐿+𝐾𝐾4
𝑉𝑉 − 𝛿𝛿2𝑉𝑉 , then,  𝑑𝑑𝐻𝐻

𝑑𝑑𝑑𝑑
≤ 𝑟𝑟4𝑉𝑉 �1 − 𝐻𝐻

𝐾𝐾2
�             (21)                                                                                        

By separating variables (21), integrating and applying initial conditions and limits we 

obtained lim
𝑑𝑑→∞

𝑉𝑉(𝑡𝑡)  ≤ 𝐾𝐾2.Therefore; 𝑉𝑉(𝑡𝑡) ≤ 𝐾𝐾2 .Implying that, 0 ≤ 𝑉𝑉(𝑡𝑡) ≤  𝐾𝐾2.                                 

Similarly, 𝐿𝐿(𝑡𝑡), 𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑
≤ 𝑟𝑟3𝐿𝐿 �1 − 𝐿𝐿

𝐾𝐾3
�. Therefore; 𝐿𝐿(𝑡𝑡) ≤ 𝐾𝐾3

1+( 𝐾𝐾3𝐿𝐿(0)−1)𝑎𝑎−𝑟𝑟𝑟𝑟
. On applying the 

limits as 𝑡𝑡 → ∞, it follows that; 0 ≤ 𝐿𝐿(𝑡𝑡) ≤  𝐾𝐾3.                                                                                                      

4.1.3 Disease-free equilibrium point (DFE) 

Theorem 3:  The system of equation (1) to (6) has disease-free equilibrium point(𝐸𝐸0) 

obtained as;   𝐸𝐸0 =  (𝑆𝑆0, 𝑆𝑆0,𝑆𝑆0,𝑆𝑆0,𝑉𝑉0, 𝐿𝐿0) = �𝐾𝐾1(𝑟𝑟1−𝛿𝛿1)
𝑟𝑟1

, 0,0,0,0, 𝐾𝐾3
𝑟𝑟3

(𝑟𝑟3 − 𝛿𝛿3)�. 
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Proof 

DFE of the system (1)-(6) is obtained by setting the right-hand side to zero and 

equating the infectious classes to zero 𝑆𝑆 = 0,𝑆𝑆 = 0,𝑆𝑆 = 0,𝐴𝐴 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉 = 0 (Mutua 

et al., 2022). 

Solving, we obtained. 𝑆𝑆0 = 0 and  𝑆𝑆0 = 𝐾𝐾1(𝑟𝑟1−𝛿𝛿1)
𝑟𝑟1

     L0 = 0 and L0 = K3(r3−δ3)
r3

.  The 

set, 𝑆𝑆0 =  L0 = 0 was not biologically meaningful because it is not feasible to have a 

cervix with no basal cells and Lymphocytes. Hence 𝑆𝑆0 = 𝐾𝐾1(𝑟𝑟1−𝛿𝛿1)
𝑟𝑟1

 and L0 =

K3(r3−δ3)
r3

. Hence the disease-free equilibrium point of the system of equations (1) to 

(8) was obtained as: 

𝐸𝐸0  =  (𝑆𝑆0, 𝑆𝑆0,𝑆𝑆0,𝑆𝑆0,𝑉𝑉0, 𝐿𝐿0) = �𝐾𝐾1(𝑟𝑟1−𝛿𝛿1)
𝑟𝑟1

, 0,0,0,0, 𝐾𝐾3
𝑟𝑟3

(𝑟𝑟3 − 𝛿𝛿3)�.  

4.1.4 Basic reproduction number (𝑹𝑹𝟎𝟎)   

There are numerous controversies surrounding the method of calculating basic 

reproduction number(𝑅𝑅0) because it has been proven that each method produces a 

unique estimate of (𝑅𝑅0)  hence posing a challenge to stakeholders on how best to 

control the dynamics of a disease (Smith et al., 2011). Although most studies have 

evaluated 𝑅𝑅0 using the next-generation method, it estimates 𝑅𝑅0 as an average 

regardless of whether the population is of human or host cells. It also lacks some 

uniqueness (Smith et al., 2011). To address the challenges of those methods, this 

study determined 𝑅𝑅0 using three methods for comparative purposes: Sub-Sub section 

4.1.4.1 next-generation matrix, 4.1.4.2 Survival Function and 4.1.4.3 constant term 

of the characteristic polynomial.  

4.1.4.1 Using next generation matrix   

Theorem 4:  The basic reproduction number,𝑅𝑅0 = (𝐸𝐸+𝐹𝐹)(𝐾𝐾1−𝐴𝐴0)𝛾𝛾1
𝐾𝐾1(𝐸𝐸𝑀𝑀+𝐹𝐹𝑀𝑀+𝐸𝐸𝐸𝐸+𝐸𝐸𝛿𝛿1+𝐹𝐹𝛿𝛿1+𝐸𝐸𝜂𝜂1+𝐹𝐹𝜂𝜂1)

 

by Next-generation method. 

Proof 

We employ Kermack and Diekmann's next generation matrix approach to get a basic 

reproduction number (Diekmann et al., 1990).  Let new infections terms be 
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represented by non-negative matrix f and transfer of infections terms by non-singular 

matrix v, respectively.  

Thus  

         𝑓𝑓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴

𝐾𝐾1
� + 𝜏𝜏2𝐴𝐴𝐻𝐻

𝐴𝐴+𝐵𝐵𝐻𝐻

𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
�

𝑟𝑟1𝑆𝑆 �1 − 𝐴𝐴
𝐾𝐾1
� �1 − 𝑈𝑈

𝐾𝐾4
�

𝑟𝑟1𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆 �1 − 𝐻𝐻
𝐾𝐾2
�⎦
⎥
⎥
⎥
⎥
⎥
⎤

; 

          𝑛𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝛽𝛽𝑆𝑆 + 𝐸𝐸𝐸𝐸

𝐹𝐹+𝐸𝐸
𝑆𝑆 + 𝜂𝜂2𝑆𝑆 + 𝛿𝛿1𝑆𝑆

−𝛽𝛽𝑆𝑆 + 𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
+ 𝜂𝜂2𝑆𝑆+𝛿𝛿1𝑆𝑆

�− 𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
+ 𝜂𝜂3𝑆𝑆 + 𝛿𝛿1𝑆𝑆� �1 − 𝑈𝑈

𝐾𝐾4
�

𝜏𝜏1𝑆𝑆𝑉𝑉 + 𝜖𝜖𝐿𝐿𝐻𝐻
𝐿𝐿+𝐾𝐾4

+ 𝛿𝛿2𝑉𝑉 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  

At 𝐸𝐸0point, Jacobian matrices of f and v were evaluated to find out matrices F and V 

respectively, 

𝐹𝐹 = 

⎣
⎢
⎢
⎢
⎢
⎡�1 − 𝐴𝐴0

𝐾𝐾1
� 𝛾𝛾1 0 0 −𝑀𝑀𝐴𝐴0𝐻𝐻𝜏𝜏2

𝐴𝐴2

0 �1 − 𝐴𝐴0

𝐾𝐾1
� 𝛾𝛾1 0 0

0 0 �1 − 𝐴𝐴0

𝐾𝐾1
� 𝛾𝛾1 0

𝜂𝜂1𝜔𝜔1 𝜂𝜂2𝜔𝜔2 𝜂𝜂3𝜔𝜔3 𝛾𝛾2 ⎦
⎥
⎥
⎥
⎥
⎤

; 

 

𝑉𝑉 =

⎣
⎢
⎢
⎢
⎢
⎡𝛽𝛽 + 𝐸𝐸𝐸𝐸

𝐹𝐹+𝐸𝐸
+ 𝛿𝛿1 + 𝜂𝜂1 0 0 0
−𝛽𝛽 𝛿𝛿1 + 𝜂𝜂2 0 0
0 0 𝛿𝛿1 + 𝜂𝜂3 0

0 0 0 𝐿𝐿0𝜖𝜖
𝐿𝐿0+𝐾𝐾5

+ 𝛿𝛿2 + 𝜏𝜏1𝑆𝑆0𝑉𝑉⎦
⎥
⎥
⎥
⎥
⎤

   

 

At 𝐸𝐸0point, 𝐹𝐹𝑉𝑉−1,was obtained as,  
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (1 − 𝑆𝑆0

𝐾𝐾1
)𝑟𝑟1

𝑆𝑆𝑀𝑀
𝐹𝐹 + 𝑆𝑆 + 𝛽𝛽 + 𝛿𝛿1 + 𝜂𝜂1

0 0 0

0
(1 − 𝑆𝑆0

𝐾𝐾1
)𝑟𝑟1

𝛿𝛿1 + 𝜂𝜂2
0 0

0 0
(1 − 𝑆𝑆0

𝐾𝐾1
)𝑟𝑟1

𝛿𝛿1 + 𝜂𝜂3
0

0 0 0
𝑟𝑟2

𝐿𝐿0𝜖𝜖
𝐿𝐿0 + 𝐾𝐾5

+ 𝛿𝛿2 + 𝜏𝜏1𝑆𝑆0𝑉𝑉⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The four eigenvalues were; 

  (𝐾𝐾1−𝐴𝐴0)𝛾𝛾1
𝐾𝐾1(𝛿𝛿1+𝜂𝜂3)

,  (𝐾𝐾1−𝐴𝐴
0)𝛾𝛾1

𝐾𝐾1(𝛿𝛿1+𝜂𝜂2)
, (𝐸𝐸+𝐹𝐹)(𝐾𝐾1−𝐴𝐴0)𝛾𝛾1
𝐾𝐾1(𝐸𝐸𝑀𝑀+𝐹𝐹𝑀𝑀+𝐸𝐸𝐸𝐸+𝐸𝐸𝛿𝛿1+𝐹𝐹𝛿𝛿1+𝐸𝐸𝜂𝜂1+𝐹𝐹𝜂𝜂1)

 𝑎𝑎𝑎𝑎𝑎𝑎 (𝐿𝐿0+𝐾𝐾4)𝛾𝛾2
𝜖𝜖𝐿𝐿0+𝛿𝛿2𝐿𝐿0+𝐾𝐾4𝛿𝛿2

  

By inspection method(which was verified by numerical method too) the dominant 

eigenvalue represents the 𝑅𝑅0 (Diekmann et al., 1990). Hence 

𝑅𝑅0 =
(𝑆𝑆 + 𝐹𝐹)(𝐾𝐾1 − 𝑆𝑆0)𝛾𝛾1

𝐾𝐾1(𝑆𝑆𝛽𝛽 + 𝐹𝐹𝛽𝛽 + 𝑆𝑆𝐸𝐸 + 𝑆𝑆𝛿𝛿1 + 𝐹𝐹𝛿𝛿1 + 𝑆𝑆𝜂𝜂1 + 𝐹𝐹𝜂𝜂1)
 

 

4.1.4.2 Basic Reproduction Number by Survival Function 

Theorem 5:  The basic reproduction number 

𝑅𝑅0 =
𝑟𝑟1 �1 − 𝑁𝑁

𝐾𝐾1
� + 𝜏𝜏2𝑆𝑆0𝑉𝑉

𝑆𝑆 + 𝐵𝐵𝑉𝑉

𝛽𝛽 + 𝐸𝐸𝑆𝑆
𝐹𝐹 + 𝑆𝑆 + 𝜂𝜂1 + 𝛿𝛿1

+
𝑟𝑟1 �1 − 𝑁𝑁

𝐾𝐾1
�

𝜃𝜃𝑆𝑆𝑆𝑆
𝐷𝐷2 + 𝑆𝑆2 + 𝜂𝜂2 + 𝛿𝛿2

+
𝑟𝑟1 �1 − 𝑁𝑁

𝐾𝐾1
�

�(𝜂𝜂3 + 𝛿𝛿1) �1 − 𝑆𝑆
𝐾𝐾4
��

+
(𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆)(1 − 𝑉𝑉

𝐾𝐾2
)

𝜖𝜖𝐿𝐿0
𝐿𝐿 + 𝐾𝐾4

+ 𝛿𝛿2 + 𝜏𝜏1𝑆𝑆𝑉𝑉
 

By the method proposed by (Shaw & Kennedy, 2021) where;   

𝑁𝑁(0),𝑆𝑆(0),𝑉𝑉(0),𝑆𝑆(0),𝑆𝑆(0), 𝑆𝑆(0) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿(0) are assumed to be constant terms at the 

beginning of the epidemic.  For numerical computation, in this study, we assumed 

those constant values to be the initial conditions of the model. 
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Proof 

 Evaluation of 𝑅𝑅0 using the survival function method is considered to be a more 

accurate method. The survival function approach produces the average number of 

secondary basal cells infected by one infected basal cell in the same class, which is 

one of its advantages (Smith et al., 2011). It also takes into account the different 

attributes of the population, therefore, the basic reproduction number using the 

survival function is given by; 𝑅𝑅0=∫ (𝑘𝑘 × 𝑏𝑏 × 𝑝𝑝)𝑎𝑎𝑡𝑡∞
0  where:k= rate at which an 

individual in that class causes an infection, b= probability at which an infected 

individual remains in the same class to cause an infection. p= probability that an 

infected case will enter that class (Shaw & Kennedy, 2021). 

 Considering the infectious classes (I, P, C, and V),  and 𝑵𝑵, 𝑆𝑆,𝑉𝑉,𝑆𝑆,𝑆𝑆, 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿 are 

assumed to be constant terms at the beginning of the epidemic,  evaluating 𝑅𝑅0 of 

equations (2), (3), (4) and (5), the basic reproduction number was obtained by 

summing them (Smith et al., 2011) that is, 

�𝑟𝑟1 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝜏𝜏2𝐴𝐴𝐻𝐻

𝐴𝐴+𝐵𝐵𝐻𝐻
� ∫ 𝑒𝑒−�𝑀𝑀+

𝐸𝐸𝐸𝐸
𝐹𝐹+𝐸𝐸+𝜂𝜂1+𝛿𝛿1�𝑇𝑇𝐴𝐴𝑎𝑎𝑇𝑇𝐴𝐴

∞
0 + �𝑟𝑟1 �1 −

𝐴𝐴
𝐾𝐾1
�� ∫ 𝑒𝑒−�

𝜃𝜃𝜃𝜃𝜃𝜃
𝐷𝐷2+𝜃𝜃2

+𝜂𝜂2+𝛿𝛿2�𝑇𝑇𝐴𝐴𝑎𝑎𝑇𝑇𝐴𝐴
∞
0 + �𝑟𝑟1 �1 − 𝐴𝐴

𝐾𝐾1
�� ∫ 𝑒𝑒

−�(𝜂𝜂3+𝛿𝛿1)�1− 𝜃𝜃
𝐾𝐾4
��𝑇𝑇𝐴𝐴

𝑎𝑎𝑇𝑇𝐴𝐴
∞
0 +

�(𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆)(1− 𝐻𝐻
𝐾𝐾2

)� ∫ 𝑒𝑒−�
𝜖𝜖𝐿𝐿

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝜏𝜏1𝐴𝐴𝐻𝐻�𝑇𝑇𝐴𝐴𝑎𝑎𝑇𝑇𝐴𝐴

∞
0    

Integrating, �𝑟𝑟1 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝜏𝜏2𝐴𝐴𝐻𝐻

𝐴𝐴+𝐵𝐵𝐻𝐻
� �− 𝑎𝑎−�𝛽𝛽+

𝐸𝐸𝐸𝐸
𝐹𝐹+𝐸𝐸+𝜂𝜂1+𝛿𝛿1�𝑇𝑇𝐴𝐴

𝑀𝑀+ 𝐸𝐸𝐸𝐸
𝐹𝐹+𝐸𝐸+𝜂𝜂1+𝛿𝛿1

�
0

∞

+ �𝑟𝑟1 �1 −

𝐴𝐴
𝐾𝐾1
�� �− 𝑎𝑎

−� 𝜃𝜃𝜃𝜃𝜃𝜃
𝐷𝐷2+𝜃𝜃2

+𝜂𝜂2+𝛿𝛿2�𝑇𝑇𝐴𝐴

𝜃𝜃𝜃𝜃𝜃𝜃
𝐷𝐷2+𝜃𝜃2

+𝜂𝜂2+𝛿𝛿2
�
0

∞

+ �𝑟𝑟1 �1 − 𝐴𝐴
𝐾𝐾1
�� �− 𝑎𝑎

−�(𝜂𝜂3+𝛿𝛿1)�1− 𝜃𝜃
𝐾𝐾4

��𝑇𝑇𝐴𝐴

�(𝜂𝜂3+𝛿𝛿1)�1− 𝜃𝜃
𝐾𝐾4
��

�

0

∞

+ �(𝑟𝑟2𝑉𝑉 +

𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆)(1 − 𝐻𝐻
𝐾𝐾2

)� �𝑎𝑎
−� 𝜖𝜖𝐿𝐿
𝐿𝐿+𝐾𝐾4

+𝛿𝛿2+𝜏𝜏1𝑆𝑆𝑆𝑆�𝑇𝑇𝐴𝐴

𝜖𝜖𝐿𝐿
𝐿𝐿+𝐾𝐾4

+𝛿𝛿2+𝜏𝜏1𝐴𝐴𝐻𝐻
�
0

∞

.  

  



 
 

 
25 

Putting the limits the basic reproduction number is obtained as: 

𝑹𝑹𝟎𝟎 =
𝑟𝑟1 �1 − 𝑁𝑁

𝐾𝐾1
� + 𝜏𝜏2𝑆𝑆0𝑉𝑉

𝑆𝑆 + 𝐵𝐵𝑉𝑉

𝛽𝛽 + 𝐸𝐸𝑆𝑆
𝐹𝐹 + 𝑆𝑆 + 𝜂𝜂1 + 𝛿𝛿1

+
𝑟𝑟1 �1 − 𝑁𝑁

𝐾𝐾1
�

𝜃𝜃𝑆𝑆𝑆𝑆
𝐷𝐷2 + 𝑆𝑆2 + 𝜂𝜂2 + 𝛿𝛿2

+
𝑟𝑟1 �1 − 𝑁𝑁

𝐾𝐾1
�

�(𝜂𝜂3 + 𝛿𝛿1) �1 − 𝑆𝑆
𝐾𝐾4
��

+
(𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆)(1− 𝑉𝑉

𝐾𝐾2
)

𝜖𝜖𝐿𝐿0
𝐿𝐿 + 𝐾𝐾4

+ 𝛿𝛿2 + 𝜏𝜏1𝑆𝑆𝑉𝑉
 

4.1.4.3 Basic Reproduction number by evaluating the constant term of the 

characteristic polynomial. 

Theorem 6:  The basic reproduction number 

𝑅𝑅0 = (𝐹𝐹+𝐸𝐸)(𝐴𝐴0−𝐾𝐾1)3(𝐿𝐿0+𝐾𝐾4)𝑟𝑟13𝑟𝑟2
𝐾𝐾1
3(𝐹𝐹𝑀𝑀+𝐸𝐸(𝑑𝑑+𝑀𝑀)+(𝐹𝐹+𝐸𝐸)(𝛿𝛿1+𝜂𝜂1))(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)(𝐿𝐿0𝜖𝜖+(𝐿𝐿0+𝐾𝐾4)(𝛿𝛿2+𝐴𝐴𝜏𝜏1))

 by method 

evaluating the constant term of the characteristic polynomial (Smith et al., 2011).  

Proof 

For comparison purposes, there is a need to determine the basic reproduction number 

using the constant term of a characteristic polynomial. When λ max = 0, the constant 

term of the characteristic polynomial will be zero (Smith et al., 2011). However, the 

reverse is not true, as the polynomial could have both zero and positive roots. The 

characteristic polynomial by next- generation matrix (𝐹𝐹𝑉𝑉−1) is of the form  𝑏𝑏4𝜆𝜆4 +

𝑏𝑏3𝜆𝜆3 + 𝑏𝑏2𝜆𝜆2 + 𝑏𝑏1𝜆𝜆 + 𝑏𝑏0 = 0, where the expressions of 𝑏𝑏4, 𝑏𝑏3, 𝑏𝑏2, 𝑏𝑏1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏0  are 

found in the appendix in section 4. The study (Smith et al., 2011) proposes the 

following conditions. 

Let 𝑏𝑏0  represent 𝑅𝑅0, then 𝑏𝑏0= 0 is a threshold if 𝑏𝑏𝑗𝑗 ≥ 0 for all j. Some sufficient 

conditions include; non-constant coefficients all being positive and 𝑏𝑏𝑗𝑗 ≥ 0 under the 

constraint 𝑏𝑏0= 0 (so that the largest eigenvalue at 𝑏𝑏0 = 0 is 0). Comparing this method 

to determining the biggest eigenvalue, it is much simpler to employ, although 

verifying that 𝑏𝑏𝑗𝑗= 0 requires that the greatest eigenvalue matches to can get complex 

for some models (Smith et al., 2011).  

𝑅𝑅0 = (𝐹𝐹+𝐸𝐸)(𝐴𝐴0−𝐾𝐾1)3(𝐿𝐿0+𝐾𝐾4)𝑟𝑟13𝑟𝑟2
𝐾𝐾1
3(𝐹𝐹𝑀𝑀+𝐸𝐸(𝑑𝑑+𝑀𝑀)+(𝐹𝐹+𝐸𝐸)(𝛿𝛿1+𝜂𝜂1))(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)(𝐿𝐿0𝜖𝜖+(𝐿𝐿0+𝐾𝐾4)(𝛿𝛿2+𝐴𝐴𝜏𝜏1))

 .  
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4.1.5 Endemic equilibrium 

By setting the system of equations to zero and evaluating the state variables, the 

endemic equilibrium points would be in the form: 

(𝐸𝐸𝐸𝐸𝑆𝑆) = (𝑆𝑆∗, 𝑆𝑆∗,𝑆𝑆∗,𝑆𝑆∗,𝑉𝑉∗, 𝐿𝐿∗) 

From;  �𝑟𝑟1𝑆𝑆∗ �1 − 𝐴𝐴
𝐾𝐾1
� + 𝛳𝛳 𝑈𝑈∗𝐻𝐻∗2

𝐷𝐷2+𝐻𝐻∗2
− 𝜂𝜂3𝑆𝑆∗ − 𝛿𝛿1𝑆𝑆∗� �1 − 𝑈𝑈∗

𝐾𝐾4
� = 0  

It follows that; 𝑆𝑆∗ = 𝐾𝐾4  

The endemic equilibrium point exists at 𝑆𝑆∗ = 𝐾𝐾4 and since the equations are highly 

non-linear, it was not tractable to solve them explicitly. 

From;  𝑟𝑟1𝑆𝑆∗ �1 − 𝐴𝐴
𝐾𝐾1
� + 𝛽𝛽𝑆𝑆∗ − 𝛳𝛳 𝑈𝑈∗𝐻𝐻∗2

𝐷𝐷2+𝐻𝐻∗2
− 𝜂𝜂2𝑆𝑆∗ − 𝛿𝛿1𝑆𝑆∗ = 0  

𝑆𝑆∗

=
−𝑆𝑆𝜃𝜃𝐾𝐾1 ± �𝑆𝑆2𝜃𝜃2𝐾𝐾12 − 4(𝛽𝛽𝐾𝐾1 − 𝑁𝑁𝑟𝑟1 + 𝐾𝐾1𝑟𝑟1 − 𝐾𝐾1𝛿𝛿1 − 𝐾𝐾1𝜂𝜂2)(𝐷𝐷2𝛽𝛽𝐾𝐾1 − 𝐷𝐷2𝑁𝑁𝑟𝑟1 + 𝐷𝐷2𝐾𝐾1𝑟𝑟1 − 𝐷𝐷2𝐾𝐾1𝛿𝛿1 − 𝐷𝐷2𝐾𝐾1𝜂𝜂2)

2(−𝛽𝛽𝐾𝐾1 + 𝑁𝑁𝑟𝑟1 − 𝐾𝐾1𝑟𝑟1 + 𝐾𝐾1𝛿𝛿1 + 𝐾𝐾1𝜂𝜂2)
 

From; {𝑟𝑟2𝑉𝑉∗ + 𝜔𝜔1𝜂𝜂1𝑆𝑆∗ + 𝜔𝜔2𝜂𝜂2𝑆𝑆∗ + 𝜔𝜔3𝜂𝜂3𝑆𝑆∗} �1 − 𝐻𝐻∗

𝐾𝐾2
� − 𝜏𝜏1𝑆𝑆𝑉𝑉 − 𝜖𝜖 𝐿𝐿∗

𝐿𝐿∗+𝐾𝐾4
𝑉𝑉∗ −

𝛿𝛿2𝑉𝑉∗ = 0 

    𝑉𝑉∗ =

𝐾𝐾2(𝐿𝐿𝜖𝜖𝐾𝐾4
−𝑟𝑟2+

𝐽𝐽𝜂𝜂1𝜔𝜔1
𝐾𝐾2

+𝜃𝜃𝜂𝜂2𝜔𝜔2𝐾𝐾2
+𝑇𝑇𝜂𝜂3𝜔𝜔3𝐾𝐾2

+�4𝑟𝑟2(𝐽𝐽𝜂𝜂1𝜔𝜔1+𝜃𝜃𝜂𝜂2𝜔𝜔2+𝑇𝑇𝜂𝜂3𝜔𝜔3)
𝐾𝐾2

+(−𝐿𝐿𝜖𝜖
𝐾𝐾4
+𝑟𝑟2−

𝐽𝐽𝜂𝜂1𝜔𝜔1
𝐾𝐾2

−𝜃𝜃𝜂𝜂2𝜔𝜔2𝐾𝐾2
−𝑇𝑇𝜂𝜂3𝜔𝜔3𝐾𝐾2

)2)

2𝑟𝑟2
 

Substituting the value of 𝑆𝑆∗,𝑆𝑆∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉∗ to; 

 𝑟𝑟1𝑆𝑆∗ �1 − 𝐴𝐴
𝐾𝐾1
� + 𝜏𝜏2𝐴𝐴0𝐻𝐻

𝐴𝐴+𝐵𝐵𝐻𝐻∗
− 𝛽𝛽𝑆𝑆∗ − 𝐸𝐸𝐸𝐸

𝐹𝐹+𝐸𝐸
𝑆𝑆∗ − 𝜂𝜂1𝑆𝑆∗ − 𝛿𝛿1𝑆𝑆∗ > 0  and solving for 𝑆𝑆∗, we get 

the value of 𝑆𝑆∗ = − 𝜏𝜏2𝐸𝐸

(𝐴𝐴+𝐵𝐵𝐻𝐻)(− 𝐸𝐸𝐸𝐸
𝐹𝐹+𝐸𝐸−𝑀𝑀+(1− 𝑋𝑋

𝐾𝐾1
)𝑟𝑟1−𝛿𝛿1−𝜂𝜂1)

 

From 𝑟𝑟3𝐿𝐿∗ �1 − 𝐿𝐿∗

𝐾𝐾3
� − 𝛼𝛼1𝐿𝐿∗𝑉𝑉∗ − 𝛿𝛿3  

𝐿𝐿∗ = 𝐾𝐾3(𝑟𝑟3−𝐻𝐻𝛿𝛿1−𝛿𝛿3)
𝑟𝑟3

  

Theorem 7: The necessary and sufficient conditions for existence are 𝑅𝑅0 > 1,  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

>

0, 𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

> 0, 𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

> 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

> 0  (Kilonzi et al., 2024).   
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4.1.6 Stability analysis 

4.1.6.1 Local stability of disease-free equilibrium point 

Theorem 2. The Disease Free Equilibrium of the system (1)-(6) is locally 

asymptomatic stable whenever 𝑅𝑅0 < 1. 

Proof:  

The relative stability of the system can be determined by the Routh-Hurwitz criterion 

of stability without having to solve each equation. 

Determining Jacobian Matrix of the system (1)-(6) at Disease Free Equilibrium is 

obtained;  

[𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 𝑅𝑅6]𝑇𝑇 

𝑅𝑅1

= �−𝛿𝛿1 − 𝑘𝑘1𝑟𝑟1𝑆𝑆0(1 − 𝑘𝑘1𝑆𝑆0) 𝛺𝛺1 − 𝑘𝑘1𝑟𝑟1𝑆𝑆0(1 − 𝑘𝑘1𝑆𝑆0) −𝑘𝑘1𝑟𝑟1𝑆𝑆0(1 − 𝑘𝑘1𝑆𝑆0) −𝑘𝑘1𝑟𝑟1𝑆𝑆0(1 − 𝑘𝑘1𝑆𝑆0)
𝜏𝜏2𝐵𝐵
𝑆𝑆0

0� 

𝑅𝑅2 = �0 (1 − 𝑘𝑘1𝑆𝑆0)𝑟𝑟1 − 𝛺𝛺2 0 0 −
𝜏𝜏2𝐵𝐵
𝑆𝑆0

0� 

𝑅𝑅3 = [0 𝛽𝛽 (1 − 𝑘𝑘1𝑆𝑆0)𝑟𝑟1 − 𝛺𝛺3 0 0 0] 

𝑅𝑅4 = [0 0 0 (1 − 𝑘𝑘1𝑆𝑆0)𝑟𝑟1 − 𝛺𝛺4 0 0] 

𝑅𝑅5 = �0 𝜂𝜂1𝜔𝜔1 𝜂𝜂2𝜔𝜔2 𝜂𝜂3𝜔𝜔3 −
𝜖𝜖𝐿𝐿0

𝐿𝐿0 + 𝐾𝐾4
+ 𝑟𝑟2 − 𝛿𝛿2 − 𝜏𝜏1𝑆𝑆0 0� 

𝑅𝑅6 = [0 0 0 0 −𝛼𝛼1𝐿𝐿0 −𝛿𝛿3 − 𝑘𝑘3𝑟𝑟3𝐿𝐿0(1 − 𝑘𝑘3𝐿𝐿0)] 

The characteristic polynomial is obtained as 𝑎𝑎0𝜆𝜆6 + 𝑎𝑎1𝜆𝜆5 + 𝑎𝑎2𝜆𝜆4 + 𝑎𝑎3𝜆𝜆3 + 𝑎𝑎4𝜆𝜆2 +

𝑎𝑎5𝜆𝜆 + 𝑎𝑎6 = 0, where the expression 𝑎𝑎𝑖𝑖, 𝑛𝑛 = 1 for the system (1)-(6) are in appendix 

section 2. The Routh table for the coefficients was also derived in the appendix in 

section 1. 

From the characteristic polynomial, the values 𝑎𝑎2,𝑎𝑎4,𝑎𝑎6, 𝑏𝑏1, 𝑐𝑐1, 𝑎𝑎1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒1   are 

determined using Mathematica Software and expressed in terms of 𝑅𝑅𝑅𝑅. By Routh-

Hurwitz Criteria for stability, the system (1) -(6) is locally asymptotically stable at 

DFE whenever 𝑅𝑅𝑅𝑅 < 1 if and only if 𝑎𝑎2 > 0,𝑎𝑎4 > 0,𝑎𝑎6 > 0, 𝑏𝑏1 > 0, 𝑐𝑐1 > 0, 𝑎𝑎1 >
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0, 𝑒𝑒1 > 0 are satisfied and otherwise unstable (Mutua et al., 2022). The values 

of 𝑎𝑎2,𝑎𝑎4,𝑎𝑎6, 𝑏𝑏1, 𝑐𝑐1, 𝑎𝑎1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒1 have been expressed in the appendix. 

4.1.6.2 Global Stability of disease-free equilibrium point 

The global stability of disease-free equilibrium is investigated using the Castillo-

Chavez Metzler Matrix method.  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑋𝑋,𝑍𝑍);  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐺𝐺(𝑋𝑋,𝑍𝑍), 𝐺𝐺(𝑋𝑋, 0)  =  0 Where; 

𝑋𝑋 = (𝑆𝑆, 𝐿𝐿)𝜖𝜖𝑅𝑅2+ denote non-infectious cervical cancer compartments and 𝑍𝑍 =

 (𝑆𝑆,𝑆𝑆,𝑆𝑆,𝑉𝑉)𝜖𝜖 𝑅𝑅4+ denote the infectious cervical cancer compartments 𝐸𝐸𝑅𝑅 = (𝑋𝑋 ∗, 0) 

represents the disease-free equilibrium of the system if this point satisfies following 

conditions. 

i. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑋𝑋, 0), Where 𝑋𝑋∗ is globally asymptotically stable. 

ii. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷𝐷𝐷𝐺𝐺(𝑋𝑋, 0)𝑍𝑍 − 𝐺𝐺(𝑋𝑋,𝑍𝑍)  ≥  0 for all 𝑋𝑋,𝑍𝑍 ∈ Ω, then we can conclude 

that 𝐸𝐸𝑅𝑅 is locally asymptotically stable if the following theorems hold. 

Theorem; The equilibrium point 𝐸𝐸𝑅𝑅 = (𝑋𝑋 ∗ ,0) of the system [1-6] is globally 

asymptotically stable if 𝑅𝑅0∗  ≤  1 and the conditions (i) and (ii) are satisfied, 

otherwise unstable. From equation (1) two vectors function 𝐺𝐺(𝑋𝑋, 𝑍𝑍) and 𝐹𝐹(𝑋𝑋,𝑍𝑍), 

we consider systems 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑋𝑋, 0) = 0 Letting 𝐴𝐴 =  𝐷𝐷𝑧𝑧𝐺𝐺(𝑋𝑋 ∗ ,0), which is the 

Jacobian of Ĝ(𝑋𝑋,𝑍𝑍) taken in (I, P, C, V) and evaluated at (𝑋𝑋∗,0) such that the 

matrix A is given by; 

0 0 0 0
1 1 1 1 2 1 3 1

2

3

4

( )S k E S I S T S C
E k I

AZ
I k T

I T k C

β η β η β η β
ρ
ω

γ α

 − + + +
 − =
 −
 

+ −  

 

 

 

    

1 2 1

2

3

4

( )

( , )

S k E
E k I

G X Z
I k T

I T k C

λ λ
ρ
ω

γ α

+ − 
 − =
 −
 + − 
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But ^ ( , ) ( , )G X Z AZ G X Z= −  

hence, ^ 0
1 1 1 2 3 2

^
^ 2

^
3

^
4

( , ) ( ( )( )
( , ) 0

( , )
( , ) 0
( , ) 0

G X Y E I T C S S S
G X Y

G X Z
G X Y
G X Y

β η η η λ   + + + − −
   
   = =
   
   
    

 

 

Thus, if then the disease-free equilibrium ( 0E ) is globally stable and unstable 

otherwise. The susceptible is bounded as, 0S S≤ .Thus, DFE, 0E  is globally 

asymptomatically stable if and only if 0
1 1 2 3( ( )( )E I T C S Sβ η η η+ + + − ≥ 2Sλ   

(Kilonzi et al., 2024), (Ochwach et al., 2022), (Mutua et al., 2022). 

4.1.6.3 Global Stability Analysis of Endemic Equilibrium Point 

Lyapunov functions are mathematical tools used to study the stability of dynamical 

systems. Different Lyapunov functions are employed for global stability analysis 

such as; quadratic, non-quadratic, radial basis functions, composite and piecewise 

Lyapunov functions. This study adopted composite Lyapunov function. 

𝐿𝐿 = �𝑏𝑏𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖∗ ln 𝑥𝑥𝑖𝑖) 

The function L is said to be positive definite if it satisfies the following conditions: 

i) Strict positivity: 𝐿𝐿 > 0 for all 𝑥𝑥 ≠ 0. 

ii) Zero at origin: 𝐿𝐿(0) = 0. 

Where 𝑏𝑏𝑖𝑖 the constant is selected such that 𝑏𝑏𝑖𝑖 > 0, 𝑥𝑥𝑖𝑖 is the population of the ith 

compartment and 𝑥𝑥𝑖𝑖∗is the endemic equilibrium point.  

𝐿𝐿 = 𝑏𝑏1(𝑆𝑆 − 𝑆𝑆∗ ln 𝑆𝑆) + 𝑏𝑏2(𝑆𝑆 − 𝑆𝑆∗ ln 𝑆𝑆) + 𝑏𝑏3(𝑆𝑆 − 𝑆𝑆∗ ln𝑆𝑆) + 𝑏𝑏4(𝑆𝑆 − 𝑆𝑆∗ ln𝑆𝑆)

+ 𝑏𝑏5(𝑉𝑉 − 𝑉𝑉∗ ln𝑉𝑉) + 𝑏𝑏3(𝐿𝐿 − 𝐿𝐿∗ ln 𝐿𝐿) 

𝑎𝑎𝐿𝐿
𝑎𝑎𝑡𝑡

= 𝑏𝑏1 �1 −
𝑆𝑆∗

𝑆𝑆
�
𝑎𝑎𝑆𝑆
𝑎𝑎𝑡𝑡

+ 𝑏𝑏2 �1 −
𝑆𝑆∗

𝑆𝑆
�
𝑎𝑎𝑆𝑆
𝑎𝑎𝑡𝑡

+ 𝑏𝑏3 �1 −
𝑆𝑆∗

𝑆𝑆
�
𝑎𝑎𝑆𝑆
𝑎𝑎𝑡𝑡

+ 𝑏𝑏4 �1 −
𝑆𝑆∗

𝑆𝑆
�
𝑎𝑎𝑆𝑆
𝑎𝑎𝑡𝑡

+ 𝑏𝑏5 �1 −
𝑉𝑉∗

𝑉𝑉
�
𝑎𝑎𝑉𝑉
𝑎𝑎𝑡𝑡

+ 𝑏𝑏6 �1 −
𝐿𝐿∗

𝐿𝐿
�
𝑎𝑎𝐿𝐿
𝑎𝑎𝑡𝑡
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𝑎𝑎𝐿𝐿
𝑎𝑎𝑡𝑡

= 𝑏𝑏1 �1 −
𝑆𝑆∗

𝑆𝑆
� �𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) −

𝜏𝜏2𝑆𝑆
𝑆𝑆 + 𝐵𝐵𝑉𝑉

+ 𝛺𝛺1𝑆𝑆 − 𝛿𝛿1𝑆𝑆�

+ 𝑏𝑏2 �1 −
𝑆𝑆∗

𝑆𝑆
� �𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) +

𝜏𝜏2𝑆𝑆
𝑆𝑆 + 𝐵𝐵𝑉𝑉

− 𝛺𝛺2𝑆𝑆�

+ 𝑏𝑏3 �1 −
𝑆𝑆∗

𝑆𝑆
� ��𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝛳𝛳

𝑆𝑆𝑆𝑆2

𝐷𝐷2 + 𝑆𝑆2
− 𝛺𝛺4𝑆𝑆� (1 − 𝑘𝑘4𝑆𝑆)�

+ 𝑏𝑏4 �1 −
𝑆𝑆∗

𝑆𝑆
� �𝑟𝑟1𝑆𝑆(1 − 𝑘𝑘1𝑁𝑁) + 𝛽𝛽𝑆𝑆 − 𝛳𝛳

𝑆𝑆𝑆𝑆2

𝐷𝐷2 + 𝑆𝑆2
− 𝛺𝛺3𝑆𝑆�

+ 𝑏𝑏5 �1 −
𝑉𝑉∗

𝑉𝑉
� �{𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆}(1 − 𝑘𝑘2𝑉𝑉)

− 𝜏𝜏1𝑆𝑆𝑉𝑉 − 𝜖𝜖
𝐿𝐿

𝐿𝐿 + 𝐾𝐾4
𝑉𝑉 − 𝛿𝛿2𝑉𝑉�

+ 𝑏𝑏6 �1 −
𝐿𝐿∗

𝐿𝐿
� {𝑟𝑟3𝐿𝐿(1 − 𝑘𝑘3𝐿𝐿) − 𝛼𝛼1𝐿𝐿𝑉𝑉 − 𝛿𝛿3𝐿𝐿} 

After solving we obtain the value of X and Y as follows. 

𝑋𝑋 = 𝑏𝑏1𝑟𝑟1𝑆𝑆 + 𝑏𝑏1𝛺𝛺1𝑆𝑆 + 𝑏𝑏𝑆𝑆∗𝑟𝑟1𝐾𝐾1𝑁𝑁 + 𝑏𝑏𝐴𝐴∗𝜏𝜏2
𝐴𝐴+𝐵𝐵𝐻𝐻

+ 𝑏𝑏𝑆𝑆∗𝛿𝛿1 + 𝑏𝑏2𝑟𝑟1𝑆𝑆 + 𝑏𝑏2𝜏𝜏2𝑆𝑆 + 𝑏𝑏2𝑆𝑆∗𝐾𝐾1𝑁𝑁 +

𝑏𝑏2𝑆𝑆∗𝛺𝛺2 + 𝑏𝑏3𝑟𝑟1𝑆𝑆 + 𝑏𝑏3
𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
+ 𝑏𝑏3𝑟𝑟1𝑆𝑆2𝐾𝐾1𝐾𝐾4𝑁𝑁 + 𝑏𝑏3𝛺𝛺4𝑆𝑆2𝐾𝐾4 + 𝑏𝑏3𝐾𝐾1𝑁𝑁𝑆𝑆∗ + 𝑏𝑏3Ω4𝑆𝑆∗ +

𝑏𝑏3𝐾𝐾4𝑆𝑆𝑆𝑆∗𝑟𝑟1 + 𝑏𝑏3
𝜃𝜃𝑈𝑈∗𝑈𝑈𝐻𝐻2𝐾𝐾4
𝐷𝐷2+𝐻𝐻2

+ 𝑏𝑏4𝑟𝑟1𝑆𝑆 + 𝑏𝑏4𝛽𝛽I+𝑏𝑏4𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁𝐾𝐾4𝑆𝑆 + 𝑏𝑏4
𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
𝐾𝐾4𝑆𝑆 +

𝑏𝑏4Ω4𝑆𝑆2𝐾𝐾4 + 𝑏𝑏4
𝐻𝐻∗

𝐻𝐻
(𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁 + 𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
+ 𝛺𝛺4𝑆𝑆+𝑟𝑟1𝑆𝑆𝐾𝐾4𝑆𝑆 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐾𝐾4 + 𝑏𝑏5(𝑟𝑟2𝑉𝑉 +

𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 + 𝜔𝜔3𝜂𝜂3𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆𝐾𝐾2𝑉𝑉 + 𝑏𝑏5
𝐻𝐻∗

𝐻𝐻
(𝑟𝑟2𝐾𝐾2𝑉𝑉2 +

𝜔𝜔1𝜂𝜂1𝑆𝑆𝐾𝐾2𝑉𝑉+𝜔𝜔3𝜂𝜂3𝑆𝑆𝐾𝐾2𝑉𝑉 + 𝜏𝜏1𝑆𝑆𝑉𝑉 + 𝜖𝜖𝐿𝐿𝐻𝐻
𝐿𝐿+𝐾𝐾4

+ 𝛿𝛿2𝑉𝑉)+𝑏𝑏6𝑟𝑟3𝐿𝐿 + 𝑏𝑏6
𝐿𝐿∗

𝐿𝐿
(𝑟𝑟3𝐿𝐿2𝐾𝐾3 + 𝛼𝛼1𝐿𝐿𝑉𝑉 +

𝛿𝛿3𝐿𝐿)  

     𝑌𝑌 = −𝑏𝑏𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁 − 𝑏𝑏𝐴𝐴𝜏𝜏2
𝐴𝐴+𝐵𝐵𝐻𝐻

− 𝑏𝑏𝑆𝑆𝛿𝛿1 − 𝑏𝑏𝑆𝑆∗𝑟𝑟1 −
𝑏𝑏𝐴𝐴∗𝛺𝛺1𝑑𝑑

𝐴𝐴
− 𝑏𝑏2𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁 − 𝑏𝑏2𝛺𝛺2𝑆𝑆 −

𝑏𝑏2𝑆𝑆∗𝑟𝑟1 − 𝑏𝑏2
𝑑𝑑∗

𝑑𝑑
𝐴𝐴𝜏𝜏2
𝐴𝐴+𝐵𝐵𝐻𝐻

− 𝑏𝑏3𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁 − 𝑏𝑏3𝛺𝛺4C−𝑏𝑏3𝑟𝑟1𝑆𝑆2𝐾𝐾4 − 𝑏𝑏3
𝜃𝜃𝑈𝑈2𝐻𝐻2𝐾𝐾4
𝐷𝐷2+𝐻𝐻2

− 𝑏𝑏3𝑆𝑆∗ −

𝑏𝑏3
𝜃𝜃𝑈𝑈∗𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
− 𝑏𝑏3𝑆𝑆∗Ω4𝑆𝑆𝐾𝐾4 − 𝑏𝑏3𝑆𝑆∗K1𝑆𝑆𝐾𝐾4𝑟𝑟1 − 𝑏𝑏4(𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁+ 𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
+𝛺𝛺4𝑆𝑆 + 𝑟𝑟1𝑆𝑆𝐾𝐾4𝑆𝑆 +

𝛽𝛽I𝐾𝐾4𝑆𝑆) −  𝑏𝑏4
𝐻𝐻∗

𝐻𝐻
(𝑟𝑟1𝑆𝑆 + 𝛽𝛽I+𝑟𝑟1𝑆𝑆𝐾𝐾1𝑁𝑁𝐾𝐾4𝑆𝑆 + 𝜃𝜃𝑈𝑈𝐻𝐻2

𝐷𝐷2+𝐻𝐻2
𝐾𝐾4𝑆𝑆) − 𝑏𝑏5(𝑟𝑟2𝐾𝐾2𝑉𝑉2 +

𝜔𝜔1𝜂𝜂1𝑆𝑆𝐾𝐾2𝑉𝑉+𝜔𝜔3𝜂𝜂3𝑆𝑆𝐾𝐾2𝑉𝑉+𝜏𝜏1𝑆𝑆𝑉𝑉 + 𝜖𝜖𝐿𝐿𝐻𝐻
𝐿𝐿+𝐾𝐾4

+ 𝛿𝛿2𝑉𝑉) − 𝑏𝑏5
𝐻𝐻∗

𝐻𝐻
(𝑟𝑟2𝑉𝑉 + 𝜔𝜔1𝜂𝜂1𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆 +

𝜔𝜔3𝜂𝜂3𝑆𝑆 + 𝜔𝜔2𝜂𝜂2𝑆𝑆𝐾𝐾2𝑉𝑉) − 𝑏𝑏6(𝑟𝑟3𝐿𝐿2𝐾𝐾3+𝛼𝛼1𝐿𝐿𝑉𝑉 + 𝛿𝛿3𝐿𝐿) −  𝑏𝑏6𝐿𝐿∗𝑟𝑟3 
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By inspection method 𝑋𝑋 > 𝑌𝑌, therefore this result shows that cervical cancer would 

persist whenever 𝑋𝑋 > 𝑌𝑌 irrespective of the initial conditions, and if 𝑌𝑌 > 𝑋𝑋 regardless 

of the starting settings, the sickness will eventually disappear. It follows that the 

global stability for EEP for the system exists for those without underlying medical 

issues (Kilonzi et al., 2024).         

4.1.7. Bifurcation Analysis  

Most mathematical models often undergo bifurcation which makes the control of 

most diseases difficult. Utilizing the center manifold theory, the likelihood of 

population hopf bifurcation was investigated. The renaming of variables is done 

simply by letting, 𝑆𝑆 = 𝑥𝑥1, 𝑆𝑆 = 𝑥𝑥2,𝑆𝑆 = 𝑥𝑥3,𝑆𝑆 = 𝑥𝑥4,𝑉𝑉 = 𝑥𝑥5,𝐿𝐿 = 𝑥𝑥6  

Using vector notation; 

𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4,𝑥𝑥5,𝑥𝑥6 

The system (1)-(6) is written as, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑥𝑥)  where 𝐹𝐹 = (𝑓𝑓1,𝑓𝑓2,𝑓𝑓3,𝑓𝑓4,𝑓𝑓5,𝑓𝑓6)𝑇𝑇, It follows that: 

𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑

= 𝑝𝑝1 = 𝑟𝑟1𝑓𝑓1 �1 − 𝐴𝐴
𝐾𝐾1
� − 𝜏𝜏2𝑜𝑜1𝑜𝑜5

𝑜𝑜1+𝐵𝐵𝑜𝑜5
+ 𝐸𝐸𝐸𝐸

𝐹𝐹+𝐸𝐸
𝑓𝑓2 − 𝛿𝛿1𝑓𝑓1  

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝑝𝑝2 = 𝑟𝑟1𝑓𝑓2 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝜏𝜏2𝑜𝑜1𝑜𝑜5

𝑜𝑜1+𝐵𝐵𝑜𝑜5
− 𝛽𝛽𝑓𝑓2 −

𝐸𝐸𝐸𝐸
𝐹𝐹+𝐸𝐸

𝑓𝑓2 − 𝜂𝜂1𝑓𝑓2 − 𝛿𝛿1𝑓𝑓2  

𝑑𝑑𝑑𝑑3
𝑑𝑑𝑑𝑑

= 𝑝𝑝3 = 𝑟𝑟1𝑓𝑓3 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝛽𝛽𝑓𝑓2 − 𝛳𝛳 𝑜𝑜4𝑜𝑜32

𝐷𝐷2+𝑜𝑜32
− 𝜂𝜂2𝑓𝑓3 − 𝛿𝛿1𝑓𝑓3.  

𝑑𝑑𝑑𝑑4
𝑑𝑑𝑑𝑑

= 𝑝𝑝4 = �𝑟𝑟1𝑓𝑓4 �1 − 𝐴𝐴
𝐾𝐾1
� + 𝛳𝛳 𝑜𝑜4𝑜𝑜32

𝐷𝐷2+𝑜𝑜32
− 𝜂𝜂3𝑓𝑓4 − 𝛿𝛿1𝑓𝑓4� �1 − 𝑜𝑜4

𝐾𝐾4
� . 

 𝑑𝑑𝑑𝑑5
𝑑𝑑𝑑𝑑

= 𝑝𝑝5 = {𝑟𝑟2𝑓𝑓5 + 𝜔𝜔1𝜂𝜂1𝑓𝑓2 + 𝜔𝜔2𝜂𝜂2𝑓𝑓3 + 𝜔𝜔3𝜂𝜂3𝑓𝑓4} �1 − 𝑜𝑜5
𝐾𝐾2
� − 𝜏𝜏1𝑓𝑓1𝑓𝑓5 − 𝜖𝜖 𝑜𝑜6

𝑜𝑜6+𝐾𝐾4
𝑓𝑓5 −

𝛿𝛿2𝑓𝑓5. 

 𝑑𝑑𝑑𝑑6
𝑑𝑑𝑑𝑑

= 𝑝𝑝6 = 𝑟𝑟3𝑓𝑓6 �1 − 𝑜𝑜6
𝐾𝐾3
� − 𝛼𝛼1𝑓𝑓6𝑓𝑓5 − 𝛿𝛿3𝑓𝑓6.   
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Jacobian solved at DFE, 

E0 = (S0, I0, P0, C0, V0, L0) =�𝐾𝐾1(𝑟𝑟1−𝛿𝛿1)
𝑟𝑟1

, 0,0,0,0, 𝐾𝐾3
𝑟𝑟3

(𝑟𝑟3 − 𝛿𝛿3)�, in a case, where 𝑅𝑅0∗ =

1 and further, suppose that 𝑟𝑟1 = 𝑟𝑟1∗ is a bifurcation parameter, then solving for 𝑟𝑟1∗  

from 𝑅𝑅0∗ = 1 we get, 

𝑟𝑟1∗ =
𝐾𝐾1(𝑆𝑆𝑀𝑀 + 𝐹𝐹𝛽𝛽 + 𝑆𝑆𝛽𝛽 + 𝐹𝐹𝛿𝛿1 + 𝑆𝑆𝛿𝛿1 + 𝐹𝐹𝜂𝜂1 + 𝑆𝑆𝜂𝜂1)

(𝐹𝐹 + 𝑆𝑆)(𝐾𝐾1 − 𝑆𝑆0)
 

Gives 

�𝐴𝐴1 𝐴𝐴2
𝐴𝐴3 𝐴𝐴4

� 

Where;  

𝐴𝐴1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡(1 −

𝑆𝑆0

𝐾𝐾1
)𝑟𝑟1∗ −

𝑟𝑟1∗𝑆𝑆0

𝐾𝐾1
− 𝛿𝛿1

𝑆𝑆𝐸𝐸
𝐹𝐹 + 𝑆𝑆

−
𝑟𝑟1∗𝑆𝑆0

𝐾𝐾1
−
𝑟𝑟1∗𝑆𝑆0

𝐾𝐾1

0 −
𝑆𝑆𝐸𝐸
𝐹𝐹 + 𝑆𝑆

− 𝛽𝛽 + (1 −
𝑆𝑆0

𝐾𝐾1
)𝑟𝑟1∗ − 𝛿𝛿1 − 𝜂𝜂1 0

0 𝛽𝛽 (1 −
𝑆𝑆0

𝐾𝐾1
)𝑟𝑟1∗ − 𝛿𝛿1 − 𝜂𝜂2⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

It can easily be shown that, Jacobian of the system  

 

𝐴𝐴2 =

⎣
⎢
⎢
⎡−

𝑟𝑟1∗𝐴𝐴0

𝐾𝐾1

𝜏𝜏2𝐵𝐵
𝐴𝐴0

0

0 − 𝜏𝜏2𝐵𝐵
𝐴𝐴0

0
0 0 0⎦

⎥
⎥
⎤
                                𝐴𝐴3 = �

0 0 0
0 𝜂𝜂1𝜔𝜔1 𝜂𝜂2𝜔𝜔2
0 0 0

� 

𝐴𝐴4 =

⎣
⎢
⎢
⎢
⎢
⎡(1 − 𝐴𝐴0

𝐾𝐾1
)𝑟𝑟1∗ − 𝛿𝛿1 − 𝜂𝜂3 0 0

𝜂𝜂3𝜔𝜔3
𝜖𝜖𝐿𝐿0

𝐿𝐿0+𝐾𝐾4
+ 𝑟𝑟2 − 𝛿𝛿2 − 𝜏𝜏1𝑆𝑆0 0

0 −𝛼𝛼1𝐿𝐿0 (1 − 𝐿𝐿0

𝐾𝐾3
)𝑟𝑟3 −

𝑟𝑟3𝐿𝐿0

𝐾𝐾3
− 𝛿𝛿3⎦

⎥
⎥
⎥
⎥
⎤

  

It has been proved that at least one of the eigenvalues of the matrix is a simple zero 

eigenvalue (Mutua et al., 2022). Therefore, the bifurcation of the system can be 

evaluated using the Castillo-Chavez theorem. 
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Let 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5,𝑢𝑢6)𝑇𝑇  be the right eigenvector and 𝑛𝑛 = (𝑛𝑛1, 𝑛𝑛3, 𝑛𝑛4, 𝑛𝑛5, 𝑛𝑛6)𝑇𝑇 

be the left eigenvector linked with zero eigenvalues of the Jacobian matrix near 𝑟𝑟1 =

𝑟𝑟1∗, of the system. 

Solving the system of the equations, we obtain; 

𝑢𝑢1 = 0  ,  𝑢𝑢2 = 𝑜𝑜3𝑀𝑀−𝑜𝑜5(𝜂𝜂1𝜔𝜔1)
Ω1+𝑀𝑀+(𝐴𝐴0𝑘𝑘1−1)−δ1−η1

  ,   𝑢𝑢3 = −𝑜𝑜5(𝜂𝜂3𝜔𝜔3)
(1−𝐴𝐴0𝑘𝑘1)𝑟𝑟1−𝜂𝜂3

  ,    𝑢𝑢4 = −𝑜𝑜5(𝜂𝜂3𝜔𝜔3)
(1−𝐴𝐴0𝑘𝑘1)𝑟𝑟1−𝜂𝜂4

 

𝑢𝑢5 =
𝑜𝑜2−

𝜏𝜏2𝐵𝐵
𝑆𝑆0

+𝑜𝑜6𝛼𝛼1𝐿𝐿0

𝜖𝜖𝐿𝐿0

𝐿𝐿0+𝑘𝑘4
+𝑟𝑟2−𝛿𝛿2−𝜏𝜏1𝐴𝐴0

=
𝑜𝑜2−

𝜏𝜏2𝐵𝐵
𝑆𝑆0

𝜖𝜖𝐿𝐿0

𝐿𝐿0+𝑘𝑘4
+𝑟𝑟2−𝛿𝛿2−𝜏𝜏1𝐴𝐴0

    ,  𝑢𝑢6 = 0 

𝑛𝑛1 =
−�𝜂𝜂1−𝑟𝑟1𝐴𝐴0𝑘𝑘1�𝑣𝑣2+𝑣𝑣3𝑟𝑟1𝐴𝐴0𝑘𝑘1−𝑟𝑟1𝐴𝐴0𝑘𝑘1𝑣𝑣4+𝑣𝑣5

𝜏𝜏2𝐵𝐵
𝑆𝑆0

(1−𝐴𝐴0𝑘𝑘1)𝑟𝑟1−𝑟𝑟1𝐴𝐴0𝑘𝑘1−𝛿𝛿1
=

𝑣𝑣3𝑟𝑟1𝐴𝐴0𝑘𝑘1+𝑣𝑣5
𝜏𝜏2𝐵𝐵
𝑆𝑆0

(1−𝐴𝐴0𝑘𝑘1)𝑟𝑟1−𝑟𝑟1𝐴𝐴0𝑘𝑘1−𝛿𝛿1
 ,  𝑛𝑛2 = 0 

𝑛𝑛3 =
��𝐴𝐴0𝑘𝑘1−1�𝑟𝑟1+𝜂𝜂1+𝛿𝛿1+Ω1+𝑀𝑀�𝑣𝑣2+𝑣𝑣5

𝜏𝜏2𝐵𝐵
𝑆𝑆0

(1−𝐴𝐴0𝑘𝑘1)𝑟𝑟1−𝜂𝜂3
=

𝑣𝑣5
𝜏𝜏2𝐵𝐵
𝑆𝑆0

(1−𝐴𝐴0𝑘𝑘1)𝑟𝑟1−𝜂𝜂3
 , 𝑛𝑛4 = 0,  𝑛𝑛5 =

−(𝜂𝜂2𝜔𝜔2)𝑣𝑣3−(𝜂𝜂3𝜔𝜔3)𝑣𝑣4
𝜀𝜀𝐿𝐿0

𝐾𝐾4+𝐿𝐿0
+𝑟𝑟2−𝛿𝛿2−𝜏𝜏1𝐴𝐴0

= −(𝜂𝜂2𝜔𝜔2)𝑣𝑣3
𝜀𝜀𝐿𝐿0

𝐾𝐾4+𝐿𝐿0
+𝑟𝑟2−𝛿𝛿2−𝜏𝜏1𝐴𝐴0

 ,  𝑛𝑛6 = 𝑣𝑣5𝛼𝛼1𝐿𝐿

((1−𝐿𝐿0𝑘𝑘1)𝑟𝑟3−
𝑟𝑟3𝐿𝐿0
𝑘𝑘3

−𝛿𝛿3)
 . 

Let 𝑝𝑝𝑘𝑘be the kth component of p and 

𝑎𝑎 = ∑ 𝑛𝑛𝑘𝑘𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗𝑎𝑎
𝑘𝑘,𝑖𝑖𝑗𝑗=1

𝜕𝜕2𝑜𝑜𝑘𝑘
𝜕𝜕𝑜𝑜𝑖𝑖𝜕𝜕𝑜𝑜𝑗𝑗

(0,0)  and  𝑏𝑏 = ∑ 𝑛𝑛𝑘𝑘𝑢𝑢𝑖𝑖𝑎𝑎
𝑘𝑘,𝑖𝑖𝑗𝑗=1

𝜕𝜕2𝑜𝑜𝑘𝑘
𝜕𝜕𝑜𝑜𝑖𝑖𝜕𝜕𝑟𝑟1∗

(0,0) 

then the signs of a and b completely dictate the local dynamics of the system around 
the equilibrium point (0,0) (Gitonga, 2017). 

On evaluating the values of a and b which are found in the appendix in section 3, we 

conclude that since, 𝑎𝑎 < 0  and 𝑏𝑏 < 0, when 𝑟𝑟1∗ < 0 with |𝑟𝑟1∗| ≪ 1, (0,0) is unstable; 

when 0 < 𝑟𝑟1∗ ≪ 1, (0,0) is then there is a positive unstable equilibrium and it is 

asymptotically stable. 
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4.2 Parameters Estimation 

Table 3: Parameters Estimation 

Parameter Value Reference 

     (Ma & Thibodeaux, 2023) 

    Estimated 

    Estimated 

    Estimated 

    Estimated 

    Estimated 

    Estimated 

    (Chakraborty et al., 2019) 

    (Ndii, 2020)  

    (Ma & Thibodeaux, 2023) 

  
  (Ma & Thibodeaux, 2023) 

    (Mondaini et al., 2021) 

    (Mondaini et al., 2021) 

    Estimated 

    (Erwin, 2017) 

 =    (Verma et al., 2017) 

    (Mondaini et al., 2021) 

    Estimated 

    Estimated 

    Estimated 

Table 3: Estimation of parameters 
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4.3 Numerical Simulation  

MATLAB2019a is applied in numerical simulation to show the dynamic behavior of 

the non-linear ODE in the system (1)–(6). With the initial conditions and parameter 

values, the simulations are executed (taken from the literature review and graphically 

depicted) in Table 3. 
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Figure 3: A graph of variation of 
immunity level against time. 

 

 

Figure 4: A graph of variation of the rate 
of infection against time 

 

   

 

Figure 5: A graph of variation of 
progression rate from precancerous cells 
to cancerous against time 

 

 

          Figure 6: A graph of variation of 
progression rate from precancerous to 
cancerous against time 
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10 5 A graph of variation of Immunity level against time
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A graph of variation of the rate of infection 
against time
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A graph of variation of progression rate 
from pre-cancerous to cancerous against  time 
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Figure 7: A graph of variation of 𝜖𝜖 
against time for virons 

 

             Figure 8: A graph of variation of 
Ω1 against time for virons 

                 

                                                                                 

Figure 9: A graph of variation of r1 
against time 

 

                        Figure 10: A graph of 
variation of η3 against time for virons 

   

 

Figure 11: A graph of variation of η2 
against time for virons 
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Figure 12: A graph of variation of η1 
against time for virons 

              

           

 

Figure 13: A plot of variation of α1 for a 
graph of virons against lymphocytes 

 

 

Figure 14: A graph of susceptible cells 
against virons with variation contact 
rate (τ1) 

 

Figure 15: A graph of variation of θ 
virons against lymphocytes 

 

 

Figure 16: A graph of variation of θ for 
a graph of precancerous cells against 
cancerous cells 
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The graphs obtained from simulations are interpreted as follows. 

The immunity level for the infected cells varied from M=0.0000333 to M= 

0.000000000000001333 and M=0.9333 while the other parameters remained unchanged. 

Figure 3 shows that increasing the immunity level reduces the number of infected cells. 

This indicates that eating a balanced diet can boost the immunity level which fights the 

virus reducing the number of infected cells.  

The infection rate for the infected cells was varied from  𝛾𝛾2= 0.000001 to 𝛾𝛾2=0.5000001 

while the other parameters were held constant. From figure 4 suggests that the number of 

infected cells grew in proportion to the increase in infection rate. 

The Progression rate from Precancerous cells to Cancerous cells varied from θ=0.000001 

to θ=0.101 while the other parameters were held constant. Figure 5 shows that when the 

progression rate was decreased it increased the pre-cancerous cells while when it was 

increased it significantly reduced the number of pre-cancerous cells.  

The rate at which precancerous cells transform into cancerous ones was varied for 

Cancerous cells while the other parameters were held constant. The results as represented 

by Figure 5 indicate that when the rate was reduced it decreased the number of cancerous 

cells while when it was increased, the population of cancerous cells increased.  

4.3 Sensitivity analysis of the model 

The relationship below provides the sensitivity index of the model parameter; 

𝑆𝑆𝑑𝑑
𝑅𝑅𝑜𝑜 =

𝜕𝜕𝑅𝑅𝑜𝑜
𝜕𝜕𝑋𝑋

∗
𝑋𝑋
𝑅𝑅𝑜𝑜

 

Sensitivity analysis for the whole model is as follows.  
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Table 4: Table of sensitivity indices  

Parameter Next Generation 

Matrix. 

Survival Function. Constant term of 

the 

characteristic 

polynomial. 

𝐹𝐹  0.993351 0.0000346813344295621 0.993351 

𝑆𝑆  −0.99463 −0.000034681334429562096 −0.99463 

𝐾𝐾1  −0.0000176205 0.026674154887992983 −0.000158879 

𝑟𝑟1  1 0.9879380508173314 3 

𝑟𝑟2  0 5.883416249394072 × 10−7 1 

𝐵𝐵  −1.05469

× 10−10 

−0.000009212399239203786 −1.05469

× 10−10 

𝛿𝛿1  6.17395 × 10−6 −0.22125138109693612 −0.979586 

𝛿𝛿2  0 −0.12494859329913026 0.00799353 

𝜂𝜂1  6.43119 × 10−6 −0.047374582684402054 6.43119 × 10−10 

𝜂𝜂2  0 −0.29268294620149876 −0.510204 

𝜂𝜂3  0 −0.1764099056748374 −0.510204 

𝑆𝑆  −176.208 −0.011490780279154997 −529.625 

𝐸𝐸  1 0 −1 

𝐿𝐿  0 0 0.00135933 

𝐾𝐾4  0 −0.0006712604976524636 −6.36864

× 10−10 

𝜖𝜖  0 −2.188287319016677

× 10−11 

6.36864 × 10−10 

𝜏𝜏1  0 −0.011499992678394202 −1.00799 

𝑆𝑆  0 0.005348560226721884 0 

𝜔𝜔3  0 0.001337140056680471 0 

𝜔𝜔2  0 0.004813704204049696 0 

𝜔𝜔1  0 0.005348560226721884 0 
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𝐾𝐾2  0 0.00029487161100197416 0 

𝐷𝐷  0 0.04629077249233771 0 

𝑆𝑆  0 −0.01364474132726996 0 

𝑆𝑆  0 −0.025823926384812002 0 

𝜃𝜃  0 −0.027832326961018047 0 

𝐸𝐸  0 −0.00003491252020486956 0 

𝛽𝛽  0 −0.08646595437424326 0 

V 0 −0.011241531993419006 0 

𝑁𝑁  0 −0.026674154887992983 0 

Table 4: Sensitivity indices 

From the sensitivity indices table above, 𝑟𝑟1 is the most positive parameter implying that it 

is directly related to the dynamics of high-risk HPV to cervical cancer. To reduce the risk 

of cervical cancer  𝑟𝑟1 should be decreased while, S being the most negative means that it 

is inversely related to the cervical cancer and HPV dynamic. Increasing the value of S 

reduces the risk of the disease. 
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 CHAPTER FIVE  

DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

5.1 Discussion and Conclusion 

In the presence of immunity and functional responses, this work aimed to construct an in-

host density-dependent deterministic model for the dynamics of basal cells, virions, and 

lymphocytes and their consequences for cervical cancer. The general (SIVPC) model by 

(Chakraborty, Li, et al., 2019) was adjusted for our investigation to include the maximum 

number of malignant cells that can result in a patient's death. A system of six first-order 

non-linear ordinary differential equations that explain the dynamics of HPV to cervical 

cancer helped to achieve this goal in section 2. The survival function, method of 

characteristic polynomial, next-generation matrix, positivity and boundedness of the 

solution, equilibrium points, and basic reproduction number were employed in this work 

to investigate the behavior of the deterministic model; the local stability of the DFE was 

ascertained using the Routh-Hurwitz criteria for stability, and the global stability of the 

EEP was ascertained using the Castillo-Chavez approach. 

The analysis revealed several important findings regarding the dynamics of the model. 

The Disease-Free Equilibrium (DFE) was found to persist even in the absence of the 

disease. Additionally, the model was well-bounded and remained within the positive 

region, indicating biologically feasible solutions. The presence of an endemic equilibrium 

point occurred when  𝑅𝑅0 > 1, and the local stability of the DFE was determined to be 

unstable when 𝑅𝑅0∗ > 1, but locally asymptotically stable when 𝑅𝑅0∗ < 1. Furthermore, when 

𝑅𝑅0 > 1, the global stability of the endemic equilibrium point (EEP) was asymptotically 

stable. 

Further examination of the simplified system, based on equations (1) to (6), showed that 

the global stability of the Disease-Free Equilibrium (DFE) was also asymptotically stable 

if 𝑅𝑅0∗ < 1 . The absence of backward bifurcation indicated that it is feasible to completely 

eradicate cervical cancer under the right conditions. The basic reproduction number was 

calculated to be −7.2485210 × 10−6, and this value was used to simulate the model's 

dynamics. 
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It was observed that increasing the parameter 𝛾𝛾2led to a higher number of infected cells, 

thereby elevating the risk of cervical cancer. Conversely, reducing the parameter M, which 

might represent immune strength, decreased the number of infected cells, underscoring 

the importance of a balanced diet for boosting immunity. Additionally, the parameter 

𝜃𝜃 had the most direct impact on patient outcomes. The model estimated that a patient could 

die within 10 days when 𝜃𝜃 = 0.01, but could survive up to 20 days when 𝜃𝜃 = 0.09. 

Bifurcation analyses were also produced. Additionally, sensitivity indices for the model's 

system were calculated using the next-generation matrix, survival function, and 

characteristic polynomial, depending on the reproduction number.  Also, sensitivity 

indices for the system of the model was performed based on the reproduction number 

using three methods which are next-generation matrix, survival function, and 

characteristic polynomial.  

The model suggests a proportion of 75% of cancerous cells that can lead to the death of a 

cervical cancer patient however, future studies should focus to obtaining the real data for 

the proportion of cancerous cells that can lead to the death of a patient. 

5.2 Recommendations 

Human Papillomavirus is a significant risk factor for the emergence of cervical cancer. 

Therefore, it is crucial to take action to stop the spread of this virus hence the need to 

model HPV dynamics to cervical cancer more. This study recommends longitudinal 

studies tracking HPV infection progression in patients to improve parameter estimation, 

incorporate more detailed immune response dynamics, including the role of immune cells, 

develop more personalized models based on individual patient data to predict cancer 

progression more accurately and finally model the impact of interventions such as 

vaccination, screening, and treatment on HPV dynamics and cancer progression. 
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APPENDICES 

Appendix 1 

Section 1. 

The characteristic polynomial of the above matrix is given as;  

 𝑎𝑎0𝜆𝜆6 + 𝑎𝑎1𝜆𝜆5 + 𝑎𝑎2𝜆𝜆4 + 𝑎𝑎3𝜆𝜆3 + 𝑎𝑎4𝜆𝜆2 + 𝑎𝑎5𝜆𝜆 + 𝑎𝑎6 = 0, 

Where constant 𝑎𝑎0,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4,𝑎𝑎5,𝑎𝑎6 are determined using Mathematica software as; 

Routh Table 

 

Label 

𝜆𝜆6  1 
2a

 4a
 6a  

𝜆𝜆5  
1a

 3a
 5a

 
0 

𝜆𝜆4  
1b

 2b
 3b  

0 

  𝜆𝜆3  
1c  2c

 
0 0 

𝜆𝜆2  
1d

 
𝑎𝑎2  0 0 

𝜆𝜆1  
1e  

0 0 0 

𝜆𝜆0  𝑓𝑓1  0 0 0 

Appendix 1: Routh table 

Where,  

2

1 3 1 2 3
1

1 1

1 a
a a a a ab

a a

−
−

= =
                

4

1 5 1 4 5
2

1 1

1 a
a a a a ab

a a

−
−

= =
          

6

1
3 6

1

1
0
a

a
b a

a

−
= =

 

1 3

1 2 1 3 1 2
1

1 1

a a
b b b a a bc

b b

−
−

= =
     

1 5

1 3 1 5 1 3
2

1 1

a a
b b b a a bc

b b

−
−

= =
     

1 2

1 2 1 2 1 2
1

1 1

b b
c c c b b cd

c c

−
−

= =
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1 3

1
2 3

1

0
b b
c

d b
c

−
= =

     

1 2

1 2 1 2 1 2
1

1 1

c c
d d d c c de

d d

−
−

= =
         𝑓𝑓1 = − �

𝑑𝑑1 𝑑𝑑2
𝑎𝑎1 0
𝑑𝑑1

� = 𝑑𝑑2𝑎𝑎1
𝑑𝑑1

 

Section 2. 

𝑎𝑎1 =
1

𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)
(𝑆𝑆0(𝜖𝜖𝐿𝐿0 − 𝐿𝐿0𝑟𝑟2 − 𝐾𝐾4𝑟𝑟2 + 𝐿𝐿0𝛿𝛿2 + 𝐾𝐾4𝛿𝛿2 + (−𝐿𝐿0 − 𝐾𝐾4)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1

+ (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)) − 𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4)

+ 𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)(𝛿𝛿1 + 𝛿𝛿3 + 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′ + 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′ − 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′)) 

𝑎𝑎2 =
1

𝑆𝑆(𝐿𝐿0 + 𝐾𝐾4)
(−𝐴𝐴𝐵𝐵(−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1 + 𝑆𝑆0((−𝐿𝐿0 − 𝐾𝐾4)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1

− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1
+ (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)) − 𝑆𝑆0(𝐿𝐿0𝜖𝜖 − 𝐿𝐿0𝑟𝑟2 − 𝐾𝐾4𝑟𝑟2 + 𝐿𝐿0𝛿𝛿2 + 𝐾𝐾4𝛿𝛿2
+ (−𝐿𝐿0 − 𝐾𝐾4)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3))((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1
− 𝛺𝛺4) + (𝑆𝑆0(𝐿𝐿0𝜖𝜖 − 𝐿𝐿0𝑟𝑟2 − 𝐾𝐾4𝑟𝑟2 + 𝐿𝐿0𝛿𝛿2 + 𝐾𝐾4𝛿𝛿2 + (−𝐿𝐿0 − 𝐾𝐾4)(𝑟𝑟1
− 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)) − 𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1

− 𝛺𝛺4))(𝛿𝛿1 + 𝛿𝛿3 + 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′ + 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′ − 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′) + 𝑆𝑆0(𝐿𝐿0

+ 𝐾𝐾4)(−𝛿𝛿3 − 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′)(−𝛿𝛿1 − 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′ + 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′)) 
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𝑎𝑎3 =
1

𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)
(𝜏𝜏2𝐵𝐵(𝛽𝛽(𝐿𝐿0 + 𝐾𝐾4)𝜂𝜂2𝜔𝜔2 + (−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3))

+ 𝑆𝑆0(−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1

− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (𝜏𝜏2𝐵𝐵(−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1 − 𝑆𝑆0((−𝐿𝐿0 − 𝐾𝐾4)(−𝑟𝑟1
+ 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2
− 𝐾𝐾4𝛿𝛿2)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)))((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4)

+ (−𝐴𝐴𝐵𝐵(−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1 + 𝑆𝑆0((−𝐿𝐿0 − 𝐾𝐾4)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1

− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1
+ (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)) − 𝑆𝑆0(𝐿𝐿0𝜖𝜖 − 𝐿𝐿0𝑟𝑟2 − 𝐾𝐾4𝑟𝑟2 + 𝐿𝐿0𝛿𝛿2 + 𝐾𝐾4𝛿𝛿2
+ (−𝐿𝐿0 − 𝐾𝐾4)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3))((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1

− 𝛺𝛺4))(𝛿𝛿1 + 𝛿𝛿3 + 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′ + 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′ − 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′)

+ (𝑆𝑆0(𝐿𝐿0𝜖𝜖 − 𝐿𝐿0𝑟𝑟2 − 𝐾𝐾4𝑟𝑟2 + 𝐿𝐿0𝛿𝛿2 + 𝐾𝐾4𝛿𝛿2 + (−𝐿𝐿0 − 𝐾𝐾4)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1
+ (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)) − 𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4))(−𝛿𝛿3

− 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′)(−𝛿𝛿1 − 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′ + 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′)) 

𝑎𝑎4 =
1

𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)
((−𝐴𝐴𝐵𝐵(𝛽𝛽(𝐿𝐿0 + 𝐾𝐾4)𝜂𝜂2𝜔𝜔2 + (−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3))

− 𝑆𝑆0(−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1

− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3))((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4) + (𝐴𝐴𝐵𝐵(𝛽𝛽(𝐿𝐿0 + 𝐾𝐾4)𝜂𝜂2𝜔𝜔2 + (−𝐿𝐿0

− 𝐾𝐾4)𝜂𝜂1𝜔𝜔1((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3)) + 𝑆𝑆0(−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2
− 𝐾𝐾4𝛿𝛿2)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (𝐴𝐴𝐵𝐵(−𝐿𝐿0

− 𝐾𝐾4)𝜂𝜂1𝜔𝜔1 − 𝑆𝑆0((−𝐿𝐿0 − 𝐾𝐾4)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3)

+ (−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1

− 𝛺𝛺2 − 𝛺𝛺3)))((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4))(𝛿𝛿1 + 𝛿𝛿3 + 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′

+ 𝑘𝑘1𝑟𝑟1𝑆𝑆0
′ − 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0) + (−𝐴𝐴𝐵𝐵(−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1 + 𝑆𝑆0((−𝐿𝐿0 − 𝐾𝐾4)(−𝑟𝑟1

+ 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2
− 𝐾𝐾4𝛿𝛿2)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)) − 𝑆𝑆0(𝐿𝐿0𝜖𝜖 − 𝐿𝐿0𝑟𝑟2
− 𝐾𝐾4𝑟𝑟2 + 𝐿𝐿0𝛿𝛿2 + 𝐾𝐾4𝛿𝛿2 + (−𝐿𝐿0 − 𝐾𝐾4)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2

− 𝛺𝛺3))((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4))(−𝛿𝛿3 − 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′)(−𝛿𝛿1 − 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′

+ 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′)) 
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       𝑎𝑎5 = 1
𝐴𝐴0(𝐿𝐿0+𝐾𝐾4)

((−𝜏𝜏2𝐴𝐴𝐵𝐵(𝛽𝛽(𝐿𝐿0 + 𝐾𝐾4)𝜂𝜂2𝜔𝜔2 + (−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 −

𝛺𝛺3)) − 𝑆𝑆0(−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 −

𝛺𝛺3))((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4)(𝛿𝛿1 + 𝛿𝛿3 + 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′ + 𝑘𝑘1𝑟𝑟1𝑆𝑆0

′ − 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′) +

(𝜏𝜏2𝐵𝐵(𝛽𝛽(𝐿𝐿0 + 𝐾𝐾4)𝜂𝜂2𝜔𝜔2 + (−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3)) + 𝑆𝑆0(−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 +

𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (𝜏𝜏2𝐵𝐵(−𝐿𝐿0 −

𝐾𝐾4)𝜂𝜂1𝜔𝜔1 − 𝑆𝑆0((−𝐿𝐿0 − 𝐾𝐾4)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3) + (−𝐿𝐿0𝜖𝜖 +

𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(𝑟𝑟1 − 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + (1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺2 − 𝛺𝛺3)))((1 −

𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4))(−𝛿𝛿3 − 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿𝐿𝐿0
′)(−𝛿𝛿1 − 𝑘𝑘1𝑟𝑟1𝑆𝑆0𝑆𝑆0

′ + 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0
′))         

𝑎𝑎6 =
1

𝑆𝑆0(𝐿𝐿0 + 𝐾𝐾4)
(−𝜏𝜏2𝐵𝐵(𝛽𝛽(𝐿𝐿0 + 𝐾𝐾4)𝜂𝜂2𝜔𝜔2 + (−𝐿𝐿0 − 𝐾𝐾4)𝜂𝜂1𝜔𝜔1((1− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3))

− 𝑆𝑆0(−𝐿𝐿0𝜖𝜖 + 𝐿𝐿0𝑟𝑟2 + 𝐾𝐾4𝑟𝑟2 − 𝐿𝐿0𝛿𝛿2 − 𝐾𝐾4𝛿𝛿2)(−𝑟𝑟1 + 𝑆𝑆0𝑘𝑘1𝑟𝑟1 + 𝛺𝛺2)((1

− 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺3))((1 − 𝑆𝑆0𝑘𝑘1)𝑟𝑟1 − 𝛺𝛺4)(−𝛿𝛿3 − 𝑘𝑘3(1 − 𝐿𝐿0𝑘𝑘3)𝑟𝑟3𝐿𝐿0
′)(−𝛿𝛿1

− 𝑘𝑘1𝑟𝑟1𝑆𝑆0
′ + 𝑆𝑆0𝑘𝑘12𝑟𝑟1𝑆𝑆0

′) 

By Routh-Hurwitz criteria for stability, the system (1) – (6) is locally asymptomatically 

stable at disease-free equilibrium (𝐸𝐸0)  if and only if 𝑎𝑎1 > 0,𝑎𝑎2 > 0,𝑎𝑎4 > 0, 𝑎𝑎6 >

0, 𝑏𝑏1 > 0, 𝑐𝑐1 > 0, 𝑎𝑎1 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒1 > 0 are satisfied and otherwise unstable. 

Section 3. 

The bifurcation results of a and b values are as follows; 
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𝑎𝑎 = −(2(−𝐴𝐴𝐵𝐵 + 𝑢𝑢_2)𝑛𝑛_3 𝜂𝜂_2 𝜔𝜔_2 (−(𝜖𝜖𝑓𝑓_6)/(𝑓𝑓_6 + 𝐾𝐾_4 ) + (1 − 𝑓𝑓_5/𝐾𝐾_2 )𝑟𝑟_2 − 𝛿𝛿_2 + (1

− 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_1 𝜔𝜔_1 − (𝑓𝑓_5 𝑟𝑟_2 + 𝑓𝑓_2 𝜂𝜂_1 𝜔𝜔_1 + 𝑓𝑓_3 𝜂𝜂_2 𝜔𝜔_2

+ 𝑓𝑓_4 𝜂𝜂_3 𝜔𝜔_3)/𝐾𝐾_2 )(𝛽𝛽𝑢𝑢_3 − 𝑢𝑢_5 [𝜂𝜂_1 𝜔𝜔_1]))/((𝜖𝜖/(1 + 𝑘𝑘_4 ) + 𝑟𝑟_2

− 𝛿𝛿_2)(𝜀𝜀/(1 + 𝐾𝐾_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)(−1 + 𝛽𝛽 + 𝑘𝑘_1 − 𝛿𝛿_1 − 𝜂𝜂_1 + 𝛺𝛺_1))

+ (2(−𝐴𝐴𝐵𝐵 + 𝑢𝑢_2)𝑛𝑛_3 𝜂𝜂_2 𝜔𝜔_2 (−(𝜖𝜖𝑓𝑓_6)/(𝑓𝑓_6 + 𝐾𝐾_4 ) + (1 − 𝑓𝑓_5/𝐾𝐾_2 )𝑟𝑟_2

− 𝛿𝛿_2 + (1 − 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_2 𝜔𝜔_2 − (𝑓𝑓_5 𝑟𝑟_2 + 𝑓𝑓_2 𝜂𝜂_1 𝜔𝜔_1 + 𝑓𝑓_3 𝜂𝜂_2 𝜔𝜔_2

+ 𝑓𝑓_4 𝜂𝜂_3 𝜔𝜔_3)/𝐾𝐾_2 )𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3])/((𝜖𝜖/(1 + 𝑘𝑘_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)(𝜀𝜀/(1

+ 𝐾𝐾_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)((1 − 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_3)) + (2(−𝐴𝐴𝐵𝐵

+ 𝑢𝑢_2)𝑛𝑛_3 𝜂𝜂_2 𝜔𝜔_2 (−(𝜖𝜖𝑓𝑓_6)/(𝑓𝑓_6 + 𝐾𝐾_4 ) + (1 − 𝑓𝑓_5/𝐾𝐾_2 )𝑟𝑟_2 − 𝛿𝛿_2 + (1

− 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_3 𝜔𝜔_3 − (𝑓𝑓_5 𝑟𝑟_2 + 𝑓𝑓_2 𝜂𝜂_1 𝜔𝜔_1 + 𝑓𝑓_3 𝜂𝜂_2 𝜔𝜔_2

+ 𝑓𝑓_4 𝜂𝜂_3 𝜔𝜔_3)/𝐾𝐾_2 )𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3])/((𝜖𝜖/(1 + 𝑘𝑘_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)(𝜀𝜀/(1

+ 𝐾𝐾_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)((1 − 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_4)) − (2𝐴𝐴𝐵𝐵𝑛𝑛_5 (𝛽𝛽

+ (2𝛳𝛳𝑓𝑓_3^3 𝑓𝑓_4)/〖(𝐷𝐷^2 + 𝑓𝑓_3^2)〗^2 − (2𝛳𝛳𝑓𝑓_3 𝑓𝑓_4)/(𝐷𝐷^2 + 𝑓𝑓_3^2 )

+ 1[1 −𝑁𝑁/𝐾𝐾_1 ]𝑟𝑟_1 − 𝛿𝛿_1 − 𝜂𝜂_2)(𝛽𝛽𝑢𝑢_3

− 𝑢𝑢_5 [𝜂𝜂_1 𝜔𝜔_1])𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3])/(〖((1 − 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_3)〗^2 (−1 + 𝛽𝛽

+ 𝑘𝑘_1 − 𝛿𝛿_1 − 𝜂𝜂_1 + 𝛺𝛺_1)) − (2𝐴𝐴𝐵𝐵(𝛽𝛽 − (𝛳𝛳𝑓𝑓_3^2)/(𝐷𝐷^2

+ 𝑓𝑓_3^2 ))𝑛𝑛_5 (𝛽𝛽𝑢𝑢_3 − 𝑢𝑢_5 [𝜂𝜂_1 𝜔𝜔_1])𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3])/(((1 − 𝑘𝑘_1)𝑟𝑟_1

− 𝜂𝜂_3)((1 − 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_4)(−1 + 𝛽𝛽 + 𝑘𝑘_1 − 𝛿𝛿_1 − 𝜂𝜂_1 + 𝛺𝛺_1))

+ (2𝑛𝑛_3 𝜂𝜂_2 𝜔𝜔_2 ((1 − 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_1 𝜔𝜔_1 + (1 − 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_2 𝜔𝜔_2)(𝛽𝛽𝑢𝑢_3

− 𝑢𝑢_5 [𝜂𝜂_1 𝜔𝜔_1])𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3])/((𝜀𝜀/(1 + 𝐾𝐾_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)((1 − 𝑘𝑘_1)𝑟𝑟_1

− 𝜂𝜂_3)(−1 + 𝛽𝛽 + 𝑘𝑘_1 − 𝛿𝛿_1 − 𝜂𝜂_1 + 𝛺𝛺_1)) + (2𝑛𝑛_3 𝜂𝜂_2 𝜔𝜔_2 ((1

− 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_1 𝜔𝜔_1 + (1 − 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_3 𝜔𝜔_3)(𝛽𝛽𝑢𝑢_3

− 𝑢𝑢_5 [𝜂𝜂_1 𝜔𝜔_1])𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3])/((𝜀𝜀/(1 + 𝐾𝐾_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)((1 − 𝑘𝑘_1)𝑟𝑟_1

− 𝜂𝜂_4)(−1 + 𝛽𝛽 + 𝑘𝑘_1 − 𝛿𝛿_1 − 𝜂𝜂_1 + 𝛺𝛺_1)) + (2𝐴𝐴𝐵𝐵𝑛𝑛_5 (−(𝛳𝛳𝑓𝑓_3^2)/(𝐷𝐷^2

+ 𝑓𝑓_3^2 ) + (2𝛳𝛳𝑓𝑓_3^3 𝑓𝑓_4)/〖(𝐷𝐷^2 + 𝑓𝑓_3^2)〗^2 − (2𝛳𝛳𝑓𝑓_3 𝑓𝑓_4)/(𝐷𝐷^2

+ 𝑓𝑓_3^2 ) + 1[1 −𝑁𝑁/𝐾𝐾_1 ]𝑟𝑟_1 − 𝛿𝛿_1 − 𝜂𝜂_2)〖𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3]〗^2)/(〖((1

− 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_3)〗^2 ((1− 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_4)) − (2𝑛𝑛_3 𝜂𝜂_2 𝜔𝜔_2 ((1

− 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_2 𝜔𝜔_2 + (1

− 𝑓𝑓_5/𝐾𝐾_2 )𝜂𝜂_3 𝜔𝜔_3)〖𝑢𝑢_5 [𝜂𝜂_3 𝜔𝜔_3]〗^2)/((𝜀𝜀/(1 + 𝐾𝐾_4 ) + 𝑟𝑟_2 − 𝛿𝛿_2)((1

− 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_3)((1 − 𝑘𝑘_1)𝑟𝑟_1 − 𝜂𝜂_4)) − (2(−𝜏𝜏_2 𝐵𝐵 + 𝑢𝑢_2)(−𝑘𝑘_1 𝑟𝑟_1 𝑛𝑛_4

+ 𝜏𝜏_2 𝐵𝐵𝑛𝑛_5 + 𝑛𝑛_2 (𝑘𝑘_1 𝑟𝑟_1 − 𝜂𝜂_1))𝑢𝑢_5 [𝜂𝜂_1 𝜔𝜔_1](𝑒𝑒𝑆𝑆/(𝐹𝐹 + 𝑆𝑆)

+ (𝜏𝜏_2 𝐵𝐵𝑓𝑓_1)/〖(𝑓𝑓_1 + 𝐵𝐵𝑓𝑓_5)〗^2 − (𝑟𝑟_1 〖𝑓𝑓_1〗^′ [1 − (𝑓𝑓_1 + 𝑓𝑓_2 + 𝑓𝑓_3

+ 𝑓𝑓_4)/𝐾𝐾_1 ])/𝐾𝐾_1 ))/(((1 − 𝑘𝑘_1)𝑟𝑟_1 − 𝑘𝑘_1 𝑟𝑟_1 − 𝛿𝛿_1)(𝜖𝜖/(1 + 𝑘𝑘_4 ) + 𝑟𝑟_2
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− 𝛿𝛿_2 − 𝜏𝜏_2)(−1 + 𝛽𝛽 + 𝑘𝑘_1 − 𝛿𝛿_1 − 𝜂𝜂_1 + 𝛺𝛺_1))} 

𝑏𝑏

=
2𝛳𝛳𝑓𝑓33𝑓𝑓4

(𝐷𝐷2 + 𝑓𝑓32)2
−

2𝛳𝛳𝑓𝑓3𝑓𝑓4
𝐷𝐷2 + 𝑓𝑓32

− 𝛿𝛿1 − 𝜂𝜂2

+
(−𝐴𝐴𝐵𝐵 + 𝑢𝑢2)(𝑘𝑘1𝑟𝑟1𝑛𝑛3 + 𝐴𝐴𝐵𝐵𝑛𝑛5)( 𝐴𝐴𝐵𝐵𝑓𝑓1

(𝑓𝑓1 + 𝐵𝐵𝑓𝑓5)2 + 𝑓𝑓1[1 − 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
𝐾𝐾1

])

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝑘𝑘1𝑟𝑟1 − 𝛿𝛿1)( 𝜖𝜖
1 + 𝑘𝑘4

+ 𝑟𝑟2 − 𝛿𝛿2)
+ 𝑓𝑓3[1

−
𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
] +

𝐴𝐴𝐵𝐵(−𝐴𝐴𝐵𝐵 + 𝑢𝑢2)𝑛𝑛5𝑓𝑓3[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
𝐾𝐾1

]

( 𝜖𝜖
1 + 𝑘𝑘4

+ 𝑟𝑟2 − 𝛿𝛿2)((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂3)

+
𝐴𝐴𝐵𝐵(𝛽𝛽 + 𝑓𝑓3(1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
) − 𝑓𝑓3𝑟𝑟1

𝐾𝐾1
)𝑛𝑛5(𝛽𝛽𝑢𝑢3 − 𝑢𝑢5[𝜂𝜂1𝜔𝜔1])

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂3)(−1 + 𝛽𝛽 + 𝑘𝑘1 − 𝛿𝛿1 − 𝜂𝜂1 + 𝛺𝛺1)

−
(𝑘𝑘1𝑟𝑟1𝑛𝑛3 + 𝐴𝐴𝐵𝐵𝑛𝑛5)𝑢𝑢5[𝜂𝜂3𝜔𝜔3](𝑓𝑓1[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]−

𝑟𝑟1𝑓𝑓1
′[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]

𝐾𝐾1
)

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝑘𝑘1𝑟𝑟1 − 𝛿𝛿1)((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂3)

−
(𝑘𝑘1𝑟𝑟1𝑛𝑛3 + 𝐴𝐴𝐵𝐵𝑛𝑛5)𝑢𝑢5[𝜂𝜂3𝜔𝜔3](𝑓𝑓1[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]−

𝑟𝑟1𝑓𝑓1
′[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]

𝐾𝐾1
)

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝑘𝑘1𝑟𝑟1 − 𝛿𝛿1)((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂4)

+
(𝑘𝑘1𝑟𝑟1𝑛𝑛3 + 𝐴𝐴𝐵𝐵𝑛𝑛5)(𝛽𝛽𝑢𝑢3 − 𝑢𝑢5[𝜂𝜂1𝜔𝜔1])( 𝑒𝑒𝑆𝑆

𝐹𝐹 + 𝑆𝑆 + 𝑓𝑓1[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
𝐾𝐾1

]−
𝑟𝑟1𝑓𝑓1

′[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
𝐾𝐾1

]
𝐾𝐾1

)

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝑘𝑘1𝑟𝑟1 − 𝛿𝛿1)(−1 + 𝛽𝛽 + 𝑘𝑘1 − 𝛿𝛿1 − 𝜂𝜂1 + 𝛺𝛺1)

−
𝐴𝐴𝐵𝐵𝑟𝑟1𝑛𝑛5𝑢𝑢5[𝜂𝜂3𝜔𝜔3](1[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]−

𝑓𝑓3
′[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]

𝐾𝐾1
)

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂3)2

−
𝐴𝐴𝐵𝐵𝑛𝑛5𝑢𝑢5[𝜂𝜂3𝜔𝜔3](− 𝛳𝛳𝑓𝑓32

𝐷𝐷2 + 𝑓𝑓32
+ 𝑓𝑓3[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]−

𝑟𝑟1𝑓𝑓3
′[1− 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4

𝐾𝐾1
]

𝐾𝐾1
)

((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂3)((1 − 𝑘𝑘1)𝑟𝑟1 − 𝜂𝜂4)
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Section 4. 

𝑏𝑏4 = 1;  

𝑏𝑏3 = 𝑟𝑟1(−
1

𝑆𝑆𝑀𝑀
𝐹𝐹 + 𝑆𝑆 + 𝛽𝛽 + 𝛿𝛿1 + 𝜂𝜂1

−
1

𝛿𝛿1 + 𝜂𝜂2
−

1
𝛿𝛿1 + 𝜂𝜂3

+

𝑆𝑆( 1
𝑆𝑆𝑀𝑀
𝐹𝐹 + 𝑆𝑆 + 𝛽𝛽 + 𝛿𝛿1 + 𝜂𝜂1

+ 1
𝛿𝛿1 + 𝜂𝜂2

+ 1
𝛿𝛿1 + 𝜂𝜂3

)

𝐾𝐾1
) −

𝑟𝑟2
𝐿𝐿𝜖𝜖

𝐿𝐿 + 𝐾𝐾4
+ 𝛿𝛿2 + 𝑆𝑆𝜏𝜏1

 

𝑏𝑏_2 = 𝑟𝑟_1 ((〖(𝑆𝑆 − 𝐾𝐾_1)〗^2 𝑟𝑟_1 (𝐹𝐹𝛽𝛽 + 𝑆𝑆(𝑀𝑀 + 𝛽𝛽) + (𝐹𝐹 + 𝑆𝑆)(3𝛿𝛿_1 + 𝜂𝜂_1 + 𝜂𝜂_2

+ 𝜂𝜂_3)))/(𝐾𝐾_1^2 (𝐹𝐹𝛽𝛽 + 𝑆𝑆(𝑀𝑀 + 𝛽𝛽) + (𝐹𝐹 + 𝑆𝑆)(𝛿𝛿_1 + 𝜂𝜂_1))(𝛿𝛿_1

+ 𝜂𝜂_2)(𝛿𝛿_1 + 𝜂𝜂_3)) + (𝑟𝑟_2 (1/(𝑆𝑆𝑀𝑀/(𝐹𝐹 + 𝑆𝑆) + 𝛽𝛽 + 𝛿𝛿_1 + 𝜂𝜂_1 )

+ 1/(𝛿𝛿_1 + 𝜂𝜂_2 ) + 1/(𝛿𝛿_1 + 𝜂𝜂_3 ) + (𝑆𝑆(−1/(𝑆𝑆𝑀𝑀/(𝐹𝐹 + 𝑆𝑆) + 𝛽𝛽 + 𝛿𝛿_1

+ 𝜂𝜂_1 ) − 1/(𝛿𝛿_1 + 𝜂𝜂_2 ) − 1/(𝛿𝛿_1 + 𝜂𝜂_3 )))/𝐾𝐾_1 ))/(𝐿𝐿𝜖𝜖/(𝐿𝐿 + 𝐾𝐾_4 )

+ 𝛿𝛿_2 + 𝑆𝑆𝜏𝜏_1 )) 

 𝑏𝑏1 = − 𝑟𝑟13

� 𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)

+ 𝐴𝐴3𝑟𝑟13

𝐾𝐾1
3� 𝐸𝐸𝑀𝑀

𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)
−

3𝐴𝐴2𝑟𝑟13

𝐾𝐾12�
𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)

+ 3𝐴𝐴𝑟𝑟13

𝐾𝐾1�
𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)

−

𝑟𝑟12𝑟𝑟2
� 𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

− 𝐴𝐴2𝑟𝑟12𝑟𝑟2
𝐾𝐾12�

𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

+

2𝐴𝐴𝑟𝑟12𝑟𝑟2
𝐾𝐾1�

𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂2)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

− 𝑟𝑟12𝑟𝑟2
� 𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂3)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

−

𝐴𝐴2𝑟𝑟12𝑟𝑟2
𝐾𝐾12�

𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂3)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

+ 2𝐴𝐴𝑟𝑟12𝑟𝑟2
𝐾𝐾1�

𝐸𝐸𝑀𝑀
𝐹𝐹+𝐸𝐸+𝑀𝑀+𝛿𝛿1+𝜂𝜂1�(𝛿𝛿1+𝜂𝜂3)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

−

𝑟𝑟12𝑟𝑟2
(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

− 𝐴𝐴2𝑟𝑟12𝑟𝑟2
𝐾𝐾12(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

+

2𝐴𝐴𝑟𝑟12𝑟𝑟2
𝐾𝐾1(𝛿𝛿1+𝜂𝜂2)(𝛿𝛿1+𝜂𝜂3)� 𝐿𝐿𝜖𝜖

𝐿𝐿+𝐾𝐾4
+𝛿𝛿2+𝐴𝐴𝜏𝜏1�

. 

𝑏𝑏0

=
(𝐹𝐹 + 𝑆𝑆)(𝑆𝑆0 − 𝐾𝐾1)3(𝐿𝐿0 + 𝐾𝐾4)𝑟𝑟13𝑟𝑟2

𝐾𝐾13(𝐹𝐹𝛽𝛽 + 𝑆𝑆(𝑀𝑀 + 𝛽𝛽) + (𝐹𝐹 + 𝑆𝑆)(𝛿𝛿1 + 𝜂𝜂1))(𝛿𝛿1 + 𝜂𝜂2)(𝛿𝛿1 + 𝜂𝜂3)(𝐿𝐿0𝜖𝜖 + (𝐿𝐿0 + 𝐾𝐾4)(𝛿𝛿2 + 𝑆𝑆𝜏𝜏1))
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