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Abstract 

 two-dimensional direction-of-arrival estimation scheme based on Bayesian-regularized (BR) 

Multilayer Perceptron (MLP) artificial neural network (ANN) is developed around a unit 

acoustic vector sensor (AVS). The AVS basically consists of three collocated and orthogonally 

oriented velocity sensors, hence, senses acoustic waves in the three Cartesian directions while offering 

portability in size and simplicity in its array manifold. It is shown that the Bayesian regularized 

Multilayered Perceptron neural network performs well in terms of estimation’s root-mean-square error 

even when tested with data of different signal-to-noise ratio (SNR) after training. This is useful as it 

accounts for unexpected changes of received data SNR during field operation. The proposed system is 

ideal for applications in mobile systems such as robots for search-and-rescue operations or soldiers in 

the battle field to estimate the source of a sniper fire.  

 
     Keywords: Acoustic direction finding, acoustic position measurement, acoustic signal processing, 

acoustic vector sensor, artificial neural network, Bayesian regularization, multilayered perceptron. 

 

1. Introduction 

    Direction finding in acoustics involves the estimation direction(s) from which sound wave(s) arrive 

at an acoustic sensor array. This area of research has attracted interest from companies, institutions and 

governments due to its applications in consumer products (e.g. smarts speakers such as Google Home 

and Amazon Echo [1]), naval warfare and navigation (e.g. SONAR), and gunfire locator [2]. Acoustic 

direction finding can find application is search-and-rescue operation. After natural disaster, the site can 

be inaccessible by humans hence a robot is ideal for navigating through the area and locating victims by 

either image processing technology, acoustic signal processing technology, or a combination of both. A 

search-and-rescue robot's auditory system should have  (1) sound source localization technology to 

estimate the direction from which the sound emanates, (2) sound source separation technology to isolate 

a sound source from many other sources, and (3) automatic speech recognition technology to extract 

human voice from background noise [3]. This investigation is focused on sound source localization and 

assumes there is another technology in place for sound separation and speech recognition. In robotics, 

navigation using sound (SONAR) has also been applied. Autonomous robots utilize acoustic direction 

finding for sound source localization and for obstacle detection  [4], [5]. After a natural or artificial 

disaster, these search and rescue robots equipped with microphones, among other sensors, can be used 

to track and rescue victims in disaster areas by tracking the direction from which victims' voices emanate 

from and also to detect obstacle on its way to the victim [3], [4]. One of such robots was designed and 
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built by Huang et.  al [5] in which 3 omnidirectional microphones arrange in equilateral triangular form 

on the horizontal plane. 

    To ensure the agility of such robots is not compromised, it becomes ideal to fit a sensor that relatively 

smaller thereby reducing the overall size of the robot. The acoustic vector sensor consists of three 

orthogonally oriented and spatially collocated particle velocity sensors [6]. This spatial collocation 

eliminates the phase angle in its array manifold hence making its array manifold independent of the 

source frequency. This reduces the complexity of signal processing technique which would have 

required an extra processing to decouple the frequency information from the array manifold and at the 

same time is physically compact. Microflown produces a commercially available AVS which was 

implemented using MEMS (Micro-Electro-Mechanical Systems) technology [7]. 

      The near-field and far-field array manifold of the acoustic vector sensor have been proposed and 

studied in [8],[9] and the case of non-perpendicular acoustic vector sensor has been studied in [10]. 

Three-dimensional source localization algorithm using the AVS based on eigen-decomposition is 

proposed in [11]. But these methods assume a certain type of noise distribution and performs poorly at 

low signal-to-noise ratio. 

    Machine learning has been applied to acoustic direction finding since more than two decades [12]-

[34], [36]-[42]. In these literatures, [13]-[21], [24]-[26], [28], [31], [33]-[37] used a uniform linear array; 

[22] used the L-shaped array; [27], [32], [39] used the uniform circular array; and [23],[40] used the 

uniform rectangular array, all of various number of isotropic sensors. The array manifolds of phased 

arrays are complex-valued, hence the input nodes of any neural network account for the real and 

imaginary values which thereby increases the dimension of the input node. 

    The Multi-Layered Perceptron (MLP) artificial neural network of various number of hidden layers, 

number of input nodes, and number of output nodes were used in [12]-[22]. In the MLP literatures, [13], 

[14], [21] used the backpropagation training algorithm while [15]-[20], [22] used the Levenberg-

Marquardt training algorithm hence not considering the noisiness of the training data. Also, none of 

these MLP literatures proposed a 2-dimensional (polar angle and azimuth angle) direction of arrival 

(DOA) estimation algorithm. 

    In this paper, a 2-dimensional DOA estimation BR-MLP-ANN direction finding system on a single 

acoustic vector sensor is proposed. This has the advantage of physical portability due to the geometry 

of the AVS, reduced dimension of the input layer due to the real-valued array manifold, and good 

performance with noisy data of any noise statistics since the BR method considers the statistics of the 

network weight in choosing the best model during training.  

    In the rest of this paper, the array manifold of the acoustic vector sensor and the statistical model of 

the measured data is developed in Section 2. Section 3 describes the structure and parameters of the 

proposed network and algorithm. Section 4 discusses the result of the training and testing of the network. 

Finally, Section 0 concludes the paper.  

 

2. Data Models 

     This section introduces the array manifold of the acoustic vector sensor in Section 2-2.1. The 

statistical model of the data gathered by this AVS is discussed in Section 2-2.2. 

 

2.1. The Tri-axial Velocity Sensor Array Manifold 

      For a point source, (in the far field or the near field), emitting a signal through a quiescent fluid 

medium}, reaching a tri-axial velocity-sensor not near any reflecting boundary, the Nehorai-Paldi model 

[6], [8] gives an array manifold of 

𝐚(𝜃, 𝜙) = [

cos(𝜙) sin(𝜃)

sin(𝜙) sin(𝜃)

cos(𝜃)
]  (1) 
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where 𝜃 ∈ [0, 𝜋/2] refers to the incident source's polar angle (measured from the positive 𝑧-axis), and 

𝜙 ∈ (−𝜋, 𝜋] symbolizes the azimuth angle (measured from the positive 𝑥-axis). 

2.2. The Statistical Model of the Measured Data 

    At the discrete-time instant 𝑝, the tri-axial velocity-sensor collects this 3 × 1 data: 

𝐳(𝑝) ≔ 𝐚(𝜃, 𝜙 )𝑠(𝑝) + 𝐧(𝑝),  (2) 

        where {s(p), ∀p} denotes the incident signal, {𝐧(𝑝), ∀𝑝} refers to the additive noise, and 𝑝 =
 1, 2, ⋯ , 𝑃  is the discrete time variable with 𝑃 being the total number of time sample of the received 

data. 

   The incident signal is a pure tone s(𝑝) = R{𝑒𝑗2𝜋𝑓𝑜𝑝+𝑗𝜑}, where 𝑓𝑜 ∈ [0,1] symbolizes the tone's 

digital frequency and  𝜑 ∈ [0,2𝜋) denotes the initial phase. A pure tone has a bandwidth of zero, of 

course. The human voice spans a range of frequency. However, it is assumed that a voice detection 

technology has been used to detect the presence of human voice and isolate it from other sound sources. 

This isolated voice is then decomposed into various frequency bins by Discrete Fourier Transform and 

the highest frequency-bin selected as the pure tone signal for the proposed algorithm. 

 The additive noise's temporal statistics may also be modeled as  

(a) a random noise sequence, that is uncorrelated over time, but Gaussian distributed with a zero 

mean and a σn
2 variance for all 𝑝, 

(b) a random noise sequence, that is correlated over time, and/or non-Gaussian distributed, and/or 

with a non-zero and time-varying mean, and/or with a time-varying 𝜎𝑛
2(𝑝) variance,  

among other possibilities. Moreover,  {𝐧(𝑝), ∀𝑝}   has a spatial statistic that need to be modeled. 

Possibilities include: 

     Spatially white noise (spatially incoherent) with a zero mean and a spatio-temporal correlation matrix 

of  𝐑n(𝜏) ≔ E[𝐧(𝑝)𝐧H(𝑝 + 𝜏)] = 𝜎𝑛
2(𝜏)𝐈3, where the superscript 𝐻denotes the Hermitian operator, 

𝜎𝑛
2(𝜏) refers to the noise's temporal autocorrelation, and I3  symbolizes a 3 × 3  identity matrix. A 

degenerate case of (a) is spatio-temporally white noise of power 𝜎𝑛
2. Then, 𝐑n(𝜏) = 𝜎𝑛

2𝛿(𝜏)𝐈3. 

 

3. Training set and algorithm 

     In this section, the training data is developed and algorithm for the network training is introduced. 

 

3.1. Reduction of the Data Dimensionality 

     The received data 𝐳(𝜃, 𝜙, 𝑝) in (2) has three degrees-of-freedom and random since it is corrupted by 

a random additive noise.  Eigen-based parameter estimation algorithm estimates the incident source's 

steering vector as an intermediate step. This estimation is correct to only within an unknown complex-

valued scalar of 𝑐 [43]. That is, available to the estimation's subsequent algorithmic steps would be 𝐚̂ ≈
c 𝐚(θ, ϕ), the principal eigen-vector of the covariance matrix of the received data.  This approximation 

would asymptotically become equality as the number of time-samples 𝑃 increases toward infinity or as 

the noise power drops toward zero, and similarly for subsequent approximations. 

The norm of the array manifold of the acoustic vector sensor ‖𝐚(𝜃, 𝜙)‖ = 1 ⟹ ‖𝐚̂‖ = c. The proposed 

system will exploit the unity norm of the array manifold of the acoustic vector sensor in eliminating the 

unknown 𝑐 from the estimated steering vector by dividing it by its Euclidean norm. Hence, we define 

for all the time samples,  

𝐱 = 𝐚̂/‖𝐚̂‖  (3) 

for each direction (𝜃, 𝜙). Thus, reducing the degree-of-freedom of the input data from three (𝜃, 𝜙, 𝑝) to 

two (𝜃, 𝜙).  
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3.2. Input Data and Input Nodes 

    The training input data matrix, 𝐗 is form as 

𝐗 ≔ [𝐱(1), 𝐱(2), ⋯ , 𝐱(𝑀)], ∈ ℛ3×ℳ  (4) 

where 𝑀 is the total number of training samples. 

The system proposed in this paper would require a network of 3 input nodes, which reduces the 

computational resources required for training the network. This is a significant improvement when 

compared to the higher number of input nodes greater than 6 as used in [13]-[34], [36]-[42]. 

 

3.3. Hidden Layer 

     Single-hidden-layer MLP neural network is considered in this paper. The multi-layered perceptron 

network can be used for any sort of input-output mapping. An MLP network with one hidden layer and 

enough neurons in the hidden layer, can fit any finite input-output mapping problem [44]. For the 

function approximation task, the tan-sigmoid activation function has been shown to offer a faster 

convergence rate compared to other similar activation function. This is because of its slow saturation 

rate. 

To determine the best number of hidden neurons for the network, the network will be trained with 10, 

20, 30, 40, 50, and 60 number of hidden neurons (other parameters unchanged), and the best selected. 

 

3.4. Output Data and Nodes 

    The network has two output nodes (polar angle 𝜃 and azimuth angle 𝜙), thus for the 𝑚th training 

sample, the output of the network 𝑦(𝑚) = [𝜃𝑚,  𝜙𝑚]𝑇 . The collection of the training sample target 

outputs 

𝐘 ≔ [𝐲(1), 𝐲(2), ⋯ , 𝐲(𝑀)],  ∈ ℛ2×ℳ  (5) 

where all other variables are as previously defined. 

The output of the network will be a weighted linear combination of the neurons in the hidden layer. 

Therefore, the two output neurons have a linear activation function. 

 

3.5. Training Algorithm 

     Back propagation by gradient descent [45] and other gradient-only-based learning algorithms that 

minimizes the mean-square error or sum-of-square error cost functions would perform poorly due to the 

noisy training data. They are also prone to overfitting and require extra data for validation during 

training.  These algorithms do not consider the probability distribution of training data and the posterior 

probability of the network's weights.  

The network is trained with data 𝐷 = {𝐱(𝑚), 𝐲(𝑚)} by iteratively adjusting 𝐰 to minimize the sum of 

square error function  

𝐸𝐷(𝐰)  =  
1

2
∑ ∑(𝑦𝑖(𝑚)  −  𝑓𝑖(𝐱(𝑚); 𝐰))

2
,

𝑖𝑚

  (6) 

where 𝑦𝑖(𝑚) denotes the target for the 𝑖th output node for the 𝑚th training point, 𝐱(𝑚) is the input 

vector of the 𝑚 th training point, 𝐰  is the network’s weight vector, and 𝑓𝑖(𝐱(𝑚); 𝐰)  denotes the 

activation function of the 𝑖th neuron in the output layer. The cost function of the network is regularized 

as 

𝑀(𝐰) = β𝐸𝐷 + α𝐸𝑊  (7) 
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where 𝐸𝑊 =
1

2
∑ 𝑤𝑖

2
𝑖 . This additional term decreases the tendency of overfitting the noise in the training 

data by favoring small values of the network weights. 

The cost function can be interpreted as minus log likelihood for a noise model 

𝑃(𝐷|𝐰, 𝛽, ℋ) =
1

𝑍𝐷(β)
exp(−𝛽𝐸𝐷),  (8) 

and likewise, the regularization term can be interpreted as a minus log prior probability distribution over 

the parameters 

𝑃(𝐰|𝛼, ℋ) =
1

𝑍𝑤(α)
exp(−𝛼𝐸𝑊)  (9) 

In the above expressions, the distributions of the data and the prior are Gaussian with 𝛽 defining a noise 

level σv
2 = β−1 for (8), and σ𝑊

2 = α−1 is the variance of the distribution in (9). 

Therefore, the cost function (7) corresponds to the inference of 𝐰 given data 

  

P(𝐰|𝐷, α, β, ℋ) =
𝑃(𝐷|𝐰, β, ℋ)𝑃(𝐰|α, ℋ)

𝑃(𝐷|α, β, ℋ)
, 

                =
1

𝑍𝑚
exp(−𝑀(𝐰)) 

 (10) 

     where ℋdenotes the 𝑖 th model. The backpropagation methods with gradient descent is used to 

estimate the network weight 𝐰mp that minimizes eq. (10). The log-posterior is Taylor-expanded with 

Δ𝐰 = 𝐰– 𝐰mp as  

𝑃(𝑤|𝐷, ℋ𝒾) ≈ 𝑃(𝑤mp|𝐷, ℋ𝒾)exp (−
1

2
Δ𝐰T𝐀 Δ𝐰)  (11) 

 

    where 𝐀 = −∇∇ log 𝑃 (𝑤|𝐷, ℋ𝒾)|𝐰mp
 is the error bar obtained as the Hessian of the log-posterior at 

𝐰mp. Thus, the posterior can be approximated as a Gaussian with covariance matrix 𝐀−1. 

The next level of inference determines the most plausible model given the data. Therefore, we define 

the posterior probability of each model as  

𝑃(ℋ𝒾|𝐷) ∝ 𝑃(𝐷|ℋ𝒾)𝑃(ℋ𝒾)  (12) 

    For more details on the development of the Bayesian Regularization please refer to [46], [47]. The 

Bayesian regularization algorithm is implemented in MATLAB neural network toolbox. This toolbox 

is used for training and testing of the proposed method. 

 

4. Simulation Results 

    Different training scenarios were carried out to determine the optimum number of hidden neurons 𝐻 

and learning rate μ. The range of the polar angle is limited to 𝜃 ∈ [90∘, 120∘]. This is because for an 

autonomous robot with wheels, it is assumed that the victims or obstacles lie of the ground. Hence the 

choice of the polar angle range is conducive. For better training and estimation performance, the range 

of the azimuth angle 𝜙 ∈ [−15∘, 15∘]. The sensor can be mounted on a rotating platform so that the 30-

degree range scans the 360-degree azimuth of the Cartesian coordinates. The polar range and azimuthal 

range are divided into 31 points each, i.e. a 1-degree step. This gives rise to a 312 number of data points. 

The data set is divided into training set (85%) and testing set (15%). The network is trained using the 

MATLAB's neural network toolbox with the parameters given in Table 1. 

 
  

http://www.aeuso.org/


Chibuzo Joseph Nnonyelu et al. / Vol. 10(35), Jan. 2020, PP. 4493-4501 

 
 

 
4498 

 
International Journal of Mechatronics, Electrical and Computer Technology (IJMEC) 

Universal Scientific Organization, www.aeuso.org 
PISSN: 2411-6173, EISSN: 2305-0543 

 

 

Table 1:  Training Parameters. 

Parameters Values 

Maximum number of Epochs 1000 

Learning rate, 𝜇 0.005 

Learning rate decrement 0.01 

Learning rate increment 10 

Maximum learning rate 1 × 1010 

Minimum gradient 1 × 10−7 

 

4.1. On the number of hidden nodes 

     After series of simulations in which all other parameters were kept the same while varying the 

number of hidden layers, the best choice for 𝐻 was found to be 30 number of hidden nodes as shown in 

Figure 1. Also, in some cases the network is tested with data that are not included in the training set; 

and data whose signal-to-noise ratio differs for that of the original training set. 

 

4.2. Testing the trained network with unfamiliar data 

    The performance of the trained network is ascertained by generating a data set using direction-of-

arrivals not included in the training set, at various signal-to-noise ratio. The root-mean-square error 

(RMSE) of the estimation versus the signal-to-noise ratio (SNR) is shown in Figure 2 for network trained 

with received with signal-to-noise of 15 dB. 

  

(a) (b) 
Figure 1: Plot of RMSE versus the number of hidden nodes for signal-to-noise ratio of (a) 0dB and (b) 10dB. 

 

  
Figure 2: Root-mean-square error performance against various signal-to-noise-ratio. 

 

Figure 2 shows that the higher SNR, the better the estimation performance of the trained network. 

Conversely, when tested with received data of lower SNR (i.e. 10 dB) the performance reduces by about 

70%.  
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Conclusion 

This paper developed a single-hidden layer Bayesian regularized multilayer perceptron artificial neural 

network for acoustic direction-of-arrival estimation. The signal processing adopted ensures the number 

of input nodes is less than what is obtainable in the open literature and the system is robust to additive 

noise in the received data. This system can be implemented in autonomous search-and-rescue robots in 

disaster areas for tracking victims by voice and avoiding obstacles. Further study can attempt widening 

the angular range of the system while achieving similar performance.  
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