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Te increase in the country’s population attracted the establishment of more schools, both public and private schools, to cater for
the increasing number of students. However, there have been dynamics of students’ population both in public and private schools
through transfer from one category of school to the other, through completion of the learning period, and through dropout due to
unknown reasons which have subjected both the public and private schools to compete in order to maintain a good number of
students. In this work, a modifed Lotka–Volterra model of schools and nonenrolled entities population in the education system is
studied. Private schools and nonenrolled entities play the role of a predator in public schools. Again, public schools and
nonenrolled entities play the role of predators in private schools. Holling type II functional responses have been integrated in the
analysis of the Lotka–Volterra model. Te equilibrium points are established and their stability are determined using the
Routh–Hurwitz criterion and eigenvalue method. Global stability has been done for the positive equilibrium point. Bifurcation is
also done around the positive equilibrium point. Finally, a graphical illustration of various parameter is derived to show their efect
on schools when they are varied. It is revealed that the increase in parameters θ2, θ3, and η3 greatly afects the schools population as
they are the ones leading to predation in school. Terefore, proper strategies should be developed to focus on reducing the
mentioned parameters to avoid leading schools’ population to extinct.

1. Introduction

Education stakeholders and strategists across countries
work tirelessly to ensure that their respective country’s
education system runs smoothly. Prey-predator models are
usually used to study the interaction of animals and plants.
Tis study applies the concept of a prey-predator model to
study students’ population dynamics in schools. Prey-
predator models can show diferent behaviors such as
steady states, oscillations, and bifurcations depending on
the parameters [1]. Te study of the dynamics of prey-
predator systems is one of the most dominant subjects in
mathematical ecology due to its universal existence and
importance [1]. Te schools category population is con-
sidered in this study. Te frst category is the public schools
which are owned and controlled by the government in their

day-to-day operations. Teachers in such schools are gov-
ernment employees. Te second category is private schools.
United Nations Educational Scientifc Cultural Organiza-
tion (UNESCO) defnes them as any school that is not
operated by the government but is controlled andmanaged,
whether for proft or not, by a private body like a com-
munity, foundation, faith-based organization, non-
governmental organizations (NGOs), private proprietor, or
private enterprise [2]. Tis study also considers students
who are out of school (nonenrolled) but are of school-going
age as the third category and termed it as the nonenrolled
category.

Te frst two categories of schools face challenges like
peer infuence among students and parents causing transfer
from one category to the other, population predation be-
tween categories, and competition for students [3]. Tese
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factors create population dynamics in the respective schools.
Te school population is an important parameter for eco-
nomic development. Predicting the future population is
a core factor for development planning and decision-making
[4]. Quality of education has decreased in public schools
owing to overcrowded classrooms attracting more private
schools [5]. Private schools tend to concentrate in an area
where public schools perform poorly [5]. In the same way
Italian mathematician Volterra in the model of fshing ar-
gued that, when fshing was good, the number of fshermen
increased. After sometime, fsh declined and the number of
fshermen also declined. After some time, the cycle repeated
[6]. However, the development of private schools increases
the competition in the schooling system [7]. Tis theoret-
ically leads to efciency gain in terms of both cost and quality
as private and public schools compete to attract students.

Due to prevailing situations in the country, where the
country’s activities are geared towards achieving the Sus-
tainable Development Goals (SDGs) which in addition is
aimed at the realization of the vision 2030, the countries
activities are thus focused on a better education system.Tis
initiated the transfer of students to diferent categories of
schools to acquire better education for self-reliance [3, 8].
Generally, the education sector shapes the nation through
good leadership which can result to better development. For
this matter, it is a secondary requirement to many people
throughout the world. From the literature review, a range of
social statistical techniques have been used to explain school
population dynamics [2, 3, 5, 7–9]. But till now, very little
research has been carried out on the interaction of public
schools, private schools, and the nonenrolled entity pop-
ulation. Tus, it is important that approaches to modelling
school population dynamics be considered based on past
enrolment data incorporating the efects of competition and
predation.

In this paper, a modifed prey-predator model for three
categories, namely; public schools, private schools, and the
nonenrolled entity has been formed. So the uniqueness in
this paper is that both public and private schools act as
a predator as well as a prey. Nonenrolled entity is purely
a predator. In this work, our main goal is to study the
dynamical behavior of these three categories of schools,
which is very important for the economic development [4].

Usually, Lotka–Volterra model comprises two equa-
tions, but this study presents the Lotka–Volterra model with
three equations hence an improved one [10]. Holling ex-
tended the system of Lotka–Volterra and came up with the
idea of functional response [11]. Tus, Holling type II
functional response is used since our model adopts a logistic
growth as proposed by [11]. Holling argued that when the
prey is scattered in an area, the predator has to spend more
of their time searching them as opposed to when they are
concentrated in an area, where the predator will only have to
spend most of their time handling the prey. Holling type II
functional response with logistic growth is thus given by [1].

Lotka–Volterra model can be used to show the com-
petitive relationship between organisms, companies, mar-
kets, or organizations [12–19]. Tus, this study considers it
as also much applicable in schools’ population competition.

Te main purpose of modelling population interactions is to
understand what causes such fuctuations [6]. Tis is only
possible when the parameters of the model are varied [1, 19].
Tis study is helpful to the country for future population
prediction [20]. Tis can help the country to be prepared to
cater for the future changes that are likely to happen in
schools. However, parameter estimation in this model was
challenging. Tis is due to difculty in getting predation
values as well as the nonenrolled entity values as this data is
sensitive and lies with the government. Tese are the
challenges faced in modelling.

For the analysis of the model, the feasible region of the
model is established and boundedness of the model is de-
termined. Te local stability of the equilibrium points de-
termined with the help of a Wolfram Mathematica software
is studied using the Routh–Hurwitz criterion [1, 21]. For the
global stability, this study adopted the Lyapunov function.
Finally, numerical simulation is done to verify the stabilities
which cannot be determined analytically.

2. Model Formulation and Assumptions

In this work, the coexistence of the public schools, private
schools, and nonenrolled entity is discussed. To formulate
the model, we let x(t), y(t), and z(t) denotes the pop-
ulations of public schools, private schools, and nonenrolled
entity, respectively, at any given time t and they are subject to
non-negative initial conditions x(0) � x0 ≥ 0, y(0) � y0 ≥ 0,
and z(0) � z0 ≥ 0. Te parameters c and K represents the
recruitment rate in the categories and the environmental
carrying capacity, respectively.

Figure 1 shows a modifed Lotka–Volterra model with
Holling type II is formulated where public, private, and
nonenrolled entities assume the role of prey and predator
depending on the scenario. In this model, the predator
(private schools) population grows by enrolment and
transfer from public schools and again, the predator
(nonenrolled) gains population as a result of decreased
enrolment in schools and dropouts. Te total recruitment
into the said categories is denoted by π which is subdivided
into the following categories πc1 as the recruitment in public
schools, πc2 as the recruitment in the private schools, and
(1 − c1 − c2) π for the nonenrolled entities. Since public and
private schools consider their carrying capacity during
enrolment, their model adopts a logistic growth [22], while
the nonenrolled entities assume an exponential growth. Te
population dynamics in the categories is due to the pre-
dation efect known as Holling type II response [11], exit
rate, and the competition as represented by η, μ, and θ,
respectively. To develop an equation for a category, for
example, public school, we take the enrolment which is
carried out by considering the carrying capacity, then we
subtract the exit, transfer to private, and drop out due to
unknown factor, less predation from nonenrolled, and
private schools, and then we add the population that is
gained by the public when predating private schools. By this,
we arrive at equation (1). Te exit rate is a fraction of the
study period which is a quarter for the secondary schools.
For the nonenrolled entities, the study considers their exit
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rate as the period which a person cannot come back to
school to study. Anybody who has not joined the two
categories of schools is considered to be in the nonenrolled
category even if they joined tertiary institutions.

Moreover, since a model is just a representation of the
reality, it cannot capture all the features of the school setup.
Terefore, this study considers the following assumptions in
order to formulate the model:

(i) Te study does not include special schools and
group of schools in the country

(ii) Dropout rate due to other factors other the ones
discussed in the model is insignifcant

(iii) Te rate of student retention in a class will be
insignifcant

(iv) Public and private schools cannot predate the
nonenrolled entities

From the above assumptions and illustrations, a math-
ematical model of the three categories has been developed in
Figure 1.

3. Model Equations

dx

dt
� c1πx 1 −

x

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁x −

η1xy

B + x
−
η3xz

B + x
+
η4xy

B + y
, (1)

dy

dt
� c2πy 1 −

y

k2
􏼠 􏼡 − μ + θ2( 􏼁y + θ1x +

η1xy

B + x
−
η2yz

B + y
−
η4xy

B + y
, (2)

dz

dt
� 1 − c1 − c2( 􏼁πz + θ3x + θ2y +

η3xz

B + x
+
η2yz

B + y
− μz, (3)

with initial conditions x(0)≥ 0, y(0)≥ 0, and z(0)≥ 0.

4. Feasible Region of the Solution

Consider equation (1), by inspection method the term
η4xy/B + y≥ 0 and c1πx(1 − x/k1)≥ 0.Tus, dx/dt≥ − (μ +

θ1 + θ3)x − η1xy/B + x − η3xz/B + x. It follows, dx/x≥ −

(μ + θ1 + θ3) − η1y/B + x − η3z/B + x)dt. On integrating,
ln x≥ − ((μ + θ1 + θ3) − η1y(s)/B + x(s) − η3z(s)/B + x(s)

ds + c). x(t)≥x(0)e
􏽒

t

0
− (μ+θ1+θ3)+η1y(s)/B+x(s)+η3z(s)/B+x(s)ds.

Exponential of a negative is always positive.
Consider equation (2), by inspection method, the term

c2πy(1 − y/k2), η1xy/B + x, and θ1x is ≥0.

Tus, y(t)≥y(0)e
􏽒

t

0
− (μ+θ2)+η2z(s)/B+y(s)+η4x(s)/B+y(s)ds ≥ 0,

i.e., the exponential of a negative is positive.
Similarly, for equation (3), we have z(t)≥ z(0)e− μt ≥ 0.

5. Boundedness of the Solution

For the system to be mathematically meaningful, it is nec-
essary to show that its state variables are positive and bounded
for all time t [1]. Tat is, the solution of the system with
a positive initial value will remain positive for all time t≥ 0.

dN

dt
� c1πx 1 −

x

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁x −

η1xy

B + x
−
η3xz

B + x

+
η4xy

B + y
+ c2πy 1 −

y

k2
􏼠 􏼡 − μ + θ2( 􏼁y +

η1xy

B + x
−
η2yz

B + y

+ θ1x −
η4xy

B + y
+ 1 − c1 − c2( 􏼁πz + θ3x + θ2y

+
η3x

B + x
+
η2yz

B + y
− μz.

(4)

μ

μ
μ

y (t)x (t) z (t)

γ1π
γ2π

θ1 θ2

θ3

η1xy η2yz

η3xz

B1 + x B2 + y

B3 + x

π

(1-γ1-γ2) π 

Figure 1: Model fow chart.
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On simplifying the above,

dN

dt
� cN 1 −

N

k4
􏼠 􏼡 − μN,

N(t) �
Ce

tc
(c − μ)k4

− e
tμ

+ e
tc

Cc
,

t � 0,

C �
N(0)

− ck4 + μk4 + cN0
.

(5)

Tus,

N(t) �
e

tc
(c − μ)k4N0

e
tc

cN0 − e
tμ

(1 − c + μ)k4 + cN0
. (6)

6. Steady States

To study the stability of our proposedmodel, the equilibrium
points of the system need to be determined. Te possible
equilibrium to be considered are

− μ + π −
2πx

k1
􏼠 􏼡c1 −

yBη1
(x + B)

2 −
zBη3

(x + B)
2 +

yη4
y + B

− θ1 − θ3 −
xη1

x + B
−

xyη4
(y + B)

2 +
xη4

y + B
−

xη3
x + B

yBη1
(x + B)

2 −
yη4

y + B
+ θ1 − μ + π −

2πy

k2
􏼠 􏼡c2 +

xη1
x + B

−
zBη2

(y + B)
2 −

xBη4
(y + B)

2 − θ2 −
yη2

y + B

−
xzη3

(x + B)
2 +

zη3
x + B

+ θ3 −
yzη2

(y + B)
2 +

zη2
y + B

+ θ2 − μ + πα +
yη2

y + B
+

xη3
x + B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

Case 1: No schools exist; x � 0, y � 0, z � 0
Te trivial equilibrium points are E0 � (0, 0, 0)

Case 2: Only public schools exist; x≠ 0, y � 0, z � 0

c1πx 1 −
x

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁x � 0. (8)

Tere are two equilibrium points say E1 � (x1, x0)

where

x
0

� 0 and x
1

�
k1 μ − πc1 + θ1 + θ3( 􏼁( 􏼁

πc1
. (9)

Case 3: Only private schools exist; x � 0, y≠ 0, z � 0.

c2πy 1 −
y

k2
􏼠 􏼡 − μ + θ2( 􏼁y � 0. (10)

Te equilibrium points are E2 � (y2, y0),
where y0 � 0 and y2 � k2(− μ + πc2 − θ2)/πc2.
Case 4: No enrolment in schools; x � 0, y � 0, z≠ 0.

1 − c1 − c2( 􏼁πz − μz � 0. (11)

Te equilibrium points are E3 � z0 and when α � μ,
where z0 � 0.
Case 5: No private schools only; x≠ 0, y � 0, z≠ 0.
Tree equilibrium points are obtained E4

0 � (x4
0, z4

0),
E4
1 � (x4

1, z4
1) and E4

2 � (x4
2, z4

2), where

x
4
0 � 0 and z

4
0 � 0,

x
4
1 �

m − n

q
and z

4
1 �

(m − n) − (m − n/q) + k1( 􏼁α1 + k1β8( 􏼁

qk1α5
,

x
4
2 �

m + n

q
and z

4
2 �

(m + n) − (m − n/q) + k1( 􏼁α1 + k1β8( 􏼁

qk1α5
,

(12)

where m � α1α5 + k1(α1 + β8)φ3, n �

k1α5
���������������������������������������

4k1α1α5(− α1 + β1)φ3 + (α1α5 + k1(α1 + β8)φ3)
2/

􏽱

k2
1α25, q � 2α1φ3, α5 � μ − α4, β5 � μ − α4/θ3, β6 � α1β5,

β7 � β1β5, β8 � − β1 + θ3, φ3xz � η3xz/B + x, α4 � (1 −

c1 − c2)π, β1 � μ + θ1 + θ3, α1 � c1π, and α2 � c2π.
Case 6: Full enrolment; x≠ 0, y≠ 0, z � 0.
Tree equilibrium points are obtained; E5

0 � (x5
0, y5

0),
E5
1 � (x5, 0), and E5

2 � (0, y5), where

x
5
0 � 0 andy

5
0 � 0,

x
5
1 � s

5
1 andy

5
1 � r4 r2 −

�����������������

r
2
2 + s

5
1r3 − s

5
1r1 + r5􏼐 􏼑

􏽱

􏼒 􏼓,

x
5
2 � s

5
2 andy

5
2 � r4 r2 −

�����������������

r
2
2 + s

5
2r3 − s

5
2r1 + r5􏼐 􏼑

􏽱

􏼒 􏼓,

(13)

where s51 � s1 − s2/s3, s52 � s1 + s2/s3, s1 � r3r
2
4r5

(φ1 − φ4)
2 + 2α1(α1 − β1 + r2r4(− φ1 + φ4))ψ1, r1 � α1

ψ1, r2 � α2 − β2, r3 � 4α2ψ2, r4 � 1/2α2ψ2, r5 � α1−
β1 + θ1, β1 � μ + θ1 + θ3, β2 � μ + θ2, α1 � c1π,

s2 �

�������������������������

r24(φ1 − φ4)
2(r23r

2
4r

2
5(φ1 − φ4)

2
􏽱

− 4r1r3(α1 − β1))
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α1 − β1 + 2r2r4(− φ1 + φ4)) + 4r3r5

α1(α1 − β1 + r2r4(− φ1 + φ4))ψ1 + 4r22α
2
1ψ

2
1, α2 � c2π,

and s3 � 2r1r3r
2
4(φ1 − φ4)

2 + 2α21ψ
2
1.

Case 7: No public schools only; x � 0, y≠ 0, z≠ 0.
Tere are three equilibrium points, namely, E6

0(y6
0, z6

0)

and E6
1(y6

1, z6
1), where,y

6
0 � 0 and z6

0 � 0 which corre-
sponds to the trivial equilibrium point.

y
6
1 �

p1 + − μ + α2( 􏼁p2

p3
and z

6
1 �

p1 + p2 − μ + α2( 􏼁 p3 α1 − β2 + θ2( 􏼁( 􏼁 − α1 p1 + p2 − μ + α2( 􏼁( 􏼁ψ3( 􏼁

p
2
3 μ − α2( 􏼁

,

y
6
2 �

p1 + p2 μ − α2( 􏼁

p3
and z

6
2 �

p1 + p2 μ − α2( 􏼁( 􏼁 p3 α1 − β2 + θ2( 􏼁( 􏼁 − α1 p1 + p2 μ − α2( 􏼁( 􏼁ψ3

p
2
3 μ − α2( 􏼁

,

(14)

where α1 � c2π, α2 � (1 − c1 − c2)π, β2 � μ + θ2,
ψ2yz � η2yz/B + y, ψ3y � y/k2, p1 � (− β2 + θ2)ψ2+

α1(ψ2 + (μ − α2)ψ3), p2 ����������������������������������������

(α1 − β2 + θ2)
2ψ2

2/(μ − α2)
2 + 2α1(α1 − β2 + θ2)

􏽱

ψ2ψ3/μ − α2+ α21ψ2
3, and p3 � 2α1ψ2ψ3.

Case 8: Coexistence; x≠ 0, y≠ 0, z≠ 0.

Tere are many equilibrium points are E7
0 � (x7

0, y7
0, z7

0),
E7
1 � (x7

1, y7
1, z7

1), E7
2 � (x7

2, y7
2, z7

2), x7
0 � 0, y7

0 � 0, and z7
0 �

0. Tis corresponds to a trivial equilibrium point.

x
7
1 � 0,

y
7
1 �

1
2

−
− μ + p1 + α3

φ2
+
α2 − β2 + θ2

α2ψ2
􏼠 􏼡 and z

7
1 �

− β2 + θ2( 􏼁φ2( 􏼁 + α2 φ2 + − μ + α3( 􏼁ψ2( 􏼁 + α2ψ2p1

2φ2
2

,

x
7
2 � p2 p3 −

φ3 − μ − p4 + α3 + p2p3φ3 − p2θ3φ3( 􏼁

p5
􏼠 􏼡,

y
7
2 � 0 and z

7
2 �

− μ − p4 + α3 + p2p3φ3 − p2θ3φ3

p5
,

x
7
3 � p2 p3 −

φ3 − μ − p4 + α3 + p2p3φ3 + p2θ3φ3( 􏼁

p5
􏼠 􏼡,

y
7
3 � 0 and z

7
3 �

− μ − p4 + α3 + p2p3φ3 + p2θ3φ3

p5
,

x
7
4 �

p2 hp3 − (m + n) φ1 − φ4( 􏼁( 􏼁

h
,

y
7
4 �

m + n

h
and z

7
4 � 0,

x
7
5 �

p11

φ6
−

p22 + p66φ6/p77 −

��������������������

p33 + p44 − p66φ6/p77( 􏼁
2

􏽱

p55
,

y
7
5 �

p22 + p66φ6/p77 −

��������������������

p33 + p44 − p66φ6/p77( 􏼁
2

􏽱

p55
and z

7
5 �

p66

p77
,

x
7
6 �

p11

φ6
−

p22 + p66φ6/p77 +

��������������������

p33 + p44 − p66φ6/p77( 􏼁
2

􏽱

p55
,

y
7
6 �

p22 + p66φ6/p77 +

��������������������

p33 + p44 − p66φ6/p77( 􏼁
2

􏽱

p55
and z

7
6 �

p66

p77
,

(15)
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where β1 � μ + θ1 + θ3, β2 � μ + θ2, p3 � α1 − β1, p11 � μ −

α3 − θ2 − θ3, p22 � − α2 + β2 + θ1 − p11φ3/φ6 + p11φ5/φ6,
p33 � − 4p11θ1(− α2φ2 − φ3 + φ5)/φ6, p44 � α2 − β2−
θ1 + p11φ3/φ6 − p11φ5/φ6, p55 � 2(− α2φ2 − φ3 + φ5),
p66 � − p2

11p
2
55 + 2p11p22p55φ6 − p2

22φ
2
6 + p33φ2

6 + p2
44φ

2
6,

p77 � 2φ2
6(− p11p55 + p22φ6 + p44φ6), p1 �

��������������������������������������������

4(α2 − β2)θ2φ2
2 + ((− α2 + β2 + θ2)φ2 + α2(μ − α3)ψ2)

2/
􏽱

α22ψ
2
2, p2 � 1/α1ψ1, p5 � 2p2φ2

3,

p4 �

�����������������������������������

4p2
2p3θ3φ2

3 + (− μ + α3 + p2p3φ3 − p2θ3φ3)
2

􏽱

,
c1π � α1, c2π � α2, (1 − c1 − c2)π � α3, ψ1x � x/k1, ψ2y �

y/k2, φ1xy � η1xy/B + x, φ2xy � η3yz/B + y,
φ3xy � η3xz/B + x, φ4xy � η3xy/B + y, b1 � b11 + b12, b2 �

b21 + b22 + b23/b24, n2 � 1/2(− n1α2φ2 − φ2
3 + φ3φ6), n3 � − 4

(α1θ1 − β1θ1 − zθ1φ5), n2 � 1/2(− n1α2φ2 − φ2
3 + φ3φ6), n1 �

α1φ1, n3 � − 4(α1θ1 − β1θ1 − θ1φ5), n4 � − n1α2 + n1β2−
α1φ3 + β1φ3 + θ1φ3 + α1φ6 − β1φ6, b11 � − n2

1n2θ2φ4 +

(
���������������������
− n3(n1α2φ2 + φ2

3 − φ3φ6)
􏽱

) n2φ3φ5 − n1n2φ4􏼈 􏼉 + φ5(α1 −

n2n4φ3 − θ3(1 + n2φ3(φ3 − 2φ6)) + β1(− 1 + n2φ3φ6)),
b12 � β1(− 1 + n2φ3φ6) + n1(− μ + α3 + n2(n4φ4 + θ3φ3φ4 +

θ2φ5(φ3 − 2φ6) − β1φ4φ6)), b21 � n1

������

(1/n2
1)

􏽱

4(n2
1n2φ2

4+

φ2
5(1 + n2φ3(φ3 − 2φ6)) + 2n1n2φ4φ5(− φ3 + φ6))(α1 − β1)

θ3 + n2( − n1θ2 + θ3φ3)( − n4 + β1φ6 +
���������������������

− n3(n1α2φ2 + φ2
3 − φ3φ6)

􏽱

), b22 � n2
1n2θ2φ4 + (− α1 + β1)

φ5 + φ5(θ3(1 + n2φ3(φ3 − 2φ6)) − n2φ3(− n4 + β1φ6 +
���������������������

− n3(n1α2φ2 + φ2
3 − φ3φ6)

􏽱

)), b23 � n1(μ − α3+ n2(− n4φ4 −

θ3φ3φ4 − θ2φ5(φ3 − 2φ6) + φ4(β1φ6 +
���������������������
− n3(n1α2φ2 + φ2

3 − φ3φ6)
􏽱

))))2)), b24 � (2(n2
1n2φ2

4 + φ2
5

(1 + n2φ3(φ3 − 2φ6)) + 2n1n2φ4φ5(− φ3 + φ6))), m � α2 −

β2 + p2p3φ1 − p2θ1φ1 − p2p3φ4 + p2θ1φ4, h � 2p2
(φ1 − φ4)

2 + 2α2ψ2, and n �������������������������������������

(α2 − β2 + p2(p3 − θ1)(φ1 − φ4))
2 + 4p2p3θ1

􏽱

(p2(φ1 − φ4)
2 + α2ψ2).

Given that φ1, φ2, φ3, φ4, φ5, φ6, ≥0, and B> 0.

7. Stability Analysis

7.1. Local Stability. Te local stability of the system is de-
termined by the nature of the eigenvalues of the variational
matrix, that is, for negative eigenvalues imply a stable
otherwise unstable. In the case where the matrix is large such
that the nature of eigenvalues cannot be directly determined,
we will apply Routh–Hurwitz criteria to determine stability.

Te system has eight solutions.
E0(0, 0, 0), E1(K1, 0, 0), E2(0, K2, 0), E3(0, 0, K3),

E4(x∗, y∗, 0), E5(x∗, 0, z∗), E6 (0, y∗, z∗), E7(x∗, y∗, z∗).
Te variational matrix of the system is given by

b11 −
xη1

x + B1
−

xyη4
y + B4( 􏼁

2 +
xη4

y + B4
−

xη3
x + B3

yB1η1
y + B1( 􏼁

2 −
yη4

y + B4
b22 −

yη2
y + B2

xzη3
x + B3( 􏼁

2 +
zη3

x + B3
+ θ3 −

yzη2
y + B2( 􏼁

2 +
zη2

y + B2
+ θ2 b33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where

b11 � − μ + π −
2πx

k1
􏼠 􏼡c1 −

yB1η1
x + B1( 􏼁

2 −
zB3η3
x + B3( 􏼁

2

+
yη4

y + B4( 􏼁
− θ1 − θ3,

b22 � − μ + π −
2πy

k2
􏼠 􏼡c2 −

xη1
x + B1

+
zB2η2
y + B2( 􏼁

2

−
xB4η4
y + B4( 􏼁

2 − θ2, and b33 � − μ + πα +
yη2

y + B2
+

xη3
x + B3

.

(17)

Theorem 1. Te trivial equilibrium point, E0, is stable if the
eigenvalues of the variational matrix are all less than zero.
Otherwise, the system will be unstable.

Proof. Te variational matrix of (16) evaluated at E0 is given
by

− μ + πc1 − θ1 − θ3 0 0

θ1 − μ + πc1 − θ2 0

θ3 θ2 − μ + πα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (18)

By letting ρ � θ1 + θ3 and α � (1 − c1 − c2), eigenvalues
are λ1 � πα − μ, λ2 � πc2 − θ2 − μ, and λ3 � πc1 − ρ − μ.

Te equilibrium point E0(0, 0, 0) is stable if and only if
πc2 < θ2 + μ, πα< μ, and πc1 < ρ + μ. Otherwise, the system
will be unstable. □

Theorem  . Equilibrium point, E1, at the point x≠ 0, y � 0,
z � 0, by Routh–Hurwitz criterion is locally asymptotically
stable if A1, A3 > 0 and A1A2 − A0A3 > 0. Otherwise, the
system will be unstable.
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Proof. x0 � 0 corresponds to a trivial equilibrium point.

x
1

�
k1 μ − πc1 + θ1 + θ3( 􏼁( 􏼁

πc1
. (19)

Te variational matrix is given by

a11 a12 − a13

a21 a22 0

a31 a32 a33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (20)

where

a11 � − μ + π −
2πx

1

k1
􏼠 􏼡c1 − θ1 − θ3,

a12 � −
x
1η1

x
1

+ B
+

x
1η4
B

,

a13 � −
x
1η3

x
1

+ B
,

a21 � θ1,

a22 � − μ + πc2 +
x
1η1

x
1

+ B
−

x
1η4
B

− θ2,

a31 � θ3,

a32 � θ2 and a33 � − μ + πα +
x
1η3

x
1

+ B
.

(21)

Te characteristic equation is given by, p3 + p2A1 +

pA2 + A3 � 0, where A1 � − (a11 + a22 + a33), A2 � a11a22 +

a22a33 + a11a33 − a12a21 + a13a31 and A3 � a13a21a32 −

a11a22a33 + a12a21a33 − a13a31a22. □

Theorem 3. Equilibrium point, E2, at the point x � 0, y≠ 0,
z � 0 is stable if and only if the eigenvalues of the variational
matrix are less than zero.

Proof. Te variational matrix is given by

a11 0 0

a21 a22 0

a31 a32 a33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22)

where a11 � − μ + πc1 − yη1/B + yη4/y + B − θ1 − θ3, a21 �

yη1/B − yη4/y + B + θ1, a22 � − μ + (π − 2πy/k2)c2 − θ2,
a23 � − yη2/y + B, a31 � θ3, a32 � θ2, a33 � − μ+

πα + yη2/y + B.

Te eigenvalues are − μ + πc1 − yη1/B+ yη4/y + B − θ1 −

θ3, − μ + (π − 2πy/k2)c2 − θ2 and − μ + πα + yη2/y + B.
Te eigenvalues are stable if (− μ + πc1 − yη1/B +

yη4/y + B − θ1 − θ3)< 0, (− μ + (π − 2πy/k2)c2) − θ2 < 0,
and (− μ + πα + yη2/y + B)< 0. □

Theorem 4. Equilibrium point, E3, for point x � 0, y � 0,
z≠ 0 is stable if and only if μ> πα, μ> πc2 + θ2 and μ> πc1 +

ρ otherwise the system will be unstable.

Proof. Te variational matrix is given by

− μ + πc1 − θ1 − θ3 0 0

θ1 − μ + πc1 − θ2 0

θ3 θ2 − μ + πα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (23)

By choosing ρ � θ1 + θ3 and α � (1 − c1 − c2), the ei-
genvalues are

λ1 � πα − μ,

λ2 � πc2 − θ2 − μ,

λ3 � πc1 − ρ − μ.

(24)

Te eigenvalues will be negative if and only if μ> πα,
μ> πc2 + θ2 and μ> πc1 + ρ for it to be stable, otherwise
unstable. □

Theorem 5. Equilibrium point, E4, for case x≠ 0, y � 0,
z≠ 0 by the Routh–Hurwitz criterion is stable if D1,D3 > 0
and D1D2 >D0D3 otherwise unstable.

Proof. Te variational matrix of the equilibrium point at
x≠ 0, y � 0, z≠ 0 is given by

d11 d12 − d13

d21 d22 0

d31 d32 d33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (25)

d11 � − μ + π −
2πx

k1
􏼠 􏼡c1 −

zBη3
(x + B)

2 − θ1 − θ3,

d12 � −
xη1

x + B
+

xη4
B

,

d13 �
xη3

x + B
,

d21 � θ1,

d22 � − μ + πc2 +
xη1

x + B
−

zη4
B

−
xη4
B

− θ2,

d31 � −
xzη3

(x + B)
2 +

zη3
x + B

+ θ3,

d32 �
zη2
B

+ θ2,

d33 � − μ + πα +
xη3

x + B
.

(26)

Te characteristic equation is given by r3 + r2D1 + rD2 +

D3 � 0, where

D1 � − d11 + d22 + d33( 􏼁,

D2 � d11d33 + d22d33 + d11d22 − d12d21 + d13d31,

D3 � d13d21d32 − d11d22d33 + d12d21d33 − d13d31d22.
(27)
□
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Theorem 6. Equilibrium point, E5, for the case x≠ 0, y≠ 0,
z � 0 is stable if C1, C3 > 0 and C1C2 >C0C3, otherwise the
system will be unstable.

Proof. Te variational matrix for the equilibrium point at
x≠ 0, y≠ 0, z � 0 is given by

c11 c12 c13

c21 c22 − c23

c31 c32 c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (28)

where

c11 � − μ + p −
2πx

k1
􏼠 􏼡c1 −

yBη1
(x + B)

2 +
yη4

y + B
− θ1 − θ3,

c12 � −
xη1

x + B
−

xyη4
(y + B)

2 +
xη4

y + B
,

c13 �
xη3

x + B
,

c21 �
yBη1

(x + B)
2 −

yη4
y + B

+ θ1,

c22 � − μ + π −
2πy

k2
􏼠 􏼡c2 +

xη1
x + B

−
xBη4

(y + B)
2 − θ2,

c23 �
yη2

y + B
,

c31 � θ3,

c32 � θ2,

c33 � − μ + πα +
yη2

y + B
+

xη3
x + B

.

(29)

Te characteristic equation is given by m3 + m2C1+

mC2 + C3 � 0, where C1 � − (c11 + c22 + c33), C2 � c11c33 +

c22c33 + c11c22 − c12c21 + c23c32 + c13c31, and C3 � c12c23c31 −

c11c22c33 + c13c21c32 + c12c21c33− c31c22c13. □

Theorem 7. Equilibrium point, E6, for x � 0, y≠ 0, z≠ 0, by
Routh–Hurwitz is stable if G1, G3 > 0 and G1G2 >G0G3,
otherwise the system will be unstable.

Proof. Te variational matrix for the equilibrium point at
x � 0, y≠ 0, z≠ 0 is given by

g11 0 0

g21 g22 − g23

g31 g32 g33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (30)

where

g11 � − μ + πc1 −
yη1
B

−
zη3
B

+
yη4

y + B
− θ1 − θ3,

g22 � − μ + π −
2πy

k2
􏼠 􏼡c2 −

zBη2
(y + B)

2 − θ2,

g23 �
yη2

y + B
,

g31 �
zη3
B

+ θ3,

g32 � −
yzη2

(y + B)
2 +

zη2
y + B

+ θ2 andg33 � − μ + πα +
yη2

y + B
.

(31)

Te resulting characteristic equation is given by s3 +

s2G1 + sG2 + G3 � 0, where G1 � − (g11 + g22 + g33),
G2 � g11g33 + g22g33 + g11g22 + g23g32, and
G3 � − (g11g22g33 + g11g23g32). □

Theorem 8. Equilibrium point, E7, for the case x≠ 0, y≠ 0,
z≠ 0 is stable if K1, K3 > 0 and K1K2 >K3K0, otherwise the
system will be unstable.

Proof. Te variational matrix for the equilibrium point at
x≠ 0, y≠ 0, z≠ 0 is given by

k11 k12 − k13

k21 k22 − k23

k31 k32 k33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (32)

where

k11 � − μ + π −
2πx

K1
􏼠 􏼡c1 −

yBη1
(x + B)

2 −
zBη3

(x + B)
2 +

yη4
y + B

− θ1 − θ3,

k12 � −
xη1

(x + B)
2 −

xyη4
(y + B)

2 +
xη4

y + B
,

k13 �
xη3

x + B
,

k21 � −
yBη4

(x + B)
2 −

yη4
y + B

+ θ1,

k31 � −
zxη3

(x + B)
2 +

zη3
x + B

+ θ3,

k23 �
yη2

y + B
,

k22 � − μ + π −
2πy

k2
􏼠 􏼡c2 +

xη1
(x + B)

−
zBη2

(y + B)
2 −

xBη4
(y + B)

2 − θ2,

k32 � −
zyη2

(y + B)
2 +

zη2
y + B

+ θ2 and k33 � − μ + πα +
yη2

y + B
+

xη3
x + B

.

(33)

Te resulting characteristic equation is given by

r
3

+ r
2
K1 + rK2 + K3 � 0, (34)
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where K1 � − (k11 + k22 + k33), K2 � k11k33 + k22k33 +

k11k22 − k12k21 + k23k32 + k13k31, and K3 � k12k23k31 −

k11k22k33+ k13k21k32 + k12k21k33 − k31k22k13. □

7.2. Global Stability. Linear stability analysis tells us how
a system behaves near an equilibrium point. It does not
however tell us anything about what happens farther away
from equilibrium [23]. For higher dimensions, we consider
using a Lyapunov function. Tis paper considers Lyapunov
proposed by [1].

Theorem 9. Let

V �
X − X

∗
( 􏼁

2

2
+ δ1

Y − Y
∗

( 􏼁
2

2
+ δ2

Z − Z
∗

( 􏼁
2

2
, (35)

be the Lyapunov function, where δ1, δ2 > 0 are to be taken
properly such that the above function satisfes the Lyapunov
conditions.

V′(E∗) � 0, where E∗ � X∗, Y∗, Z∗ and V(X, Y, Z)> 0.
Te time derivative of V is dV/dt≤ 0 implies that the system
is just stable and dV/dt< 0 implies that E∗ is globally as-
ymptotically stable.

Proof.

V �
X − X

∗
( 􏼁

2

2
+ δ1

Y − Y
∗

( 􏼁
2

2
+ δ2

Z − Z
∗

( 􏼁
2

2
. (36)

Getting a time derivative of (36),

dV

dt
� X − X

∗
( 􏼁

dX

dt
+ δ1 Y − Y

∗
( 􏼁

dY

dt
+ δ2 Z − Z

∗
( 􏼁

dZ

dt
,

(37)

by substituting the values of dX/dt, dY/dt, dZ/dt results to

dV

dt
�

X − X
∗

( 􏼁c1πX 1 −
X

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁X −

η1XY

B + X
−
η3XZ

B + X
+
η4XY

B + Y
+ δ1 Y − Y

∗
( 􏼁c2πY 1 −

Y

k2
􏼠 􏼡−

μ + θ2( 􏼁Y +
η1XY

B + X
−
η2YZ

B + X
+ θ1X −

η4XY

B + Y
+ δ2 Z − Z

∗
( 􏼁 1 − c1 − c2( 􏼁πZ + θ3X + θ2Y +

η3XZ

B + X
+
η2YZ

B + Y
− μZ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

By factorizing X, Y, andZ,

dV

dt
� X − X

∗
( 􏼁 c1π 1 −

X

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁 −

η1Y
B + X

−
η3Z

B + X
+

η4Y
B + Y

(X)􏼨 􏼩

+ δ1 Y − Y
∗

( 􏼁 c2π 1 −
Y

k2
􏼠 􏼡 − μ + θ2( 􏼁 +

η1X
B + X

−
η2Z

B + X
+ θ1

X

Y
−

η4X
B + Y

(Y)􏼨 􏼩

+ δ2 Z − Z
∗

( 􏼁 1 − c1 − c2( 􏼁π + θ3
X

Z
+ θ2

Y

Z
+

η3X
B + X

+
η2Y

B + Y
− μ􏼒 􏼓(Z)􏼚 􏼛.

(39)

At special cases, X � X∗, Y � Y∗, and Z � Z∗ implying
that X − X∗, Y − Y∗, and Z − Z∗ are also equilibrium points,
then substituting results to

dV

dt
� X − X

∗
( 􏼁 c1π 1 −

X

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁 −

η1Y
B + X

−
η3Z

B + X
+

η4Y
B + Y

X − X
∗

( 􏼁􏼨 􏼩

+ δ1 Y − Y
∗

( 􏼁 c2π 1 −
Y

k2
􏼠 􏼡 − μ + θ2( 􏼁 +

η1X
B + X

−
η2Z

B + X
+ θ1

X

Y
−

η4X
B + Y

􏼠 􏼡 Y − Y
∗

( 􏼁􏼨 􏼩

+ δ2 Z − Z
∗

( 􏼁 1 − c1 − c2( 􏼁π + θ3
X

Z
+ θ2

Y

Z
+

η3X
B + X

+
η2Y

B + Y
− μ􏼒 􏼓 Z − Z

∗
( 􏼁􏼚 􏼛.

(40)
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Further simplifying,

dV

dt
� − X − X

∗
( 􏼁

2
c1π − 1 +

X

k1
􏼠 􏼡 − μ + θ1 + θ3( 􏼁 +

η1Y
B + X

+
η3Z

B + X
−

η4Y
B + Y

􏼨 􏼩

− δ1 Y − Y
∗

( 􏼁
2

c2π − 1 +
Y

k2
􏼠 􏼡 + μ + θ2( 􏼁 −

η1X
B + X

−
η2Z

B + X
− θ1

X

Y
+

η4X
B + Y

􏼨 􏼩

− δ2 Z − Z
∗

( 􏼁
2

− 1 + c1 + c2( 􏼁π − θ3
X

Z
− θ2

Y

Z
−

η3X
B + X

−
η2Y

B + Y
+ μ􏼚 􏼛.

(41)

(X − X∗)2 � 0 is the same as X2 − XX∗ − XX∗ + X∗2 �

0 implying X(X − X∗) � X∗(X − X∗). Tus X � X∗. Sim-
ilarly, Y � Y∗ and Z � Z∗. Since δ1 > 0 and δ2 > 0, then they
can be chosen such that dV/dt≤ 0, and that the equilibrium
E∗ is globally asymptotically stable. □

8. Bifurcation Analysis

In the Lotka–Volterra system, many parameters are used to
describe and formulate the system. But if parameters used in
the model are changed, other types of dynamical behavior
may occur and the critical parameter values at which such
transitions happen are called bifurcation points [1]. Tis
study addresses the transition factors of the prey-predator
interactions. Tis transition with respect to small changes is
called Hopf bifurcation. Hopf bifurcation occurs at the point
where the system has nonhyperbolic equilibriumwith purely
imaginary eigenvalues [1].

Tis study considers μ, θ as the bifurcation parameters
and μ∗, θ∗ as the critical values of the bifurcation parameters.

Theorem 10. Te positive equilibrium over real domainR is
considered. Let Φ: (0,∞)⟶ R be the continuous difer-
ential function of μ. Ten, Φ(μ) � M1(μ)M2(μ) − M3(μ).
Since μ∗ is the positive root of Φ(μ) � 0. Tus, Hopf bi-
furcation of the interior equilibrium E(X∗, Y∗, Z∗) occurs at
μ � μ∗ if and only if Φ(μ∗) � 0 and
R2(μ∗)R4(μ∗) + R1(μ∗)R3(μ∗)≠ 0.

Proof. By the frst condition above that Φ(μ) � 0, the
characteristic equation of the variational matrix in Teorem
8 can be written as (r2 + k2)(r + k1) � 0.

Te roots of the equation are
α1 � − k1, α2 � − i

��
k2

􏽰
, α3 � i

��
k3

􏽰
.

Tere exist an interval of μ∗ + ξ,μ∗ − ξ since Φ(μ∗) is
continuous of all its roots.

Te general form of complex roots is given by

θ1(μ) � ω(μ) + iξ(μ) and θ2(μ) � ω(μ) − iξ(μ). (42)

We verify the transversality condition dReθj/dμ
≠ 0; j � 1, 2.

By substituting the general form of the complex roots
into the characteristic equation and getting the derivative
results to

ω3
− ω2

iξ − 3ξ2ω + iξ3 + σ1ω
2

− 2iξωσ1 − σ1ξ
2

+ σ2ω − iξσ2 + σ3.

(43)

By implicit diferentiation of equation (43), we obtain

3ω2
− 3ξ2 + 2σ1ω + σ2􏼐 􏼑ω′(μ)

− 6ωξ + 2σ1ξ( 􏼁ξ′(μ) + σ1′ω − σ1′ξ
2

+ σ2′ω + σ2′.
(44)

By lettingR1(μ) � 3ω2 − 3ξ2 + 2σ1ω + σ2 ,R2(μ) � 6ωξ+

2σ1ξ , R3 � σ1′ω − σ1′ξ
2

+ σ2′ω + σ2′, and R4 � 2σ1′ωξ + σ2′ξ.
Tus, we have

R1(μ)ω′(μ) − R2(μ)ξ′(μ) + R3(μ) � 0, (45)

R2(μ)ω′(μ) + R1(μ)ξ′(μ) + R4(μ) � 0. (46)

For ξ′(μ) at μ � μ∗, therefore dReθj/dμ � χ′(μ∗).
By comparing the values of ξ′(μ) using equations (45)

and (46).
R1 μ∗( 􏼁 + R3 μ∗( 􏼁

R2 μ∗( 􏼁
� −

R2 μ∗( 􏼁 + R4 μ∗( 􏼁

R1 μ∗( 􏼁
. (47)

� − R2(μ∗)R4(μ∗) + R1(μ∗)R3(μ∗)/R2
1(μ
∗) + R2

2(μ
∗)≠ 0,

only if R2(μ∗)R4(μ∗) + R1(μ∗)R3(μ∗)≠ 0. Tus, the trans-
versality condition is satisfed and hence Hopf bifurcation
occurs at μ � (μ∗). □

9. Numerical Simulation

In this section, the numerical analysis is done with the help
of Wolfram Mathematica by considering the parameters
values of the model cited in Table 1. Due to the difculty in
parameter estimation, we relied heavily on previously
published work related to this study. Te initial values of the
variables used to generate graphs in Figures 2–6 are x �

3045227, y � 217724 [24] in page 10 and since the data for
the nonenrolled was unavailable, the study considered the
school-going age and further extracted the data from the
2019 national census statistics data. From the numerical
analysis, we have found that all the eight equilibrium points
are unstable. Since our model lies in the real domain, we will
not verify for imaginary equilibrium points.

For Teorem 1, the eigenvalues are 1.0884, − 0.0315, and
2.77264; hence, the system is unstable

Teorem 2, the equilibrium point is − 3.2503. Now, we
have A1 � − 13.2227< 0, A2 � 42.9696, and A3 � 1.2559 and
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by Routh–Hurwitz, the system is unstable at that
equilibrium point.

Teorem 3, the equilibrium point − 0.0425367, the ei-
genvalues are 2.7726, 0.0315, and 1.0888; hence, Teorem 3
is unstable since it has positive eigenvalues.

Teorem 4, the eigenvalues are 1.0884, − 0.0315, and
2.77264, thus confrms that Teorem 4 is unstable.

Teorem 5, Te equilibrium points are x4
1 � 3.2503 and

z4
1 � − 0.1143 which are unstable since D1 � 1.7168, D2 �

− 2.9637, and D3 � − 0.0999< 0.
x4
2 � 212.3727 and z4

2 � 930083.112; we have
D1 � 188.24, D2 � − 205880, D3 � 224010.

Teorem 6, the equilibrium points are x5
1 � − 3.8359 and

y5
1 � − 0.0155 − 4.783i. We have C1 � − 10.4076 − 9.6953i,

C2 � 10.1555 + 100.899i, and C3 � − 0.005163 − 98.4232i.

x5
2 � 10.3364 and y5

2 � − 0.0155 − 7.852i. We have C1 �

13.772 − 15.9126i, C2 � − 16.1924 − 219.157i, and
C3 � 0.009540 + 257.578i. From the above-given theory, it
confrms that the system is unstable for Teorem 6.

Teorem 7, the equilibrium points are y6
1 � − 7.763 ×

10− 13 and z6
1 � 1.97959 × 10− 12. By Routh–Hurwitz, we have

G1 � − 3.8296, G2 � 2.8963, and G3 � 0.09505. G3 < 0 im-
plies the system is unstable.

y6
2 � − 13255.0965 and z6

2 � 2.2493 × 109. We have G1 �

1.77256 × 106, G2 � − 4.8339 × 1010, and G3 � 5.26135× 1010.
Since G1G2 − G3 < 0, the equilibrium points are unstable.

Teorem 8, the equilibrium points are
x7
1 � 0, y7

1 � − 1656.91, z7
1 � 1867770.3. By Routh–Hurwitz

criterion, we have K1 � − 964.05, K2 � − 3656941.28, and
K3 � 3981178.6. Since K1 < 0, the equilibrium points are
unstable.

Table 1: Parameter and their description.

Parameter Description Value Source
π Schools recruitment 4,583,396
c1 Enrolment rate in public schools 0.6976 [24]
c2 Enrolment rate in private schools 0.04988 [24]
k1 Public schools carrying capacity 3,546,153 [24]
k2 Public schools carrying capacity 297,114 [24]
θ1 Transfer rate from public to private schools 0.0009 Estimated
θ2 Transfer rate from private to nonenrolled 0.0015 [25]
θ3 Transfer rate from public to nonenrolled 0.0015 [25]
μ Exit rate due to completion 0.25 Estimated
η1 Private school predation rate on public schools 0.0004 Estimated
η2 Nonenrolled entity predation rate on private schools 0.0001 [21]
η3 Nonenrolled entity predation rate on public schools 0.0008 [21]
η4 Public school predation rate on private schools 0.0006 Estimated
B Saturation constant 1 [26]
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Figure 2: Dynamics of public schools with respect to θ3 and η3.
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x7
2 � 3.25027, y7

2 � 0, z7
2 � − 0.004477. We have

K1 � 1.08835, K2 � − 2.92308, and K3 � − 0.0987.
x7
3 � 3.24852, y7

3 � 0, z7
3 � 7.98893. We have K1 �

1.71558, K2 � − 2.957, and K3 � − 0.1023. x7
4 � 3.25029, y7

4 �

0.04497, z7
4 � 0. We have K1 � 1.08897, K2 � − 2.85285, and

K3 � − 0.2985.

x7
5 � − 13291.8, y7

5 � − 0.001216, z7
5 � 1.1987 × 108. We

have K1 � 76202.2, K2 � − 2.7233 × 108, and K3 �

2.9643 × 108.
x7
6 � 1.8189 × 10− 12, y7

6 � − 13291.8, z7
6 � 1.1987 × 108.

We have K1 � − 10672.8, K2 � − 2.7233 × 108, and
K3 � 2.9643 × 108. Hence, Teorem 8 is unstable.
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Figure 3: Dynamics of private school with respect to θ2.
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Figure 4: Dynamics of nonenrolled with respect to θ3 and η3.
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Figure 5: Dynamics of population (in millions) against each other at the same time interval. (a) Dynamics in public and private.
(b) Dynamics in public and nonenrolled. (c) Dynamics in private and nonenrolled.
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10. Discussion of the Results

Just like disease, predation help in population regulation
[15]. But in this study, predation from nonenrolled entity
needs to be avoided at all cost to save the schools population
by avoiding school dropouts from learners. In this study, the
system of ODEs formed had eight equilibrium points. From
the numerical simulation, all the eight equilibrium points
were unstable. Tis implies that the system cannot tend to
one of the states of having no schools’ population and no
nonenrolled entity. In Figure 2, the parameter θ3 and η3 are
varied from 0.0015 to 1.3 and 0.0008 to 1, respectively. In
both cases as the value of the parameter increase the pop-
ulation of the public school and private school decreases.
When the value of η3 is 1, the population of private school
becomes extinct. Tis implies these parameters are the ones
responsible for the decrease in schools’ population. In
Figure 4 as θ3 and η3 increases the population of the
nonenrolled entity increases. Tis is because θ3 and η3 are

the parameters that lead to predation of the schools pop-
ulation as seen in Figure 2. Tese parameters further cause
a decrease in the private population as seen in Figure 3. In
Figure 5, public and private schools’ population are almost
directly proportional to each other while for public and the
nonenrolled, increases in the nonenrolled causes a decrease
in the public population. Tis is due to predation of the
nonenrolled as confrmed by Figure 4. Te same situation
happens in when private schools are plotted against the
nonenrolled entity as seen in Figure 5. Figure 6 shows the
variations of schools’ population in the long run which was
plotted for six years, public and private schools will be di-
rectly proportional while for public and the nonenrolled,
public school populations increase steadily faster but it
reaches a time when the nonenrolled overwhelm the situ-
ation and thus public population remains constant. Figure 7
shows in the absence of the nonenrolled the behavior of
public and private schools in the long run. Figure 8 show
a bifurcation diagram with respect to μ. Te bifurcation
diagram confrms the theoretical results of Teorem 8. Te
system of schools and the nonenrolled entity tend to co-
existence when μ> 0.2 as in Teorem 8 illustrates the co-
existence of the system.

11. Conclusion

In this paper, we have studied a model of competition of
students’ population growth. Te frst and second categories
of the population are the public schools’ population and
private schools’ population, respectively, which grows
according to the logistic growth equation.Te third category
is the nonenrolled entity which grows exponentially. In this
work, eight equilibrium points were determined and then
studied for the local stability and global stability of the
system.Te local stability of the equilibrium points has been
studied using the eigenvalue method and the
Routh–Hurwitz criterion. A numerical simulation has been
done to verify the local stability. From the numerical sim-
ulation, it was found that all the eight equilibrium points are
unstable. However, the system was found to be globally
asymptotically stable using the Lyapunov function. Finally,
from the results, this study suggests that the government of
Kenya through the ministry of education and any concerned
body should consider implementing strategies that are
aimed at reducing the parameters θ2, θ3, and η3. Tis will
save the schools population from becoming to an extinct.
Tis is important because education is the backbone of
a country for the development purposes as the nation re-
quires people who are wise and can help to solve the
problems of the country. By employing strategies that
mitigate these parameters, it will also help to prevent future
occurrences of the same. Bifurcation was carried out for μ
and which show coexistence when μ greater than 0.2.

In this work, we have developed the Lotka–Volterra
model for the system of ODEs to asses to efects of predation,
school dropout, and competition among schools with
Holling type II response. We used MATLAB software to
generate graphs. However, concerning our future studies, we
intend to do real data ftting to the model. Another direction

Projection between public and private population in next 6 years
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that is also of interest is to do optimal control theory and
stochastic modelling.
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