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Abstract
Smallholder farmers often bundle different sustainable agricultural intensifi-
cation (SAI) practices to boost crop yield and address soil fertility challenges.
However, there is a dearth of empirical studies that investigate farmers’ adoption
of SAI bundles and their subsequent impacts. Using data froma three-wave panel
survey of smallholder maize-legume producers in Kenya, we examine the adop-
tion and payoffs from 10 SAI practices clustered into five dominant groups. We
use a randomeffectsmultinomial logitmodel to determine the choice of SAI clus-
ter at the plot level while controlling for unobserved individual heterogeneity.
The results show that the number of extension contacts, farm labor availability,
householdwealth, and education of household heads positively and significantly
affect the adoption of SAI clusters while renting plots and poor soil quality have
negative effects. The multinomial endogenous treatment effects model results
reveal significant variability in crop yield, total variable cost, revenue, and net
income across the five SAI clusters. The benefits vary by crop system, region,
and cropping year, indicating that a one-size-fits-all extension design is unsuit-
able for farmers. The study suggests the promotion of participatory extension
policies that would allow locally adaptable and highly profitable bundles of SAI
practices to be identified, refined, and disseminated.
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1 INTRODUCTION

Rural farm households in Sub-Saharan Africa (SSA) are
primarily small-scale and depend heavily on agriculture as
a source of livelihood. They operate under volatile environ-

mental conditions that contribute to low land productivity
and perennial food insecurity. Climate change is a major
source of agricultural production risk (Jayne et al., 2018),
mainly due to severe and frequent droughts and flood-
ing. Reduced soil fertility is caused by continuous tilling of
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arable land using poor agronomic practices (Odendo et al.,
2010) and land fragmentation from the growing population
(Pretty et al., 2011). Enhancing smallholder agricultural
productivity is key to ensuring food and nutrition security
(Kim et al., 2019).
The Green Revolution (GR) aimed to increase agricul-

tural productivity in developing countries but failed to take
off in SSA due to institutional and political challenges
(Evenson & Gollin, 2003). Conservation agriculture (CA)
was subsequently proposed as an environmentally friendly
approach to restoring land productivity but has not alle-
viated food shortages (Giller et al., 2009), mainly because
of the slow release of nutrients to plants from manure
compared to chemical fertilizers, particularly in intensive
cereal production systems (Montt & Luu, 2020). Sustain-
able agricultural intensification (SAI) is another approach
that has been promoted by international agencies and
other commissions concerned with the sustainability of
agricultural production. The approach aims to achieve
more agricultural output with limited inputs and land
while enhancing the sustainability of agricultural pro-
duction. Notwithstanding the multiple benefits that the
adoption of SAI practices stands to offer to smallholder
farmers, it is still unclear what determines the level of
adoption of SAI practices, especially when considered as
bundles, the underlyingmotivation for full, partial, or non-
adoption of a bundle or bundles of SAI practices across
varying cropping practices. Also unclear from the existing
body of literature are the underlying determinants of SAI
practices adoption behavior by smallholder farmers across
cropping patterns.
It is against this backdrop that this study investi-

gates the adoption and impact of 10 SAI practices that
are widely used under maize-legume farming systems in
Kenya, and were promoted by the International Maize
and Wheat Improvement Center (CIMMYT) under the
Adoption Pathways Project1 (APP). The SAI practices are
namely: (1) chemical fertilizer; (2) improved seed varieties
(yield enhancing); (3) pesticide; (4) herbicide (crop protec-
tion); (5) organic manure; (6) maize legume intercropping;
(7) legume rotations (traditional soil restoring); (8) min-
imum tillage; (9) short-term soil and water conservation
practices; and (10) long-term soil and water conserva-
tion practices (modern soil restoring). This study provides
insights into the adoption constraints of SAI clusters and
identifies SAI clusters with the most significant payoffs.
It achieves this by grouping different SAI practices into
clusters that better reflect farmers’ choices of production
practices. Using the identified clusters, a random-effects

1 The APP project investigates how smallholder decisions are influenced
by socioeconomic factors, changes in farming systems, and external
factors (such as climate variability, markets, and policies).

multinomial logitmodel is applied to investigate and estab-
lish the determinants of SAI cluster adoption while con-
trolling for unobserved individual heterogeneity. Finally, a
multinomial endogenous treatment effects model is used
in the study to estimate the impact of adopting different
SAI clusters on outcomes, including crop yield, revenue,
total variable cost, net income, and labor use.
Although the adoption of SAI practices has the poten-

tial to transform SSA agricultural systems and improve
the resilience of smallholder farmers (Pretty et al., 2011),
there is a dearth of knowledge on the role of agricul-
tural technology adoption on the development of African
agriculture (Vink, 2022). However, there is an emerging
strand of studies that have examined the adoption of SAI
practices, althoughmost of themhave focused on the adop-
tion of singular SAI practices, such as chemical fertilizer
(Marenya & Barrett, 2009) and improved seed varieties
(Kathage et al., 2016; Michler et al., 2018). In practice,
farmers often adopt bundles of different SAI practices.
Other studies considered the adoption of discrete but mul-
tiple SAI practices and not as combinations (Arslan et al.,
2017; Kassie et al., 2015; Teklewold et al., 2013; Wainaina
et al., 2016). Several studies have acknowledged the lack
of SAI practices that are universally suitable for small-
holder farmers (Petersen & Snapp, 2015; Pretty et al., 2011;
Wainaina et al., 2016). Smallholder farmers operate in het-
erogeneous agro-climatic and resource conditions,making
it difficult to generalize the use and effect of SAI practices
across regions. Thus, the choice of the combinations of SAI
practices adopted tends to be region- and context-specific
(Yigezu et al., 2018).
A few studies have considered the adoption of selected

combinations of SAI practices (Kassie et al., 2013, 2015;
Teklewold et al., 2013) but with the scope limited to
estimating adoption rates, determinants of adoption, and
correlations in adopting different practices. Other empir-
ical studies have reported that SAI practices improve soil
fertility, crop yield, and income (Khonje et al., 2018, 2022;
Teklewold et al., 2013; Tilman et al., 2011). Considering the
multiple benefits that SAIs offer, there is a lack of empirical
evidence on (1) the combinations of different SAI practices
that mirror farmers’ production practices; (2) factors that
determine the adoption of different combinations of SAI
practices; and (3) the benefits of adopting a combination
of different SAI practices among smallholder producers.
To our knowledge, no study has investigated these issues
by applying a K-mode clustering algorithm to group SAI
practices into dominant bundles that mirror what farmers
do.
Teklewold et al. (2013) attempted to tease out the

impacts of the combined use of a few SAI practices on
household income and labor demand, whereas Kassie
et al. (2018) explored the impact of the combined use of
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SAI on yield and production costs. The main challenge
is that the potential list of SAI practice combinations is
large, although not all such combinations are relevant.
Therefore, cluster analysis can be used to overcome this
challenge as it can be used to combine and vary SAI prac-
tices into useful bundles that mirror those that are known
to have been adopted by farmers. While most studies on
SAI practices have solely focused on maize, our analysis
includes maize and bean crops, representing the main
staple crops in Kenya for which SAI practices are primarily
promoted. Given the diversity in land uses, this study
also segregates data into maize-beans intercrop, maize
monocrop, and beans monocrop plots to provide policy
insight into interactions of crop types with SAI adoption.
Takahashi et al. (2020) point out the lack of analysis of
profitability as a shortcoming of SAI studies, which is
an issue we address by evaluating the benefits to small-
holder farmers of adopting different combinations of SAI
practices.
In Kenya, Ndiritu et al. (2014) analyzed seven SAI prac-

tices and evaluated gender differences in SAI uptake,
and found that gender differences matter in the adop-
tion of manure and minimum tillage practices. Wainaina
et al. (2016) modeled the trade-offs and complementarities
across seven SAI practices and found that SAI adoption
varies across different ecological conditions. These two
studies did not consider the adoption of herbicides andpes-
ticides; yet herbicides (e.g., glyphosate) are mostly used as
complements to minimum tillage to control weeds, and
pesticides are used to control maize stem borer moths.
Moreover, neither of these studies considered a combi-
nation of SAI practices that farmers often use. Generally,
most studies on the adoption of SAI practices ignored
the effect of adoption on farm net income, especially in
maize-based farming (Takahashi et al., 2020).
Therefore, to our knowledge, this is the first study that

has used a combination of indicators including yield, total
variable cost, revenue, and net income to analyze the prof-
itability of SAI practice after adoption. Furthermore, it
generates information on the drivers of the adoption of the
bundles of SAI practices chosen by farmers and the sub-
sequent welfare benefits. This information is critical for
designing and promoting appropriate policies to encour-
age the uptake of SAI clusters that are consistent with local
farmer needs.
The rest of this article is structured as follows. We start

by describing sustainable agricultural intensification prac-
tices, followed by the empirical strategy in Section 3. A
summary of the study area and data sources is presented
in Section 4. The results are presented and discussed in
Section 5. Section 6 concludes the paper by drawing several
implications.

2 SUSTAINABLE AGRICULTURAL
INTENSIFICATION PRACTICES

This section provides an overview of SAI practices and the
clustering process.

2.1 Description of SAI practices

Smallholders typically adopt a combination of SAI prac-
tices to increase land productivity and reduce natural
resource degradation (Khonje et al., 2018). For instance,
minimum tillage reduces soil disturbance and increases
soil water holding capacity, thus limiting soil health degra-
dation effects of conventional tillage.When combinedwith
soil and water conservation practices such as crop residue
retention and mulching, this can stabilize soil moisture
and temperature and therefore conserve the structure of
the uppermost soil layer (Montt & Luu, 2020). Intercrop-
ping enables plant roots to grow at different soil depths
absorbing nutrients from different soil layers, while crop
rotation interrupts the infection chain. Montt and Luu
(2020) show that when combined with crop residue reten-
tion and minimum tillage, intercropping could serve as
an integrated pest management practice and improve soil
nutrient content. Manure application has the potential
benefits of long-term maintenance of soil fertility, organic
matter content, and nutrient supply (Teklewold et al.,
2013).
Under favorable environments, input-intensive prac-

tices such as improved seed varieties have the potential
to increase crop yield compared to traditional landraces
(Wainaina et al., 2018). When combined with chemical fer-
tilizer, this can lead to increased crop yields, improved food
security, and income for rural households. Although min-
imum tillage helps to preserve soil structure, it requires
weed management and hence the use of herbicides. Pes-
ticides are also used, mainly to control maize stem borer
moths that are widespread in Kenya.

2.2 Clustering SAI practices

The 10 SAI practices we consider could generate a large
number of possible combinations of practices available for
farmers. Not all of these combinations are attractive or
relevant. Therefore, we focus on dominant clusters of prac-
tices that farmers tend to adopt. For our dataset, we define
SAI practices as discrete choices and use the K-modes
clustering algorithm to group them into dominant clusters.
The algorithm uses frequency-based methods and min-

imizes the distances between SAI practices and group
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modes to define clusters. Huang (1997) and He et al. (2006)
show that the K-modes algorithm is efficient and effec-
tive in classifying categorical data. The K-modes approach
uses the dissimilarity measure to define total mismatches
of the corresponding attribute to cluster plots. The smaller
the number of mismatches between plots, the more sim-
ilar the plots are (Huang, 1997). The K-mode algorithm
takes the most frequent value for each attribute to reach
the minima (He et al., 2006; Roever et al., 2018).
Following Roever et al. (2018), we use the “klaR” pack-

age in R to classify 3608 plots into clusters according to
the types of SAI practices used. We follow the five basic
steps involved in cluster analysis (Mooi & Sarstedt, 2010):
(1) choosing the observational elements to be clustered
(plots); (2) choosing the variables in each observational
unit to be analyzed (10 SAI practices); (3) selecting of
clustering algorithm (K-mode algorithm); (4) determining
the number of cluster sets (first we use qualitative judg-
ment based on cluster size and employ multiple random
starting seeds by varying clusters from 3 to 8 K-modes solu-
tions); and (5) validating cluster solutions (chi-square test
statistic for testing independence between SAI clusters).
Finally, a cluster size of 5 was chosen for its easy interpreta-
tion and stability despite variations in the random starting
seed.

2.3 Clusters

The K-modes clustering generated the following distinct
SAI clusters:

Cluster 1 is yield-enhancing and protecting (EP).
Cluster 2 is yield-enhancing, protecting, traditional, and

modern soil restoring (EPTM).
Cluster 3 is yield-enhancing and traditional soil restoring

(ET).
Cluster 4 is yield enhancing, protecting, and traditional

soil restoring (EPT).
Cluster 5 is traditional soil restoring (T).

Table 1 describes the attributes of each cluster. Major
attributes in each cluster are circled based on the adop-
tion rate relative to the overall adoption rate of all the other
practices. Differences between clusters were tested using
chi-square and multivariate tests due to the imprecision of
the clustering methods, variable selection, and the target
number of clusters. Results showed significant differences
across cluster groups, suggesting the generation of a dis-
tinct set of SAI clusters is appropriate (see Table A1 of the
Online Appendix.)

3 CONCEPTUAL AND ECONOMETRIC
FRAMEWORK

3.1 Conceptual framework

Smallholders often adopt different combinations of SAI
practices. Thus, the adoption of SAI clusters may improve
smallholder welfare in various ways such as by increasing
yield/food production and income from the sale of agricul-
tural produce (Adolwa et al., 2019; Hörner & Wollni, 2022;
Tesfaye et al., 2021). In the context of this study, Figure 1
depicts ten SAI practices available to farmers grouped into
the following five clusters using the K-modes clustering
algorithm asmentioned above. The adoption of these clus-
ters is directly influenced by farm and social-economic
variables and institutional factors. The adoption of vari-
ous SAI clusters could directly increase land productivity
and hence crop yield. It could also increase labor demand.
For example, practices such as intercropping, manure use,
and short-term soil and water conservation strategies such
as mulching, are labor intensive and increase produc-
tion variable costs practices such as minimum tillage are
labor-saving and may lower production variable costs. We
presume that the adoption of clusters EP, EPTM, and EPT,
with yieldenhancing practices, may increase household
earnings by generating larger marketable surpluses. We
also postulate that the adoption of SAI clusters with soil
and water conservation practices would lead to increased
crop yields and household income.

3.2 Random effects multinomial logit
model

A random-effects multinomial logit model is used to
investigate the determinants of SAI cluster choice while
controlling for unobserved individual heterogeneity. Con-
sider a sample of farm households indexed by i = 1, . . . , I,
owning pplots, and let j= 0, . . . , J be the feasible SAI cluster
choices available to the household. Households cultivated
more than one plot and may vary the SAI cluster used on a
plot between production seasons. Given the panel nature
of the data, the observed covariates that explain the choice
of SAI cluster may be correlated with time-invariant unob-
served household-level heterogeneity. Following Hartzel
et al. (2001),we estimate amultinomial logitwith a random
effects model and include a latent variable at the house-
hold level as a random intercept. Random utility 𝑉𝑖𝑗𝑝𝑡
generated by a cluster is:

𝑉ijpt = (𝛼𝑗 + 𝑢ij) + 𝑋ipt𝛽𝑗 + 𝜀ijpt (1)
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TABLE 1 Adoption rates of the SAI practices across each of the five clusters defined using K-mode clustering.

Clusters Percentage adoption rate of SAI per cluster

C R T M SW

T

SW

L

S F H P

EP 8 17 7 13 13 26 23 15 22 19

EPTM 25 32 67 25 12 27 22 18 29 20

ET 29 13 8 21 9 25 22 30 13 12

EPT 10 25 14 22 36 15 25 28 32 46

T 28 13 4 19 30 7 8 9 4 3

100 100 100 100 100 100 100 100 100 100

Note: C= Intercropping, R= Rotation, M=Manure, T=Minimum tillage, F= Fertilizer, S= Improved seed, H=Herbicide, P= Pesticide, SWT= Soil and water
conservation: short term, SWL = Soil and water conservation: long term. The circled values indicate adoption rates for each SAI practice greater than 17% across
the five clusters.

10 SAI practices
C=Intercropping, R=Rota�on, M=Manure, T=Minimum �llage, 

F=Fer�lizer, S=Improved seed, H=Herbicide, P=Pes�cide, 

K-mode clustering

Five clusters Generated

EP, EPTM, ET, EPT & T

Random effects 
multinomial logit

Welfare
- Yield

- Labor

- Variable cost

- Farm revenue

- Farm Income

Multinomial 
endogenous 
treatment effects 

Covariates
- Farm factors

- Social economic

- institutional

F IGURE 1 Conceptual framework.

Source: Authors’ conceptualization.

where j represents the SAI cluster, i represents farm
household, Xit is observed exogenous variables (house-
hold, physical, and institutional and farm characteristics)
including year dummies, 𝛼𝑗 is the constant term for clus-
ter j, uij is the individual heterogeneity term representing
the influence of idiosyncratic household characteristics,
𝛽𝑗 denotes the vector of unknown model parameters to

be estimated, and 𝜀𝑖𝑗𝑝𝑡 is the error term independently
distributed according to a type I extreme value distribution.
Although the independence of irrelevant alternatives

(IIA) assumption always holds conditionally on all covari-
ates and random errors for the multinomial logit model,
the inclusion of random terms in the estimationmodel par-
tially relaxes the IIA property (Grilli & Rampichini, 2007).
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Hence, the IIA assumption does not marginally hold for
the random error components.
For model identification, the estimated coefficients for

one of the clusters are normalized to zero. We use the
Generalized Structural Equation Model (GSEM) software
package in STATA 14 to fit the model allowing for the
inclusion of multinomial responses and random effects
(Rabe-Hesketh et al., 2004; Stata, 2011).

3.3 Multinomial endogenous treatment
effects model (METE)

We also analyze the impact of adopting SAI clusters
on yield,2 labor input, total variable cost,3 revenue, and
net income. To understand the causal effect of clus-
ter adoption on the outcome of interest, we simultane-
ously account for both cluster selection decisions and
unobserved household-level heterogeneity. We adopt a
treatment-effect approach to estimate the selection and
outcome equations simultaneously. We first specify the
model as:

𝐿∗
𝑖𝑝𝑡
= 𝑋𝑖𝑝𝑡𝛽𝐿 + 𝛿𝑗𝑍𝑖𝑝𝑡 + 𝜆𝐷𝑖𝑝𝑡 + 𝑖𝑡 (2)

where 𝐿∗
𝑖𝑝𝑡

is a latent variable representing the random
utility associated with SAI cluster adoption and the out-
come (labor cost, total variable cost, yield, and revenue
net farm income). 𝐿𝑖𝑝𝑡 denotes binary variables for SAI
cluster adoption. Exogenous variables 𝑋𝑖𝑝𝑡 are observable
factors that determine SAI cluster adoption selection and
exogenous variables 𝑍𝑖𝑝𝑡4 are control variables. 𝐷𝑖𝑝𝑡 is a
latent unobserved characteristic that underlies the corre-
lation between selection and outcome. We assume that 𝑖𝑡
has a bivariate normal distribution:

𝐿𝑖𝑝𝑡 = 1 𝑖𝑓 𝑋𝑖𝑝𝑡𝛽𝐿 + 𝛿𝑗𝑍𝑖𝑝𝑡 + 𝜆𝐷𝑖𝑝𝑡 + 𝑖𝑡 > 0 and 1

otherwise (3)

In particular, we use the METE model proposed by Deb
and Trivedi (2006) and Deb (2009), which relies on instru-
mental variables and accounts for endogeneity. To estimate

2 Quantity of maize equivalent is computed following (Liu & Myers,
2009). Where, maize quantity equivalent (Qm) is computed as 𝑄𝑚 =∑
𝑌ib𝑃𝑏
𝑃𝑚

where 𝑌𝑖𝑏 is the output of bean b in kgs in household i; 𝑃𝑏 is the
price of bean and 𝑃𝑚 is the price of maize.
3 Costs and prices are deflated with 2015 as the base year (exchange rate;
1 KES = 89 USD in 2011, 1 KES = 91 USD in 2013 and 1 KES = 102 USD in
2015).
4 The vector 𝑍𝑖𝑝𝑡 includes control variables used in the first stage of the
estimation. The difference between the vectors of control variables 𝑍𝑖𝑝𝑡
and 𝑋𝑖𝑝𝑡 is that 𝑍𝑖𝑝𝑡 includes instrumental variable (number of grain
traders known to the farmer within the village).

the outcomes for the adoption of Clusters EP, EPTM, ET,
and EPT relative to Cluster T, we use the following model:

𝐸
(
𝑌𝑖𝑝𝑡|𝐿𝑖𝑝𝑡𝑗, 𝑋𝑖𝑝𝑡, 𝐷𝑖𝑝𝑡𝑗) = 𝑋𝑖𝑝𝑡𝛽 +

𝐽∑
𝑗=1

𝜌𝑗𝑡𝐿𝑖𝑝𝑡𝑗

+

𝐽∑
𝑗=1

𝜆𝑗𝑡𝐷𝑖𝑝𝑡𝑗 + 𝑖𝑡 (4)

where: 𝑌𝑖𝑝𝑡 is the outcome from plot p for farmer i at
time t, while 𝑋𝑖𝑝𝑡 denotes observable household and farm
characteristics. 𝐿𝑖𝑝𝑡𝑗 denotes SAI cluster adoption binary
variables. The average effects of the adoption of various
clusters are captured by 𝜌𝑗𝑡. 𝐷𝑖𝑝𝑡𝑗 denotes the unobserv-
able characteristics that simultaneously influence a given
cluster adoption decision and outcome. Since the outcome
variables are continuous, we assume a normal (Gaussian)
distribution function. Themodel is estimated using amax-
imum simulated likelihood approach (MSL).5 We set the
number of random draws S at 400, as in Gregory and Deb
(2015), since the number of quasi-randomHalton sequence
simulation draws should be higher than the square root of
the number of observations.

3.3.1 Controlling for endogeneity

In Equation (3), the cluster adoption variable 𝐿𝑖𝑝𝑡 is most
likely to be endogenous as a farmer makes adoption deci-
sions with future outcomes in mind. Hence, there is a
possibility that unobservable factors that influence SAI
cluster adoption decisions are likely to influence the out-
come variables. We use the instrumental variable (IV)
strategy to address this problem. Deb and Trivedi (2006)
show that the model’s parameters estimated using con-
trol variables included in the selection equation are the
same as those used in the outcome equation. The use of
the exclusion restriction and instruments provides more
robust estimates. We use one instrumental variable (the
number of grain traders known to the farmer within the
village), which influences the endogenous treatment effect
but is uncorrelated with the outcomes or the error com-
ponent. Finally, we determine the impact of the four SAI
cluster adoption decisions on the outcome relative to T.

3.3.2 Empirical validation of IV

We establish the suitability of the instrument variable (IV)
regarding number of grain traders known to the farmer

5 The STATA command used ismtreatreg, implemented by Deb (2009).
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within the village, by performing a falsification test. A valid
IV will influence the SAI cluster adoption decision but
not affect the output equations (quantity of maize equiv-
alent produced, labor costs, variable cost, revenue, and net
income). We found the IV to be a statistically significant
determinant of adoption decision for clusters (Model 1,
χ2= 1978.02; with significant p values) but not the outcome
estimates (Model 2, F–stat. = 15.40, P = .099 for yield; F–
stat.= 67.55,P= .849 for labor cost; F–stat.= 38.42,P= .100
for variable cost; F–stat. = 15.25, P = .101 for revenue; F–
stat.= 16.45, P= .596 for net income). Hence, we argue that
our IV is relevant and satisfies the exclusion restriction6
thus valid in our model specifications.

3.3.3 Controlling for unobserved
heterogeneity

The error term 𝑖𝑡 in Equation (2) has two components, 𝑢𝑖
and 𝑣𝑖𝑡. The component 𝑣𝑖𝑡 is the time-varying unobserved
shocks that affect a household’s SAI cluster adoption deci-
sion and the outcomes. The component 𝑢𝑖 represents
time-invariant unobserved heterogeneity, the individual
characteristics affecting household SAI cluster adoption
decisions and outcomes. These may include the farmer’s
managerial ability, preferences, and degree of risk aver-
sion, which are unobservable. In a nonlinear panel data
model, a correlation between time-invariant, unobserved
household-level variables, and observed covariates could
occur. A correlation between covariates and unobserved
heterogeneity may lead to biased estimated coefficients.
Following Mundlak (1978) and Chamberlain (1984), we
use the correlated random effects (CREs) model estima-
tor to relax the assumption of independence between
covariates and unobserved heterogeneity. Unlike the stan-
dard random effects model, the CRE model controls
for time-invariant unobserved heterogeneity as with the
fixed effects model without encountering the incidental
parameters problem in nonlinear panel models. The CRE
estimator permits the correlation between unobserved het-
erogeneity (𝑢𝑖) and vector of covariates across all time
periods by assuming that the correlation takes the form:
𝑢𝑖 = 𝜔 + �̄�𝑖𝜉 + 𝑒𝑖 , where 𝜔 and 𝜉 are constants, �̄�𝑖7 is
a time average for all time-varying covariates in Equa-
tion (4), and 𝑒𝑖 is a normally distributed error term with
zero mean and constant variance. To implement the CRE,
we model the distribution of unobserved heterogeneity
in Equation (4) as a linear function of the time average

6 Due to the challenge of identifying an extra IV we could not carry out
an over-identification test.
7 The �̄�𝑖 variables have the same value for each household in each year
but vary across households.

of time-varying explanatory variables, �̄�𝑖𝑝𝑡 and �̄�𝑖𝑝𝑡. The
constant 𝜔 is absorbed into the intercept term.

4 STUDY AREA AND DATA

We use a data set of farm households from Kenya. The
data were collected as part of the CIMMYT-led Adop-
tion Pathways Project. The sampling strategy involved two
stages. First, three counties in the eastern region (i.e.,
Embu, Meru, and Tharaka-Nithi) and two in the western
region (i.e., Siaya and Bungoma) were purposively selected
based on their maize–legume production potential. Both
regions have a bimodal rainfall pattern and two cropping
seasons. Second, a multistage sampling design was used
to randomly select households to interview in the lower
levels (district, division, location, and villages). The sam-
pled households were distributed proportionately to the
total number of farming households in the two regions. A
sample of 670, 535, and 495 farmers were interviewed in
three waves between October and November of 2011, 2013,
and 2015, respectively. The representatives of the sampled
households were interviewed using a structured interview
schedule. Information was collected on the adoption of
ten SAI practices, in addition to socioeconomic profiles of
households, resource constraints and access to input and
output markets, social capital and information access, and
plot characteristics. After excluding plots that did not grow
maize and/or legumes, we ended up with an unbalanced
panel of 3608 observations with about 1200 plots cultivated
each year. The data constitute a panel at the household
level but not at the plot level8.

5 RESULTS AND DISCUSSION

5.1 Descriptive statistics

Descriptive statistics by cluster type showed that maize
mono-cropping produced the highest yield in Clusters
EPTM, ET, and EPT, while bean mono-cropping produced
the highest yield in Clusters EP, EPTM, and EPT. For
intercropping plots, Clusters EPTM and EPT had the high-
est yield. When all plots are considered, EPTM had the
highest yield, ET had the highest labor cost, ET and EPT
had the highest total variable cost, and ET and T had the
highest revenues and net farm income, respectively (see
Table A2 of the Online Appendix).

8We assume that the implication of the non-panel nature of the plot-level
data for panel data model result is negligible if any.
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5.2 Factors explaining the adoption of
SAI package

To better elucidate the determinants of SAI cluster adop-
tion, we estimated the coefficients andmarginal effects for
the random-effects multinomial logit model. For brevity,
the coefficients are reported in Table A3 of the Online
Appendix, and we only discuss the marginal effects of
explanatory variables calculated at the sample means
as presented in Table 2. The results indicate significant
differences between the marginal effects for each SAI
Cluster.
For the variables that characterize the household head

(gender, age, and formal education), we find male-headed
households to have negative effects on the probability of
adopting EPT consisting of yield-enhancing, protecting,
and traditional soil restoration practices. A study byMishra
et al. (2020) found that female-headed households face
fewer learning opportunities, which exacerbates the gap
in technology adoption across male and female-headed
households. The probability of adopting EP reduces with
age. Since Cluster EP consists of yield-enhancing and pro-
tecting practices that are labor intensive, we associate this
with a loss of manpower and short-planning horizons.
Nonetheless, age could also be a proxy for human capital
accumulation and more exposure to production technolo-
gies. Thus, the impact of age on SAI cluster adoption
is indeterminate. The results further reveal that having
a household head with a higher level of education is
positively associated with the adoption of Cluster EPT
which is more knowledge-intensive and with traditional
soil restoration practices, but not with adopting Cluster EP.
These results are consistent with the findings by Kabunga
et al. (2012), who showed that more experienced and
better-educated farmers adopt knowledge-intensive tech-
nologies and are concerned about their adaptive capacity.
We included the region variable and year dummies in

the model to account for spatial and temporal factors. The
results indicate that farmers in the western region have a
higher probability of adopting ET and EPT. And the prefer-
ence for EPTM and EPT increased between 2011 and 2013.
This confirms the temporal effect of SAI adoption on clus-
ters with soil-restoring practices and external input use,
demonstrating a shift away from conventional agriculture.
With respect to plot level characteristics, the observa-

tion that the adoption of EPT is positively associated with
soils that are perceived to be of medium quality is con-
sistent with results from previous studies. For example,
a study by Marenya and Barrett (2009) affirms that the
adoption of SAI, particularly chemical fertilizers, is deter-
mined by farmers’ knowledge and perception of their plot
soil fertility. We find ownership of plots with a medium

TABLE 2 Marginal effect of adoption of SAI Clusters: Results
from the random effects multinomial logit model.

Variables EP EPTM ET EPT
Base outcome T
Gender .009 .025 .046 −.050*

(.026) (.013) (.032) (.025)
Age −.003** .001 .001 .001

(.001) (.000) (.001) (.001)
Formal education −.007* .001 .003 .007**

(.003) (.001) (.003) (.003)
Household size −.003 −.001 .003 .001

(.004) (.001) (.005) (.000)
Main occupation .0292 −.0132 −.0161 .0203

(.022) (.011) (.027) (.022)
Region −.0452 .0182 .122*** −.200***

(.026) (.012) (.031) (.027)
Year 2013 −.011 .113*** −.145*** −.041

(.026) (.116) (.032) (.026)
Year 2015 −.206*** .172*** −.0346 .0633*

(.028) (.017) (.032) (.026)
Season 0 = Short rain
1 = Long rain)

.006 −.010 −.007 .020
(.015) (.007) (.018) (.013)

Farm size (ha) .013 −.007 −.003 −.005
(.008) (.005) (.010) (.009)

Distance to plot .000 .001 .000 −.000
(.000) (.001) (.001) (.000)

Rented tenure −.0135 .001 .052 −.018
(.024) (.012) (.029) (.022)

Borrowed tenure −.113 .003 .064 −.009
(.076) (.029) (.082) (.067)

Medium fertility −.005 −.018* −.034 .041*
(.018) (.009) (.023) (.018)

Poor fertility .018 .009 −.026 −.029
(.030) (.013) (.035) (.030)

Medium slope .041* .004 −.044* .015
(.018) (.008) (.023) (.017)

Steep slope .039 −.006 .007 −.038
(.037) (.019) (.046) (.037)

Years lived village .001 −.001 −.001 .001
(.001) (.000) (.001) (.001)

Confidence in extension
worker skills

.0222 .00523 −.108*** .0552**
(.019) (.009) (.022) (.018)

Extension contacts −.001 −.002 .004 .000
(.002) (.001) (.022) (.002)

Labor cost −.0001 −.000 .001* .000
(.141) (4.531) (1.301) (1.013.)

Savings −.001 .002 −.003 .006*
(.002) (.001) (.002) (.002)

(Continues)
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TABLE 2 (Continued)

Variables EP EPTM ET EPT
Livestock unit −.004 −.001 −.007 .006

(.005) (.002) (.005) (.004)
Asset value −.001 −.002 .022** −.018

(.007) (.003) (.008) (.007)
Household income .007** −.003 .00310 −.007***

(.002) (.001) (.003) (.002)
Maize monocrop .288*** −.061*** −.360*** .138***

(.022) (.011) (.026) (.020)
Bean monocrop .325*** −.0478*** −.399*** .130***

(.025) (.011) (.031) (.022)

Significance levels: ***P < .01, **P < .05, *P < .1; Standard errors are in
parentheses.

slope to have a positive effect on the probability of adoption
of EP. This cluster contains soil and water conservation
strategies, such asmulching and terracing, which aremore
likely to be adopted in locations with medium slopes than
flat slopes. This is consistent with the findings by Amsalu
and De Graaff (2007), who found plot slope to be a key
determinant of the adoption of soil and water conservation
practices.
The results further indicate that the probability of adopt-

ing ET is reduced for farmers who have confidence in
extension officers. The opposite is true for EPT adoption.
Farmers who have confidence in extension officers are
more likely to adopt clusters with modern soil restoration
and crop protection strategies. For the successful diffusion
of new SAI practices, effective extension systems are vital
(Takahashi et al., 2020). This is consistentwith the findings
by Pan et al. (2018) that highlight the role of information
and training in boosting agricultural productivity among
farmers.
On wealth indicators, adoption of EPT is positively

related to more savings and increased household income.
As anticipated, households with resources can assume the
possible risks associated with adopting SAI practices and
may be less constrained to invest in long-term SAI prac-
tices such as constructing terraces. Furthermore, more
saving ensures readily available cash for day-to-day farm
management operations.
The estimated random-effects multinomial logit model

results showed the within-cluster variation of idiosyn-
cratic individual effects and correlations between clusters.
The estimated relative-risk ratios for EPTM, ET, EPT, and
EP are greater than one, indicating that a one-standard-
deviation change in random effects within each cluster
would increase the probability of its adoption relative to T.
This implies that farmers would still adopt clusters EPTM,
ET, EPT, and EP relative to T. The results also indicate

that all six covariance terms are statistically significant,
implying an underlying correlation between the random
effect terms across clusters (see Table A4 of the Online
Appendix).

5.3 Effect of SAI cluster adoption on
yield distribution

We illustrate the effects of SAI cluster adoption on maize
and bean yields under mono-cropping9 (Figure 2) using
kernel densities. Under maize mono-cropping, Cluster T
has the most plots producing the lowest yields and the
fewest plots with higher yield levels. EP has few plots pro-
ducing lower yields andmore plots with higher yields than
T. EPT has the fewest plots with low yields and the most
plots with yields higher than EP and T. A similar pattern is
shown for yield distributions under bean mono-cropping.
T yields are exceptionally low relative to EP and EPT.
Figure 3 shows yield distributions under maize–bean

intercropping10. The traditional soil restoring cluster has
the most plots producing the lowest yields and the fewest
plots with higher yields for maize and beans grown under
intercropping. Likewise, for intercropped maize and bean,
EPTM has fewer plots with lower yields and more plots
with higher yields than ET. The low yields in T suggest that
traditional soil-restoring practices alonemight not be ideal
for meeting food demands. However, clusters that offer
higher yields (EPTM and EPT) are less adopted probably
due to the excessive input cost.

5.4 Effect of SAI cluster adoption on
yield, labor use, variable cost, revenue, and
net income

The results in Table 3 are based on the outcome equa-
tions from the multinomial endogenous treatment effect
(METE) regression and show how cluster adoption is asso-
ciated with yield, labor use, variable cost, revenue, and
net income. Since it is difficult to account for all possible
sources of endogeneity, particularly with recall data which
is prone tomeasurement errors (Abay et al., 2021), we inter-
pret our empirical results as associations rather than causal
inferences. For brevity, we exclude results from the METE
selection equation that confirms the robustness of random
effects multinomial logit.
The results indicate that adopting EP, EPTM, ET, and

EPT is associated with increased net farm income com-
pared to T. Moreover, the adoption of ET and EPT is

9Mono-cropping systems are mainly common to Clusters EP and EPT.
10 Intercropping systems are mainly common to Clusters EPTM and ET.
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F IGURE 2 Kernel density distribution for maize and bean mono-cropping.

F IGURE 3 Kernel density distribution for maize-bean intercropping on same plot.

associatedwith higher profits. The adoption of EP is associ-
ated with higher crop yield when considering all plots. The
clusters enhance yield and promote soil and water conser-
vation. Similarly, several existing studies (Adolwa et al.,
2019; Hörner & Wollni, 2022; Khonje et al., 2018; Manda
et al., 2019; Tesfaye et al., 2021) found that the adoption of
sustainable integrated soil fertility management practices
increased crop yields and household income among small-
holders. Adopting EP was significantly associated with an
increase in total variable costs relative to Twhile ET is asso-
ciated with increased revenue, resulting in higher net farm
incomes. The higher returns in EP could be because most
households with plots in this cluster do not adopt practices
such as manure use, intercropping, or short-term soil and
water conservation strategies such asmulching, which can
increase labor costs.
Adopting EPTM is significantly associated with

increased yield under maize mono-cropping, bean mono-

cropping, and maize-beans intercrop; it is also associated
with increased farm revenue, and thus net farm income
relative to T. EPTM is associated with the use of lower
labor costs and variable costs than ET and EPT, probably
due to the high adoption of minimum tillage. However,
these costs are not low enough to fetch the highest returns.
Our results are consistent with the findings by Teklewold
et al. (2013), who conclude that the adoption of different
SAI practices may increase labor demand.
We found that ET, which had the highest adoption rate

(37%), is significantly associatedwith increased yield under
bean mono-cropping. The average returns could be high
but remain variable. This corroborates the findings by Suri
(2011) of a study in Kenya showing that a high rate of
technology adoption does not necessarily increase average
yields. A study by Michler et al. (2018) reported a sim-
ilar trend in Ethiopia, where many households adopted
improved chickpeas in the absence of yield gains. Despite
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TABLE 3 Effect of SAI adoption on yield and other outcomes; Results from outcome equation of multinomial endogenous treatment
effect regression.

Yield

Maize
monocrop
plots

Bean
monocrop
plots

Maize &
Bean
intercrop
plots

Yield all
plots Labor V.cost Revenue

Net farm
income

EP −6.389 146.402 −556.233*** 931.417*** 1137.168 6001.668*** 9266.026*** 6097.896*
(200.625) (366.202) (140.027) (92.541) (2430.202) (1620.808) (3269.679) (3289.724)

EPTM 506.544** 199.342* 760.660*** −4.431 5549.640 2497.384 7700.832* 8014.773*
(210.105) (116.544) (151.200) (108.872) (3507.185) (1934.198) (4176.258) (4391.125)

ET −243.710 424.320* 178.216 86.166 7738.772*** 8199.828*** 20,153.600*** 12,424.516***
(182.300) (229.321) (122.101) (141.763) (2581.347) (1572.078) (3036.435) (3373.876)

EPT 287.018 361.504** −11.614 238.328** 5950.624** 7907.878*** 17,165.130*** 8755.514**
(197.491) (156.701) (168.509) (120.451) (2703.902) (1550.498) (3357.207) (3550.573)

Constant 484.290 −563.087** 544.881 266.338 25,206.180*** 16,298.12*** 5073.012 −12,101.404
(446.174) (264.304) (373.082) (273.679) (8327.172) (5252.201) (9253.292) (9802.343)

Lnsigma 6.616*** 5.917*** 6.677*** 6.584*** 25,101.878*** 10.084*** 10.659*** 10.700***
(.200) (.409) (.103) (.107) (8334.569) (.062) (.026) (.025)

Observations 1073 798 1737 3608 3608 3608 3608 3608

Note: T is the base category; number of quasi-random Halton sequence-based simulation draws, S, was set to 400; Outcome density is normal and standard
deviation of factor density is 1; Number of traders farmer knows is used as an instrumental variable; Robust standard errors in parentheses; Significance levels
***P < .01, ** P < .05, * P < .1.

not gaining higher yields relative to local varieties, farm-
ers find adoption to be highly profitable because improved
chickpea is more marketable and fetches more revenue.
We further found that ET was significantly associated

with higher variable costs, including labor costs, but also
associated with generating more revenue and net income.
Despite this cluster being associated with the highest vari-
able costs (due to the application of fertilizer, manure,
intercropping, and long-term soil and water conservation
strategies), plots in this cluster generated the highest net
farm incomes. This is consistent with other studies (Byer-
lee & Deininger, 2013) that found yield-enhancing and
protecting inputs to be relatively expensive in Sub-Saharan
Africa. The EPT cluster is significantly associated with
higher yields, as well as higher variable costs, than T. The
revenues and net farm income earned in EPT and ET are
significantly higher than in EP and EPTM. Adopting T
was associated with the lowest variable costs (e.g., less
labor costs) as well as the lowest returns probably because
it does not use yield-enhancing external inputs. Thus, to
increase farm returns, households adopting T would need
to complement it with other agronomic techniques, such
as the use of improved seed varieties and targeted fertilizer
application (Wainaina et al., 2018).
In addition to the robustness check of the METE results

presented in Table 3, we estimated the standard Mundlak-
Chamberlain (MC) regression and household fixed effects
(FE) panel regressions. The findings of the MC and FE are

reported inTableA5 of theOnlineAppendix.Overall, these
results still uphold the conclusion that adopting cluster T
was associated with the lowest returns possibly because
it does not use yield-enhancing and protecting external
inputs.

5.5 Determinants of yield, labor use,
variable cost, revenue, and net income

The results of the outcome equations of the multino-
mial endogenous treatment effect regression are reported
in Table 4. The results show that having a male-headed
household was associated with a significant reduction in
labor costs, which could be the result of several factors.
Doss and Quisumbing (2020) confirm that households
often do not attain themaximum yield potential from their
farms due to social norms that affect individual roles and
responsibilities at the expense of overall household pro-
duction. Those households whose main occupation was
farming were associated with higher yields, revenue, and
net income, and a significant reduction in total variable
cost. This could be because they directly manage their
farms, as opposed to hired laborers, and focus on cost
minimization.
Plots in the western region were associated with fewer

costs and higher farm revenue and income than plots in
the eastern region. We found that the 2013 season was
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associated with lower yields, variable cost, and revenue,
and significantly associated with higher net income, com-
pared to the 2011 season. The low yield in 2013 could be
a result of external shocks including changes in weather
patterns, pests, and diseases. Although there was a signif-
icant increase in yield in 2015 relative to 2011, this was
associated with an increase in total variable costs. Farming
in the long-rain season was significantly associated with
increased yield, revenue, and net income. This could be
a result of more rainfall during the long season, which
also varies yearly, thus SAI adoption patterns differ across
seasons (Ochieng et al., 2022). For instance, Teklewold
et al. (2017) found low adoption of minimum tillage and
crop residuemanagement in higher average rainfall zones,
since these technologies help to better cope with the stress
of water scarcity.
Though previous studies (Adolwa et al., 2019; Khonje

et al., 2022) reported a positive relation between farm size
and the adoption of agricultural technologies, crop yield,
and farm income, we find a negative association between
farm size and crop yield, variable costs, as well as revenue.
We presume that having smaller agricultural land hold-
ings will attract the adoption of land-saving SAI practices
such as intercropping to enhance land productivity. Plots
perceived to be of poor soil fertility had a significant asso-
ciationwith reduced yields, production costs, revenue, and
net income relative to plots perceived to be of good soil fer-
tility quality. Equally, farms with steep andmedium slopes
were associated with significantly lower yields than farms
with flat slopes. Prior research has linked the adoption of
SAI practices in plots perceived to be of poor soil quality
(Wainaina et al., 2016). Better-off households had higher
yields and used more labor, which is consistent with the
findings from the study by Khonje et al. (2022), which col-
laborate that suchhouseholds can invest in relatively costly
SAI practices.

6 CONCLUSIONS AND IMPLICATIONS

In this study, we examine the adoption and payoffs from
ten SAI practices clustered into five dominant groups.
Studies on the adoption of SAI practices have mainly
focused on single practices although smallholder house-
holds tend to adopt these practices in bundles. We used
the K-modes clustering algorithm to group the ten SAI
practices into five distinct clusters, and a random-effects
multinomial logit model to analyze the determinants of
adopting those clusters. We also applied a METE model to
evaluate the impact of adopting the SAI clusters on crop
yield, total variable cost, revenue, and net income.
Based on our results, we conclude that the adoption

of SAI clusters varies by region and cropping system,

confirming that the one-size-fits-all policy design for pro-
moting the adoption of SAI practices may not be suitable
for all farmers. The adoption rate of SAI clusters remains
low and unstable, with smallholders dis-adopting those
clusters with traditional soil restoring practices or those
limited to yield enhancement and crop protection prac-
tices. The adoption of clusters that combine soil-restoring
practices and external farm input use have increased
over time, demonstrating a shift away from conventional
agriculture. The important determinants of SAI clusters
adoption include household wealth, gender of household
head, number of extension contacts, plot soil fertility, and
plot tenure status. The welfare effects of cluster adop-
tion on yield, total variable cost, revenue, and net income
differed across crop type, region, and production year.
The findings from this study have some relevant policy

implications. First, effective agricultural extension sys-
tems are key for disseminating information about the SAI
clusters, and promoting SAI practices that suit farmer
needs. From a policy perspective, there is a need for the
government and the private sector to identify and allevi-
ate constraints to adopting context-specific and profitable
SAI clusters. Specifically, participatory extension methods
involving both extension agents and farmers could be used
to identify, refine, and promote SAI clusters appropriate to
local conditions. Another line of our policy recommenda-
tion relates to the finding that farmers with plots of poor
soil quality are less likely to adopt SAI clusters with high
net incomes. Policy interventions that enhance soil fertility
could be developed and promoted to speed up the adoption
process.
Much of the related literature (such as Kassie et al.,

2015; Khonje et al., 2018, 2022; Kim et al., 2019; Ochieng
et al., 2022; Teklewold et al., 2013) also provides empir-
ical evidence to support the promotion of SAI practices.
We note that prior empirical literature used at most two
proxies to evaluate the effect of adoption of SAI com-
binations on smallholder welfare. For instance, a study
by Teklewold et al. (2013) used household income and
labor demand while Kassie et al. (2018) used plot yield
and production costs. Due to lack of analyses of prof-
itability of SAI studies, this study used yield, total variable
cost, revenue, and net income as proxies of smallholder
welfare. This is important because adopting various SAI
clusters can lead to significant gains in both revenue and
costs. It can also can lead to significant gains in revenue,
with insignificant increases in costs. Hence, we conclude
that it is the net effect that matters for adoption of SAI
clusters.
This study has added to the literature by using the

K-mode clustering algorithm to identify dominant SAI
clusters that are often adopted by farmers in eastern and
western Kenya. The study also analyzed the welfare effects
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of adopting different SAI clusters for different cropping
systems. We acknowledge the limitation that our research
only focused on maize-legume cropping systems. Future
research can focus on other types of cropping systems such
as rice.
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