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A B S T R A C T

Uncertainty in rainfall pattern has put rain-fed agriculture in jeopardy, even for the regions considered high
rainfall potential like the Central Highlands of Kenya (CHK). The rainfall pattern in the CHK is spatially and
temporally variable in terms of onset and cessation dates, frequency and occurrence of dry spells, and seasonal
distribution. Appraisal of the variability is further confounded by the lack of sufficient observational data that can
enable accurate characterisation of the rainfall pattern in the region. We, therefore, explored the utilisation of
satellite daily rainfall estimates from the National Aeronautics and Space Administration (NASA) for rainfall
pattern characterisation in the CHK. Observed daily rainfall data sourced from Kenya meteorological department
were used as a reference point. The observation period was from 1997 to 2015. Rainfall in the CHK was highly
variable, fairly distributed and with low intensity in all the seasons. Onset dates ranged between mid-February to
mid-March and mid-August to mid-October for long rains (LR) and short rains (SR) seasons, respectively.
Cessation dates ranged from late May to mid-June and mid-December to late December for the LR and SR,
respectively. There was a high probability (93%) of dry spell occurrence. More research needs to be done on
efficient use of the available soil moisture and on drought tolerant crop varieties to reduce the impact of drought
on crop productivity. Comparison between satellite and observed rain gauge data showed close agreement at
monthly scale than at daily scale, with general agreement between the two datasets. Hence, we concluded that,
given the availability, accessibility, frequency of estimation and spatial resolution, satellite estimates can com-
plement observed rain gauge data. Stakeholders in the fields of agriculture, natural resource management,
environment among others, can utilise the findings of this study in planning to reduce rainfall-related risks and
enhance food security.
1. Introduction

Globally, around 80% of the agricultural land is rain-fed that
contribute at least two-thirds of the world's food production (Alam and
Ekhwan 2011). About 90% of staple food production in sub-Saharan
Africa (SSA) is under rain-fed agriculture (Savenije 2001; Rockstr€om
2003). For example, approximately 90% of the population in Malawi and
Botswana, 70–80% in Zimbabwe and at least 76% in Kenya with the
comparable patterns throughout Eastern and Southern Africa rely on
rain-fed subsistence agriculture for their livelihoods (Rockstr€om 2000).
In the Central Highlands of Kenya (CHK), smallholder agriculture is
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entirely rain-fed (Ngetich et al., 2014). The dependence on rainfall by
most smallholder farmers is still expected to intensify in future due to the
rapid population growth (M�elanie et al., 2010). Thus, rainfall charac-
terisation is paramount in the quest to not only understand agricultural
production systems for SSA but also in the pursuit of agricultural pro-
duction intensification for enhanced food security.

Central Highlands of Kenya is among the high potential areas in
Kenya and East Africa, receiving a substantial amount of rainfall that can
support the growth of a wide range of crops (Jaetzold et al., 2007a, b).
However, uncertainty, high variability and poor distribution have put the
advantages in jeopardy. False start, late-onset, early cessation, high
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rainfall intensity and variability and dry spells, are among the hindrances
to rain-fed agriculture in the region. Although many soil management
practices can be used to enhance water use efficiency in alleviating plant
moisture stress (Evett and Tolk 2009), they can be more reliable when
they are tailored to the pattern of rainfall (Wang et al., 2016).

Late-onset and early cessation may reduce crop productivity as the
length of the crop growth period are reduced (Jury 2002). A significant
relationship between the start of rains and the length of the rainy season
has been established in semi-arid parts of West Africa (Sivakumar 1988).
Sowing close to the optimal planting date has been reported to increase
crop yield significantly (Nyagumbo et al., 2017). Knowledge of the onset,
cessation, and length of the growing season can substantially support the
timely planning of most agronomic activities, and most likely reduce the
risk of planting too early or too late (Omotosho 2002).

Increased volatile and erratic rainfall patterns have been observed
over time (National Research Council, 2001). For example, Lobell and
Field (2007) observed that 30% or more of yearly deviation in global
average yields of top-six widely grown crops (Corn, wheat, rice, sweet
potatoes, cassava and beans) is attributed to precipitation and tempera-
ture variations. High rainfall variation has also been observed in Ethiopia
(Seleshi and Zanke 2004) and Sudano Sahelian region (Sivakumar 1991).
A similar observation has been made in Kenya upon characterising
rainfall in the western part of the country (Mugalavai et al., 2008). The
high variability has become a climatic maze that has left rain-fed agri-
culture captive. Farmers are uncertain about what to plant and when to
plant, making agriculture a gambling venture with abundant risks. This
has resulted in reduced agricultural investment while the population has
continued to bloom; consequently, food insecurity is chronic. The impact
of rainfall variability ranges from extremely high rainfall events, both
regarding quantities and intensities, which have adverse effects on crop
production. Continuous evaluation of rainfall variability is thus crucial,
especially in SSA where human activity and agricultural production, in
particular, is firmly hinged to inter-annual rainfall variability (Jury
2002).

Poor rainfall distribution has been a significant challenge on rainfed
agriculture even in the regions considered to be receiving enough rainfall
like the CHK (Ngetich et al., 2014). The sparse distribution of rainfall
constitutes the causes of crop failure than absolute water scarcity
(Rockstr€om 2000). Meehl et al. (2007) noted that up to 25% of the
rainfall received falls within a few rainfall events causing soil erosion
besides subjecting crops to moisture stress during a cropping season. The
sparse rainfall distribution in Kenya has been attributed to natural causes
such as atmospheric, oceanic and local conditions (winds, waterbody,
vegetation cover and topography) (Mugalavai et al., 2008: Kalantari
et al., 2018). The causes being natural, manipulating rainfall distribution
into a pattern desirable for agricultural production is not possible, but
there are techniques to moderate/mitigate the impact of variation.
However, the use of some mitigation strategies is less effective if the
pattern of distribution is not well established.

Prolonged dry spell occurrences are the main contributor for crop
failure in SSA (Shin et al., 2015). The dry spell disrupts crop growth and
lowers yield (Mzezewa et al., 2010). Even during high seasonal rainfall,
up to total crop failure may be realised if the interval between consec-
utive rain events is too long (Tilahun 2006; Araya and Stroosnijder 2011;
Araya et al., 2012). The impact of the dry spell depends on the timing,
magnitude, crop growth stages and resilience to water stress (Ngigi et al.,
2005). Intra-seasonal dry spells and their severe effects on crop pro-
ductivity has become a standard feature in agricultural production
(Rockstrom 2003). For instance, in the CHK there have been recent crop
failures for both the short and long rains between 2016 and 2017,
resulting in food insecurity in the region and other places as it is one of
the food baskets in Kenya. Dry spells are associated with poor seasonal
rainfall distribution that is common in most parts of the world (Mzezewa
et al., 2010) and has threatened agricultural production. Characterising
the pattern of occurrence of the dry spell can contribute to reducing their
severity by allowing for proper planning.
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Unreliability and insufficient observational rainfall data have limited
characterisation of rainfall in the CHK due to low rain gauge density
(Franz et al., 2012). In a region where rainfall is highly variable like the
CHK, extrapolating of rainfall data from sparse and unevenly distributed
rain gauge network leads to inaccuracies (Li and Heap 2008; Scheel et al.,
2011). Other shortcomings of rain gauges include errors and omissions
by human operators, power outages from the devices used and data
transmission faults that could cause valuable data lost, damaged, or
altered, compromising data quality (Kneis et al., 2014). The mistakes
contribute to discrepancies detected between the different rainfall
datasets (Barros 2014). The errors and inaccuracies provoke need to
relook into the studies that have been based on observed rain gauge data
such as Mugalavai et al. (2008); Recha et al. (2011) and Ngetich et al.
(2014). Use of satellite-based rainfall data can be an alternative data
source to bridge the gap (Ward and Trimble 2003). However, the quality
of data from satellite estimations needs prior evaluation and validation
before use.

Hence, we sought to characterise rainfall in the central highlands of
Kenya using satellite rainfall estimates by determining rainfall onset,
cessation date and the length of growing period. We also established the
spatial and temporal pattern of rainfall and characterised seasonal dry
spells. Lastly, we assessed satellite-derived rainfall estimates and the
meteorological stations observed rain gauge data.

2. Materials and methods

2.1. Study area

The study was carried out in seven counties in the Central Highlands
of Kenya (CHK): Meru, Tharaka-Nithi, Nyeri, Embu, Kirinyaga, Murang'a
and Kiambu (Figure 1). The CHK is one of the high agricultural potential
regions in Kenya with average annual rainfall ranging from 450 mm to
1400 mm per annum (Jaetzold et al., 2007a, 2007b). The counties have a
bimodal rainfall pattern with long rains (LR) starting in March to May
and short rains (SR) in October to December, hence two cropping seasons
per year. The “long rains” are normally the main rainfall period lasting
between Mar-Apr-May in east Africa while the “short rains” last from
October, November and December in East Africa. Coastal and topo-
graphic influence moderates the bimodal rainfall regime (Mutai et al.,
1998).

The central highlands of Kenya generally have a daily mean tem-
perature of about 19 �C. The predominant soil type is Humic Nitisols,
typically deep andweathered soil withmoderate to high inherent fertility
(Jaetzold et al., 2007a, 2007b). The main land-use activities in these
counties are cash crop farming, subsistence farming, livestock rearing,
agro-forestry and forestry. The main cash crops are coffee and tea while
maize (Zea mays L) and beans (Phaseolus vulgaris) are the essential and
dominant annual crops. The primary farming system in the area is mixed
farming.

Meru and Tharaka Nithi Counties cover the northern to the eastern
slopes of Mt. Kenya. The counties lie at an average altitude of about 1,500
m above sea level (a.s.l) and receive an annual average rainfall of about
1500 mm. Long rains come from around March to June and SR from
October to February (Jaetzold et al., 2007a; Smucker and Wisner 2008).
The rainfall received is influenced byMount Kenya (rographic rainfall) in
combination with latitude, inter-tropical convergence zone, ENSO and
sea surface temperatures, among others (Odingo et al., 2002). The
counties cover the AEZs Tropical-Alpine 0, 1 and 2 (TA 0, TA 1 and TA 2),
Lower Highlands 0, 1, 2, 3, 4 and 5 (LH 0, LH 1, LH 2, LH 3, LH 4 and LH
5), Upper Highland 0, 1, 2 and 3 (UH 0, UH 1, UH 2, UH 3), Upper
Midland 3, 4, 5 and 6 (UM 3, UM 4, UM 5 and UM 6), Lower Midland 3, 4
and 5 (LM 3, LM 4, LM 5) (Jaetzold et al., 2007a).

Embu County is located on the eastern slope of Mount Kenya. It lies at
an altitude of about 1,700 m above sea level (asl) and average annual
rainfall ranging from 450 to 1400 mm (Jaetzold et al., 2007a). The LR
come from around March to June and SR from around October to



Figure 1. Map showing the counties under study (Source of the base map: Esri, HERE, Garmin FAO OpenStreet contributors).
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February (Jaetzold et al., 2007a). Mount Kenya majorly influences
rainfall in combination with other factors. The region lies in the LM3, LM
4, LM 5, UM 1, UM 2, UM 3, UM 4, and inner lowland 5 (IL 5).

Nyeri County is between the Aberdare ranges and Mt. Kenya. It is
located on the eastern slope of the Aberdare ranges and the western slope
of Mt. Kenya. Average annual rainfall ranges from 700 to 2200 mm. The
county has high rainfall reliability in both seasons (Jaetzold et al.,
2007b). The long dry season is from June to September and a short dry
season from January to February. Lies at an altitude of about 1500 m asl.
The south-easterly trade winds are forced up by the mountains in the wet
areas causing frequent mists and drizzle above 1500 m asl. Dry North
Eastern Trades winds that blow over the region from the Somalian de-
serts are responsible for the short dry season (Jaetzold et al., 2007b).
Nevertheless, in the higher areas, there is still enough moisture in the soil
to enable permanent cropping possible in the zones. The County covers
the AEzs TA 0, TA 1, TA 2, UH 0, UH 1, UH 2, UH 3, LH1, LH 2, LH 3, LH
4, LH 5, UM 1, UM 2, UM 3, and UM 4 (Jaetzold et al., 2007b).

Kirinyaga County lies on the Southern slope of Mt. Kenya and south-
eastern slopes of the Aberdare Range. Annual rainfall ranges from 1600
mm in low altitude areas (1600 m asl) to 2200 mm in higher altitude
3

areas (2500 m asl). Rainfall is influenced by Mount Kenya and Aberdare
range which affects the southeast trade winds (Jaetzold et al., 2007b).
The reliability of rainfall is high. Covers the AEZs UH 0, LH 1, UM 1, UM
2, UM 3, LM 3, LM 4.

Murang'a County is located on the eastern slope of the Aberdare
Range in the central part of Kenya with an altitude from 900 to 3300 m
and mean annual temperature of 26.3 �C (Jaetzold et al., 2007b). Long
rain comes fromMarch to the end of May and a short rain fromOctober to
December. The sub-county receives a total annual rainfall of 900–1400
mm which is highly variable both spatially and temporally and poorly
distributed (Ovuka and Lindqvist 2000). During the rain periods, much of
the precipitation falls as showers at late night or early in the morning.
Between June and September, the rainfall mostly falls as drizzle. January
and February are the two dry months (Ovuka and Lindqvist 2000). The
county lies in the AEZ, UH 0, LH 1, UM1, UM 2, UM 3, UM 4, LM 3 and
LM 4.

Kiambu County is on the eastern slope of Aberdare ranges. Has an
altitude of between 1300 to 2200 m asl and receives rainfall of between
900 to 1200 mm annually (Jaetzold et al., 2007b). The LR comes from
around March to June and SR from October to February and is highly
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variable. The region lies on the AEZ UH 0, UH 1, UH 2, LH 1, LH 2, LH 3,
LH 4, LH 5, UM 1, UM 2, UM 3, UM 4, UM 5, UM 6, LM4, LM5 and LM6.

2.2. Data source

Daily satellite data used in this study was downloaded from Predic-
tion Of Worldwide Energy Resource (POWER) website https://
power.larc.nasa.gov/cgi-bin/agro.cgi?na (Stackhouse et al., 2015)
while observed rain gauge data was obtained from Kenya Meteorological
Department (KMD) stations in Embu, Meru and Tharaka-Nithi counties.
The POWER 2017 gave rainfall estimates at any grid point intersection.
Point rainfall data was used to correct the satellite data. It was notable
that the satellite based data underestimated the observed rain gauge data
by half. The satellite estimate was multiplied by a factor of 2 for
correction before the data was used for rainfall characterization. How-
ever, the satellite estimates used for comparison with the observed were
not corrected. Satellite data obtained covered the region between lati-
tude -1 to 1 and longitude 36 to 38 that covers the whole study area
(CHK) from 1997 to 2015 (19 years). In each county, grid point inter-
section near and within the county boundaries was used to represent the
rainfall estimate for that entire county by computing the average. The
points were picked at a 1-degree interval that resulted in rainfall data
from nine points of grid intersection which were used in computing
satellite averages. The points include (1� S, 36� E), (1� S, 37� E), (1� S, 38�

E), (0�, 36� E), (0�, 37� E), (0�, 38� E), (1� N, 36� E), (1� N, 37� E) and (1�

N, 38� E).

2.3. Estimation of missing values in the observed data

In this study, arithmetic mean method was used (Lu et al., 2016). The
missing data were replaced with the mean for the given station as per Eq.
(1).

Xm ¼
�
X
Y

�
Ym (1)

Where Xm is the missing record at station X, X is the long-term mean for
the station with the missing data in specific year and month, Y is the
long-term mean of the station with complete data, and Ym is the corre-
sponding records of the station Y having complete data.

2.4. Homogeneity test and data correction

Homogeneity test for the historical rainfall data from both observed
rain gauge and satellite data was conducted using RAINBOW software
package (Institute for Land and Water Management of the K.U. Leuven,
Belgium) (Raes et al., 2007). The programme is designed to test the
homogeneity of hydrologic records like rainfall and evaporation data and
to perform their frequency analysis. The programme can also predict the
probability of occurrence of the rainfall amounts. It is a menu-driven
programme and runs on an IBM that is compatible on personal com-
puter (Raes et al., 2007).

In testing the homogeneity, the software package works under the
principle of cumulative deviation from the mean. (S_k, k ¼ 1, 2, …n),
defined as:

Sk ¼
Xk

i¼1

ðxi � xÞ (2)

Where xi is the annual rainfall records and x the mean. The cumulative
deviation, Sk should fluctuate around zero for the homogenous rainfall
series. The initial value of Sk ¼ 0 and last value Sk ¼ n are all equal to
zero.

The cumulative deviations are rescaled by dividing them by the
sample standard deviation (s). Afterwards, the homogeneity of the
rainfall time series is tested by calculating the maximum (Q) (Eq. (3)) or
4

the range (R) (Eq. (4)) of the rescaled cumulative deviations. A high value
of Q or R indicated that the data of the time series is not from the same
population and that the fluctuations are not purely random. The homo-
geneity hypothesis of the data set was at the 99% probability level. None-
homogenous data was considered for transformation if the homogeneity
hypothesis was rejected.

Q¼max
sk
s

(3)

R¼max
sk
s
� min

sk
s

(4)

Satellite-based rainfall data underestimate total annual averages by a
factor of 2. To correct the anomaly, all the satellite data wasmultiplied by
two before being used in the rainfall analysis.

2.5. Determination of rainfall onset, cessation date and the length of the
growing period

RAIN software was used in determining the onset, cessation and the
length of growing period (Kipkorir 2005). RAIN is a computer model for
determination of the onset, cessation, length and evaluation of the
growing season, seasonal crop water shortage and forecasting the relative
yield, using soil water balance model, for a particular crop grown on a
particular soil type (Kipkorir 2005). It was used in the characterization of
rainfall onset, cessation and the length of the crop growth period in the
central highlands of Kenya (Ngetich et al., 2014).

Search dates were specified in the RAIN software that encompasses
the normal rainy period. The specified date is the average early date at
which the rainy season starts and the cessation date. An appropriate
initial search date eliminated the false start, and the corresponding onset
window was selected, with the help of the RAIN software (Kipkorir
2005). The date having a probability of at least 20% that the root zone
has adequate soil moisture was regarded as the date after which the onset
criteria apply for each station. Starting from the initial search data, the
onset was taken to be the date on which the criterion was first satisfied
(Kipkorir et al., 2004). The onset date was determined by soil water
balance model based on accumulated rainfall for four days to be at least
25 mm (Raes et al., 2004). It was centred on the farmers' practices as an
appropriate wet season sowing, that at least 25 mm is enough to support
seed germination and initial development. A lag time of the season was
set at seven days after onset. The threshold for a rainy day was set at 1
mm (Lazaro et al., 2001).

The soil water balance was used to determine the cessation date. It
was the date on which the set threshold water stress coefficient (Ks) was
exceeded. The Ks below 40% was taken to be the end of the growing
season as it was assumed to cause rapid water stress to crops (Mugalavai
et al., 2008). The difference between the cessation date and the onset
date was taken to be the length of the growing period.

2.6. Establishing the temporal and spatial pattern of rainfall variation over
the years

Long term trends of annual and seasonal rainfall variation were
analysed using cumulative departure index (CDI) and rainfall anomaly
index (RAI) (Tilahun 2006) in Microsoft Excel spreadsheet. Tilahum
(2006) and Kisaka et al. (2015) used CDI and RAI in the analysis of long
term rainfall trend. Cumulative departure index was derived from the
arithmetic mean of seasonal and annual rainfall during the period. Thus,
the arithmetic means of seasonal and annual rainfall were as Eq. (5);

CDI¼ðr � rÞ
S

(5)

Where CDI is cumulative departure index, r the actual rainfall (seasonal
or annual) of a given years, the mean rainfall of the total length of the
period and S the standard deviation of the total length of the period.

https://power.larc.nasa.gov/cgi-bin/agro.cgi?na
https://power.larc.nasa.gov/cgi-bin/agro.cgi?na
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Results of the values were added cumulatively added to each other for
the entire period and plotted to achieve long-term trends for annual and
seasonal rainfall. The RAI was plotted to illustrate inter-seasonal rainfall
variations and calculated Eq. (6) for positive and Eq. (7) for negative
anomalies;

RAI¼ þ 3
�

RF�MRF

MH10 �MRF

�
(6)

RAI¼ � 3
�

RF�MRF

ML10 �MRF

�
(7)

Where RAI represents the seasonal rainfall anomaly index, RF the actual
rainfall for a given year,MRF mean of the total length of the record,MH10

mean of the ten highest values of rainfall on record and ML10 the lowest
values of rainfall on record.

Coefficient of variation (CV), defined as the ratio of the standard
deviation to the mean was used to analyze both annual and seasonal
rainfall variation and dry spell frequency. The CV was calculated for
annual and seasonal rainfall amount and rainy days for each county. Use
of CV has been applied analyze both annual (Mzezewa et al., 2010;
Kisaka et al., 2015) and seasonal (Barron et al., 2003; Seleshi and Zanke,
2004) rainfall variation and variability of a dry spell (Kisaka et al., 2015).

Spatial presentation of rainfall onset, cessation and length of the
growing period was determined by first getting the seasonal onset,
cessation dates and the length of growing period for all the grid points
within and near the study area over the years under consideration
(Dunning et al., 2012). The dates were used as the input in generating a
spatial representation (maps) of seasonal rainfall throughout the study
area in ArcGIS® 10.5. Ordinary kriging method was used in the inter-
polation in a semi-variogram model to create the raster layers. The raster
layers were then reclassified and extracted by masking to generate digital
maps for the onset cessation and the length of the growing period.
2.7. Establish rainfall distribution pattern and intensity over the years

To establish temporal rainfall distribution pattern over the years,
cumulative precipitation amount was calculated for both the long and
short rains separately. The cumulative totals were then converted into
percentages and graphs of the percentage cumulative precipitation
plotted against time.

To evaluate rainfall intensity, precipitation variability index (PVI)
(Eq. (8)) was used (Gu et al., 2016). Precipitation variability index has
been used in the analysis of rainfall intensity in Namibia (Lu et al., 2016).
The PVI is an index defined as the standard deviation of the ratio (Ri)
between a time series of cumulative precipitation measurement (Ci) and
a time series of cumulative mean precipitation rate (Ei) (Gu et al., 2016)

PVI¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðR� RÞ2
n

s
(8)

Ri ¼Ci

Ei
(9)

Ci ¼
Xi

j¼1

pj; i ¼ 1; :::; n: (10)

P¼
Pn

i¼1pi
n

(11)

Ei ¼ iP; i ¼ 1; &; ::: ; n (12)

From the measured daily precipitation pj; a time series of cumulative

rainfall Ci (Eq. (10)) and mean precipitation rate P (Eq. (11)) were
computed. The time series of cumulative mean Ei then were computed
5

based on mean precipitation rate P (Eq. (11)), and Ri is the ratio of the
cumulative precipitation to the cumulative mean (Eq. (9)). R is the
average of Ri over n.
2.8. Analysis of dry spells during the cropping seasons

Dry spell frequency was determined by counting the number of dry
spells. In this study, a dry spell was defined as ‘n’ days without rainfall
sandwiched between rainy days (Kumar and Rao 2005). The ‘n’ values
were taken to be> 5, on the basis that consecutive dry days of more than
5 are enough to cause a significant reduction in crop productivity (Shin
et al., 2015). A dry day was taken to be any day that receives less than 1
mm of rainfall (Lazaro et al., 2001). This was according to the argument
by Angel (2004) that rainfall less than this amount is evaporated back
directly to the atmosphere.

The variability of dry spells was determined by computing the coef-
ficient of variation of the dry spells, and significance of variation eval-
uated using t-test at 95% confidence level. Dry spell frequency of 5 > 10,
10 > 15 and more than 15 days were computed. The probability of
experiencing a dry spell was determined using the concept by Belachew
(2000); that in the Y years of record, the frequency (i) that a dry-spell of
duration (t) days occurs was counted on a seasonal basis ðN ¼ Y *iÞ. Then
the frequency (I) that a dry-spell of duration longer than or equal to t
occurs was computed cumulatively. The sequential dry days (1d, 2d, 3d
...) were computed from historical data. Chances of consecutive dry days
occurrence were estimated by considering the number of days within a
given season d. The total probable number of days, D, for that season over
the period of record was computed as D ¼ d *Y. In this study, t was taken
as 6. The probability P that a dry-spell starts on a specific day within a
growing season was given by Eq. (13). The probability R, that a dry-spell
less than t does not occur at a certain day in a growing season was
computed by Eq. (14); probability Q that a dry-spell of longer than t days
will occur in a growing season was calculated by Eq. (15), and probability
L, that a dry-spell of more than t days would occur at least once in a
growing season was computed by Eq. (16) (Kisaka et al., 2015).

P¼
�
1
N

�
(13)

R¼ð1�PÞ¼
�
1� 1

N

�
(14)

Q¼
�
1� 1

N

�n

(15)

L¼ 1�Q¼ 1�
�
1� 1

N

�n

(16)

2.9. Comparison of satellite and observed rainfall data

Cumulative departure index (CDI) was used to compare the trend of
rainfall variation. The CDI was computed for both the satellite and the
observed rainfall and their graphs plotted against the time of the record.

Onset-cessation dates and the length of growing period as per each
data set were compared. The range with which the dates differed was
noted and t-test at a 95% significance level was used to test the signifi-
cance of the variation. The ranges with which the dates differ also form
part of the evaluation of the two data sets.

Correlation analysis was used in evaluating the degree of association
between satellite estimates and observed rain gauge data using Pearson
correlation coefficient in SAS 9.3 software package (SAS Institute 2011).
Student t-test was used to test the significance of the strength of the
correlation at p ¼ 0.05. The computation was as per Eqs. (17) and (18).
Correlation was done at daily and monthly rainfall averages.
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rxy ¼
1
n

n
i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn 2

q Pn 2
(17)
P
1
n i¼1 ðxi � xÞ 1

n i¼1ðyi � yÞ

tn�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
1� r2

r

r
(18)

Where rxy is the correlation coefficient, n is the sample size, xi and yi are
the variables being correlated and x and y are the mean values of the
variables of satellite and gauge based data, respectively and tn-2 is the
calculated t value.

Scatter plot was also used to establish the relationship between the
two data sets. Satellite estimates and observed rain gauge data were
plotted against each other for both daily and monthly rainfall averages. A
line of best fit was drawn and the coefficient of determination observed
as the relationship indicator.

Root Mean Square Error (RMSE), a frequently used measure of the
difference between model-predicted value and the actual observation
was also used in the comparison. It measures how accurate a model
simulates the actual reading value. The computation was as per Eq. (19);

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðsi � giÞ2
s

(19)

Where si and gi are the satellite and observed rainfall values, respectively
and n is the number of observations.

3. Results

3.1. Data quality

There were no missing values in the satellite rainfall estimates being
one of its advantages. The observed rain gauge data had less than 10% of
the missing data. The missing values were estimated using the arithmetic
mean approach (Eq. (1)). Results of the homogeneity test from rainbow
software for the two sets of data showed that the data sets were ho-
mogenous and were accepted at 99% probability since the deviation from
the zero mark did not cross the 99% probability line. The data was then
used for further analysis.
Figure 2. Map showing onset dates
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3.2. Seasonal rainfall onset, cessation date and the length of the growing
period

The onset dates for the long rains (LR) ranged from 25th of February to
3rd of April across all the seven counties. Onset dates for the short rains
(SR) ranged from 12th of September to 10th of October. A range of at least
38 days for long rains and 28 days for the short rains indicating high
variation both spatially and temporally. Long rains, however, had high
variability in the onset dates than the short rains portraying higher un-
certainty compared to the short rains. The onset was generally early from
the South-Western towards North-Eastern direction and the reverse
during the short rains season (Figure 2).

Cessation dates varied from 21st May to 2nd June for LR and from 3rd

to 26th of January for SR across the counties. The cessation dates ranged
from 12 and 23 days for long and short rains, respectively. Unlike the
onset dates, cessation dates were more heterogeneous during the SR than
the LR. Cessation was earliest from the eastern to the western part of the
study area during the LR. During the SR, cessation was earliest from the
south towards the northern part of the study area (Figure 3).

The length of the growing season was highly variable, the averages
ranging from 81 to 92 days during the long rains and from 97 to 133 days
during the short rains. Generally, SR had a longer length of the growing
period than the LR, thus could support a broader range of crops and give
crops more time to grow. Table 1 summarises the average onset, cessa-
tion and the length of growing period across the counties.

The variability in onset, cessation and length of growing period
observed in the CHK is in agreement with those observed by Recha et al.
(2011) and Ngetich et al. (2014). Amekudzi et al. (2015) reported the
same trend in Ghana with similar patterns across the various parts in
Africa.

Rainfall onset range of about 38 days for long rains and 28 days for
the short rains makes the onset windows long enough to cause un-
certainties in onset dates and consequently planting dates. This corrob-
orates findings by Ngetich et al. (2014) that rainfall onset in the central
highlands of Kenya is highly variable. The uncertainty in the onset dates
has often led to the poor timing of planting date among farmers which
has had remarkable repercussion in agricultural production. Early
planting before the onset date or dry planting could hamper seed
germination, and plant development should rain delay. On the other
hand, late planting was reported to cause up to 10 kg/ha yield loss after
for long rains and short rains.



Figure 3. Map showing cessation dates for long rains and short rains.

Table 1. Average onset, cessation dates and the length of growing period across the counties from 1997 to 2015.

County Onset date Cessation date Length

LR SR LR SR LR SR

Embu 29-February 20- September 24-May 13-January 84 115

Kiambu 28-February 8- October 30-May 19- January 92 103

Kirinyaga 2-March 22- September 26-May 9- January 85 109

Murang'a 1-March 26- September 27-May 1- January 87 97

Meru 1-March 11- September 24-May 22- January 84 133

Nyeri 2-March 22- September 26-May 9- January 85 109

Tharaka-Nithi 28- February 14- September 19-May 24- January 81 132
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every single day of delayed planting date (Nielsen 2009). Timely
planting, therefore, is vital for the farmers as it helps increase the yield
(Nyagumbo et al., 2017).

Cessation dates varied though not as high as the onset dates with
short rains showing higher seasonal variation than the long rains. The
findings are in agreement with those of Camberlin and Okoola (2003)
who observed high variability in rainfall onset than the cessation in
Eastern Africa. However, in northern Ethiopia, Araya and Stroosnijder
(2011) established that, over the study area, rainfall cessation date was
more varying than the onset date. Like the onset, variation in cessation
dates affects crop production as it can cause reduced crop yields or
complete crop failure as the planning of the farming activities becomes
challenging in rainfed farming systems.

Late-onset and early cessation shorten the length of growth period,
which may decrease crop productivity (Jury 2002). Studies conducted in
semi-arid parts of West Africa indicated that there is a significant rela-
tionship between the start of rains and the length of the rainy season
(Sivakumar 198812). Omotosho (2002) reported that the length of the
rainy season is more dependent on the rainfall onset than its cessation. In
the central highland of Kenya, the length of the growing period was long
enough to support the growth of a wide range of crops to maturity;
portraying the region as one of the high potential areas in Kenya, cat-
egorised by Jaetzold et al. (2007a and b) to be the humid areas. However,
short rains had a longer length of the growing period than the long rains
making it a more reliable season. Funk et al. (2008) explained the short
growing period during the LR to be as a result of increasing sea surface
temperature (SST) in tropical Atlantic or the Indian Ocean that favour
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local enhancement of precipitation with the resultant latent heating
altering regional wind and moisture flux patterns, eventually reducing
long rains. The reliability of the SR over LR had been echoed by various
studies (Amissah-Arthur et al., 2002; Hansen and Indeje, 2004; Ngetich
et al., 2014). The studies pointed out SR to constitute the primary
growing season in Eastern Kenya on which annual crops such as maize,
sorghum, green grams and finger millet are dependent on. Thus, farmers
should focus more on the SR period as the main cropping season in the
central highlands of Kenya to boost their net crop productivity.

The high variability in the rainfall onset and cessation was associated
with local factors and position of sites in relation to the amplitude of the
inter-tropical convergence zone (Recha et al., 2011). Variability in East
African rains is claimed to be caused by changes in the sea surface
temperatures in the tropical Pacific, Indian and Atlantic oceans (Lyon and
Dewitt 2012). In the humid region of western Kenya, Mugalavai et al.
(2008) pointed on the local effect (escarpments and Lake Victoria) plus
atmospheric winds (NE and SE monsoon) to be the contributors of vari-
ability in onset and cessation for the long rains and short rains. The
causes being natural, farmers can only hope for precision in the climatic
forecast to enable them efficiently utilise the rainfall water for agricul-
tural production (Recha et al., 2011). In the bimodal rainfall regions of
Kenya, Stewart (1985) suggested growing of maize when there was
early-onset while millet and sorghum during late onset to reduce the
impact of untimely planting. While the suggestion could help cut losses,
maize still stands to be the staple food, and farmers are willing to risk
planting it even when the conditions are not favourable. Soil moisture
conservation measures that can ensure efficient utilisation of the



Figure 4. Times series of Cumulative departure index (CDI) for annuals, long rains and short rains in (a) Embu, (b) Kiambu, (c) Murang'a, (d) Meru, (e) Kirinyaga, (f)
Nyeri and (g) Tharaka-Nithi counties.
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available rainfall should be promoted to cushion farmers from losses
ascribed to high rainfall variability in the region.

3.3. Spatial and temporal rainfall variation

The departure from the mean as exhibited by cumulative departure
index generally reduced across the period from 1997 to 2015 (Figure 4)
indicating that rainfall pattern became less variable in the past 19 years'
period. From 2007 to 2013 the rainfall was oscillating around the
average indicating minimal variation until 2014–2015 when the trends
significantly drop to below average (CDI < -2). Between the periods
1999–2000 and 2005, the trend was consistently below average in all the
seven counties. Both seasonal and annual rainfall was consistently above
the average between 1997 and 1999 in all the counties except Embu
where the short rains in 1998 were below average. Generally, the trend
was similar in almost all the counties except Embu County. For instance,
in all other counties, SR was the most variable followed by LR, with
annuals having the least variation, while in Embu County the annual
rainfall had the highest variability, then long rains with the short rains
being the least variable.
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A similar trend was detected by the rainfall anomaly index (RAI)
(Figure 5). Short rain emerged to be the most variable rainfall period
across the years and the counties in general with the highest positive
anomaly (RAI ¼ þ13) in Kirinyaga County in 2006 being the wettest
across the seasons and years of the record. The driest (RAI ¼ -8) was in
Murang'a County in 2000. For LR, the highest positive anomaly index was
þ12, and the highest negative anomaly index was -8 during. For SR
highest positive anomaly index was þ13, and the highest negative
anomaly index was -7. Generally, short rains showedmore variation than
the long rains.

The coefficient of variation also showed high rainfall variability
(Table 2). The CV value of more than 0.3 (30%) was considered to be
indicating high variation (Araya and Stroosnijder, 2011). The CV for
annual rainfall varied from CV ¼ 0.29 to 0.42 across the counties indi-
cating high rainfall variability (Table 2). For the LR and SR, the range was
CV ¼ 0.33 to 0.48 and CV ¼ 0.56 to 0.69, respectively. Again, this por-
trayed SR to be the most variable followed by LR and then the annual
rainfall. The number of rainy days within the season also indicated a
similar pattern with the CVs ranging between CV ¼ 0.23 to 0.40 and CV
¼ 0.36 to 0.48 for the LR and SR, respectively (Table 3).



Figure 5. Time series of rainfall anomaly index (RAI) for long rains and short rains in (a) Embu, (b) Kiambu, (c) Murang'a, (d) Meru, (e) Kirinyaga, (f) Nyeri and (g)
Tharaka-Nithi.

Table 2. Variability of annual and seasonal rainfall amounts across the counties from 1997 to 2015.

County The coefficient of variation (CV)

Annual LR SR

Embu 0.34 0.37 0.57

Kiambu 0.29 0.33 0.56

Kirinyaga 0.32 0.36 0.63

Meru 0.42 0.33 0.57

Murang'a 0.29 0.44 0.68

Nyeri 0.32 0.39 0.60

Tharaka-Nithi 0.42 0.48 0.69

Table 3. Rainy days analysis from 1997 to 2015.

County LR SR

No. of rainy days (RD) CV-RD No. of rainy days (RD) CV-RD

Embu 403 0.23 505 0.44

Kiambu 614 0.23 597 0.36

Kirinyaga 554 0.26 586 0.46

Muranga 572 0.27 595 0.36

Meru 318 0.35 419 0.45

Nyeri 505 0.32 556 0.40

Tharaka-Nithi 285 0.40 426 0.48
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The high rainfall variation observed was also reported by Recha et al.
(2011) in Tharaka-Nithi, where he observed year-to-year and
season-to-season rainfall variation. The variation indicated short rains
being highly variable than the long rains and the annuals. Hansen and
Indeje (2004) reported that the long rains to be the most reliable in terms
of variability and can be predicted with a reasonable degree of accuracy,
unlike the short rains. The high variability of the seasonal rainfall has
thus impacted on agriculture negatively considering agricultural pro-
duction in sub-Saharan Africa is heavily hinged on the seasonal rainfall
than the annual. This has made planning for agricultural production
difficult. Farmers are not sure of what to expect of the rainfall pattern
9

every season or year. To overcome the high rainfall variability, the
farmers could practice supplemental irrigation and use soil moisture
conservation measures.
3.4. Rainfall distribution pattern

Rainfall distribution pattern showed a bimodal rainfall pattern in the
central highlands of Kenya, there was the long and short rains making
two seasons per year (Figure 6 a and b). Both the long and short rain
distribution pattern were almost homogeneous across the different
counties. For the Long rains, the month of April received about 60% of
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Figure 6. Temporal distribution of average daily rainfall as a percentage of the total rainfall received over the long rains (a) and short rains (b) seasons across
the counties.
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the season's rainfall, with March receiving around 20% and the
remaining 20% spread from the month May to July (Figure 6a). For the
SR, the month of November and December received about 70% of the
seasonal rainfall. October received 20% while the remaining 10% is
spread between January and February (Figure 6b). The months of April
and November during the short and long rains, respectively, received
bigger chunk of the seasonal rainfall that is ideal as these are the months
within the season where active vegetative growth takes place. Thus,
rainfall distribution is ideal for the growth of many crops such as maize,
where the onset month receive just sufficient rainfall that allows for
germination and initial crop growth.

Much of the rainfall is received during the heavy crop vegetative stage
and the least amount received towards the harvesting of the crop. This
showed a well-distributed rainfall pattern similar to the findings of Recha
et al. (2011) in Tharaka district in the central highlands of Kenya over the
short rain period and argued that the fair spread has the potential of
reducing the impact of high rainfall variability. On the contrary, Ovuka
and Lindqvist (2000) reported poor rainfall distribution in Murang'a
County that had contributed to reduced crop productivity and recom-
mended more research and advising of the farmers in the region on how
to elude the poor rainfall pattern. Farmers in the regions, therefore,
should take advantage of well rainfall distribution to balance out the
impact of high rainfall variability. Also rain water harvest for supple-
mental irrigation could be practiced in case of poor distribution.

On rainfall intensity, precipitation variability index (PVI) of more
than 0.3 was considered to be indicative of high rainfall intensity. The
results showed low PVI values ranging from PVI ¼ 0.09 to 0.27 in the
study area indicating low intensity (Table 4). This indicate that the in-
cidences of extreme rainfall events are not common.

The results are inconsistent with the global findings of increasing
extreme precipitation events (Alexander et al., 2006). The last report
from the Working Group 1 (WG1) of the International Panel on Climate
Change (Summary for Policy Makers, SPM WG1-IPCC 2007) reported
increased heavy precipitations on most of the land surface during the
20th century. Groisman et al. (2005) also showed a widespread increase
in the frequency of very heavy precipitations during the past 50–100
years. In Namibia, Lu et al. (2016) reported extreme precipitation events
such as heavy rainfall and drought on analysing rainfall intensity. The
observed low rainfall intensity thus should continuously be monitored to
establish any changes in the coming years. This will help in averting the
Table 4. Rainfall intensity across the counties from 1997-2015.

County Precipitation variability index

Embu 0.15

Kiambu 0.09

Kirinyaga 0.13

Meru 0.27

Murang'a 0.09

Nyeri 0.12

Tharaka-Nithi 0.26
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tragedies associated with rainfall extremities such as droughts and floods
which affect crop production and the human livelihood significantly.

The low intensity and evenly distributed rainfall in the central high-
lands of Kenya is a characteristic of relief rainfall common in the
mountainous region (Elvis et al., 2015). The regions experience this
rainfall type due to the effect of Mount Kenya and Aberdare ranges. The
counties are all in the windward side of the Mt. Kenya and Aberdare
range thus receive high rainfall amounts. On the leeward side of Mt.
Kenya, the regions receive low rainfall amount with cool temperature
due to the dry cold winds that blow over the area. The low rainfall in-
tensity is ideal for agricultural production since there is no crop
destruction due to either droughts or floods associated with high rainfall
intensity. While there are low frequencies of rainfall extremities in the
CHK, farmers still need to be equipped with ameliorative measures in
preparation for such.
3.5. Pattern of dry periods during the cropping seasons

Dry spell frequency during the long rains for the 19 years was highest
in Embu with 83 occurrences and lowest in Murang'a with 57 occur-
rences (Table 5). During SR frequency of dry spell was highest in Nyeri
with 88 occurrences and lowest in Embu with 69 occurrences during the
19 years of record (Table 6). The frequency of dry spell of more than five
and less than ten days was consistently high in all the counties during
both seasons while the dry spell frequency of more than 10 and less than
15 and the ones more than 15 days were almost the same. On average
there is at least a dry spell within a season for long and short rains.
Depending on the severity or magnitude of the dry spell and the stage of
crop growth, the dry spell can cause significant damage to the crop.
While dry spell of more than five days is enough to cause a reduction in
crop yield, dry spell of more than 15 days can reduce yield up to 50% or
cause complete crop failure especially when the crop is at its critical
growth stage (Shin et al., 2015). In the study area, the dry spells of
greater magnitude like more than 15 days were not common, hence there
was low risk of complete crop failure.

The coefficient of variation analysis of the dry spell indicated high
seasonal variability in Kirinyaga, Murang'a, and Nyeri counties during
the LR. Kiambu, Kirinyaga and Murang'a had high variability during the
short (Table 7). This leaves Embu and Tharaka-Nithi as the only counties
with the low variability of dry spell in any season.

The probability analysis of the dry spell (Table 8) showed that the
probability that a dry-spell starts on a particular day within a growing
season ranged from 4 to 5% for LR and was 4 % for the SR. The proba-
bility of a dry spell less than five day does not occur at a certain day in a
growing season ranged from 95 to 96% for LR and was 96% for the SR.
The probability that a dry spell longer than five days will not occur in a
growing season ranged from 1 to 5% for the LR and 1–2% for the SR. The
probability that a dry spell exceeding five days would occur at least once
in a growing season ranged from 97 to 99% for LR and was 98% for the
SR.

Generally, the results indicate a high incidence of dry spell in the
study region. This agrees with the findings of Rockstrom et al. (2003) that
intra-seasonal dry spells have become a common feature. They disrupt



Table 5. Frequency of dry spell across the counties during the long rains from 1997-2015.

Year County

Embu Kiambu Kirinyaga Murang'a Meru Nyeri Tharaka-Nithi

>5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15

1997 0 3 1 0 0 2 0 0 2 0 0 2 0 0 1 2 0 2 0 0 2

1998 1 1 2 0 2 1 0 2 1 0 2 0 1 2 0 1 2 0 0 1 1

1999 5 1 0 3 0 0 4 0 0 3 0 0 2 1 0 4 0 0 3 0 0

2000 2 1 2 3 2 1 2 0 2 2 1 1 0 0 3 4 0 0 0 1 2

2001 1 2 2 1 1 1 2 0 2 2 1 1 1 0 2 0 1 1 1 0 2

2002 1 2 1 1 1 0 2 1 0 1 1 0 2 2 0 1 1 0 3 1 0

2003 2 0 2 2 1 1 3 0 1 3 0 1 2 0 2 3 0 1 2 1 1

2004 0 1 1 1 1 1 2 3 1 1 2 1 3 1 2 2 1 1 2 2 0

2005 1 1 1 2 2 2 1 2 2 1 1 1 2 2 3 1 1 2 2 2 3

2006 1 2 0 2 0 0 1 2 0 2 0 0 3 1 1 2 0 0 3 0 1

2007 4 3 0 3 1 0 3 1 0 5 1 0 3 2 2 4 2 0 1 1 2

2008 2 0 2 2 0 1 2 0 2 2 0 1 1 1 2 1 1 2 1 1 1

2009 1 1 2 3 1 0 0 1 1 3 1 0 0 0 2 0 1 2 0 0 2

2010 2 1 1 1 2 0 2 1 0 1 1 0 2 1 0 1 2 0 1 2 0

2011 1 0 2 3 0 1 1 0 1 3 0 0 1 1 2 1 1 1 1 1 2

2012 2 1 1 1 0 1 2 1 1 0 1 1 2 0 1 2 0 1 2 0 1

2013 5 0 3 1 2 0 0 2 0 0 1 0 0 1 2 1 1 0 0 2 1

2014 4 2 0 1 0 3 3 1 0 1 2 0 2 2 0 3 1 0 2 2 0

2015 0 1 2 0 0 3 2 0 1 2 0 1 4 1 0 1 1 0 4 1 0

Totals 35 23 25 30 16 18 32 17 17 32 15 10 31 18 25 34 16 13 28 18 21

Table 6. Frequency of dry spell across the counties during the short rains from 1997-2015.

Year County

Embu Kiambu Kirinyaga Murang'a Meru Nyeri Tharaka-Nithi

>5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15 >5 >10 >15

1997 4 0 0 1 1 0 0 0 0 1 0 1 2 0 0 2 0 0 2 0 0

1998 2 1 1 1 1 1 2 0 2 3 1 1 2 0 3 3 3 0 2 0 3

1999 0 0 1 4 1 1 2 0 1 3 0 1 2 0 2 3 0 0 2 0 2

2000 1 1 3 4 2 1 5 2 0 4 2 0 2 1 3 4 0 2 2 1 3

2001 3 0 1 3 1 1 4 0 1 2 1 1 0 2 2 2 1 1 1 2 1

2002 1 3 0 2 0 2 1 1 1 2 0 1 0 1 2 0 1 2 0 1 2

2003 2 1 1 0 1 1 1 2 1 0 2 0 1 1 1 1 3 1 2 0 3

2004 1 2 0 1 0 1 2 1 1 0 0 1 2 1 1 2 1 2 2 1 1

2005 1 1 2 2 0 3 4 3 0 3 1 1 1 2 3 3 3 0 1 0 3

2006 0 1 0 1 0 1 4 1 0 1 0 1 2 0 1 1 3 1 3 0 1

2007 2 1 1 5 0 0 2 0 0 4 0 0 2 1 0 2 3 0 2 1 0

2008 1 1 2 2 0 2 2 0 1 1 0 1 2 0 1 3 0 2 1 1 1

2009 1 1 1 5 0 0 1 1 1 5 0 0 3 1 2 1 0 2 3 1 1

2010 2 1 2 2 3 0 3 1 1 3 2 0 2 2 1 4 1 0 1 2 2

2011 2 3 0 3 4 1 2 1 1 5 0 1 0 1 2 1 1 3 1 1 2

2012 1 0 2 0 4 0 2 0 1 0 3 0 2 1 1 3 1 1 2 1 1

2013 2 2 0 2 1 2 2 2 1 3 0 2 1 1 1 1 3 1 0 1 2

2014 1 1 2 1 1 3 2 2 3 1 1 3 2 0 2 3 1 2 2 1 2

2015 2 1 0 2 0 1 0 0 0 1 1 1 0 1 2 0 3 1 0 1 1

Totals 29 21 19 41 20 21 41 17 16 42 14 16 28 16 30 39 28 21 29 15 31
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crop growth and lower crop yield (Barron et al., 2003; Mzezewa et al.,
2010). Within-season dry spells are associated with poor seasonal rainfall
distribution that is common in most parts of the world (Mzezewa et al.,
2010). However, some studies attribute the recent drying trends to SST
anomalies over the Indian Ocean induced by anthropogenic forcing
(Funk et al., 2008; Williams and Funk 2011), signifying the possible
escalation of drier conditions in future should human influence continue
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(Seager and Mark 2015). Shongwe et al. (2011) and Otieno and Anyah
(2013) are, however, optimistic that the dry conditions will be, at least
partly, ameliorated soon. They base their argument in model projections
from the Intergovernmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4) and the phase 5 of the Coupled Model
Inter-comparison Project (CMIP5), that precipitation over East Africa will
increase (Taylor et al., 2012).



Table 7. Dry spell variation across the counties for both long and short rains from 1997 to 2015.

County Seasonal dry spell variation

LR SR

Dry spell Frequency CV Dry spell Frequency CV

Embu 83 0.19 69 0.19

Kiambu 49 0.29 82 0.35

Kirinyaga 66 0.32 74 0.47

Murang'a 57 0.50 72 0.53

Meru 74 0.22 74 0.25

Nyeri 63 0.44 88 0.25

Tharaka-Nithi 67 0.19 75 0.28

Table 8. Dry spell probability analysis for both long and short rains seasons across the counties.

County Dry spell probabilities

P* R** Q*** L****

LR SR LR SR LR SR LR SR

Embu 0.05 0.04 0.95 0.96 0.01 0.02 0.99 0.98

Kiambu 0.04 0.04 0.96 0.96 0.03 0.01 0.97 0.99

Kirinyaga 0.04 0.04 0.96 0.96 0.03 0.02 0.97 0.98

Murang'a 0.04 0.04 0.96 0.96 0.05 0.02 0.95 0.98

Meru 0.05 0.04 0.95 0.96 0.02 0.02 0.98 0.98

Nyeri 0.04 0.04 0.96 0.96 0.03 0.01 0.97 0.99

Tharaka-Nithi 0.04 0.04 0.96 0.96 0.03 0.02 0.97 0.98

* Probability that a dry-spell starts on a particular day within a growing season.
** Probability that a dry-spell less than 5 does not occur at a certain day in a growing season.
*** Probability that a dry-spell longer than 5 days will not occur in a growing season.
**** Probability that a dry-spell exceeding 5 days would occur at least once in a growing season.
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Even though the most frequently observed dry spell across the
counties was of low magnitude, farmers should cushion themselves
from the drought-related calamities by adopting some of the cost-
effective soil moisture conservation practices that are being pro-
moted in the regions. Some of the strategies include the use of sup-
plemental irrigation where water resources are available or planting of
drought-resistant crop varieties in water-scarce areas. Use of organic
inputs that have the potential of improving soil moisture retention and
reducing soil moisture loss through evaporation can be considered in
ameliorating the impact of a dry spell in crop production (Cai and
Wang 2002; Huang et al., 2003; Wang et al., 2003; Lenssen et al.,
2007).

3.6. Comparison between satellite rainfall estimates and the observed rain
gauge data

The visual and statistical trend portrayed by the cumulative departure
index (Figure 7) show the satellite data consistently underestimating
observed rain gauge values. However, the data sets had similar trend
indicating they agree aside from the underestimation of the satellite es-
timate data.

Pearson correlation of the onset, cessation and the length of the
growing period between the satellite and observed gauge data were as
per Tables 9, 10, and 11. In Embu County, short rains showed weak
agreements on the onset, cessation and the length of growing period of
the two data sets where the correlation coefficients were 0.20, 0.04 and
0.03, respectively. However, the two sets of the dates were not signifi-
cantly different at p < 0.05 (Table 9). For the short rains, the correlation
coefficient for the onset, cessation and the length of growing period of the
two data sets were 0.56, 0.59 and 0.58, respectively with the two sets of
dates not significantly different at p < 0.05 (Table 9). An almost similar
pattern was observed in Meru County. The long rains had the correlation
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coefficient for onset, cessation and length of growing period of 0.08, 0.16
and 0.36, respectively, with the two sets of dates not significantly
different at p < 0.05 (Table 10). The CV for short rains onset, cessation
and the length of growing period were 0.17, 0.57 and 0.63, respectively,
with the two sets of dates not significantly different at p < 0.05
(Table 10). In Tharaka-Nithi County, the long rains had correlation co-
efficients for the onset, cessation and the length of crop growth period as
0.55, 0.83 and 0.33, respectively with the two sets of dates not signifi-
cantly different, except on cessation dates at p < 0.05 (Table 11). For the
short rains, correlation coefficients for the onset, cessation and the length
of the growing period were 0.54, 0.63 and 0.16, respectively, with the
two sets of dates not significantly different at p < 0.05. Generally, the
long rains had a weak agreement for the onset, cessation and the length
of the growing period between the two data sets. Short rains, however,
had a strong agreement on the onset, cessation and the length of the
growing period between the two data sets. This shows that the onset,
cessation and the length of growing period of satellite estimates cannot
effectively substitute the prediction of the observed rainfall data during
the long rains but can represent the short rains effectively.

The daily correlation comparison between the two datasets indicated
that there was an agreement between the two data sets though not very
strong. The correlation coefficient ranged from 0.44 to 0.62 with the t-
test showing the datasets were not significantly different from each other
across all the three counties at p ¼ 0.05 (Table 12). Root mean square
error showed high positive values indicating the satellite underestimate
the observed rain gauge data and are in agreement (Table 12). The values
ranged from 2.82 to 4.31 across the three counties under the study.
Scatter plot shows low agreement between the daily observed and sat-
ellite estimates rainfall datasets with the coefficient of determination
(R2) ranging from R2 ¼ 0.19 to 0.37 (Figure 8). On the monthly scale,
however, there was strong agreement with the R2 ranging from R2¼ 0.62
to 0.98. This indicates that at the daily scale, the satellite rainfall



Figure 7. Times series of Cumulative departure index for observed and satellite estimates in Embu (a), Meru (b), and Tharaka-Nithi (c) counties across the years.

Table 9. Comparison of satellite rainfall estimate and observed rain gauge on onset, cessation and length of growing period during LR and SR in Embu County.

Year Long rains Short rains

Onset
(Jth day)

Cessation
(Jth day)

Length
(J days)

Onset
(Jth day)

Cessation
(Jth day)

Length
(J days)

Obs** Sat*** Obs** Sat*** Obs** Sat*** Obs** Sat*** Obs** Sat*** Obs** Sat***

1999 62 71 154 134 92 63 279 269 387 371 108 102

2000 78 64 146 134 68 70 280 269 367 367 87 98

2001 83 53 150 134 67 81 277 265 359 367 82 102

2002 78 62 150 142 72 80 280 275 387 375 107 100

2003 78 43 162 139 84 96 278 275 359 367 81 92

2004 58 54 146 134 88 80 280 273 355 367 75 94

2005 82 60 166 134 84 74 280 273 355 367 75 94

2006 57 60 147 138 90 78 277 272 379 379 102 107

2007 83 60 166 134 83 74 280 275 355 375 75 100

2008 82 60 146 134 64 74 277 266 355 367 78 101

Mean 74 59 153 136 79 77 279 271 366 370 87 99

CC* -0.20 -0.04 -0.03 0.56 0.59 0.58

P-value ns ns ns ns ns ns

* Correlation Coefficient.
** Observed rain data.
*** Satellite estimates.
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estimates cannot represent the observed rainfall adequately while at
monthly scale, the observed rainfall can be well represented by the sat-
ellite rainfall estimates.

The two data sets showed consistency in the pattern of behaviour as
portrayed by the visual graphical representation of the cumulative de-
parture index. This is further supported by the Pearson correlation that
also showed an agreement between the datasets with a high significance
level (p ¼ 0.001). The correlation coefficient of onset cessation and the
length of the growing period also showed agreement between the data-
sets during the short rains, implying that the satellite estimates can be
used as a substitute of the observed gauge data in the prediction of onset,
cessation and the length of the growing period during the short rain
period. This can be a solution to the data scarcity problem that has been
experienced in the central highlands of Kenya and other regions that are
considered remote because the satellite estimate can give rainfall data of
any point on the surface of the earth.
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Scatter plot showed an agreement between the data sets that were
stronger at the monthly scale while weak at daily scale corroborating the
findings by Lu et al. (2016) and Sungmin et al. (2016). This indicated that
at a daily scale, satellite estimates are not a reliable representation of
rainfall, but at monthly scale, they can be used as either a substitute or
complementary to the observed rain gauge data depending on how well
such data are processed. Various studies have also established the exis-
tence of an agreement between the satellite estimates and observed rain
gauge data (Mohamed 2013; Lu et al., 2016; Sungmin et al., 2016;
Macharia et al., 2020). This indicates that the satellite estimates can be
used not only as a complementary to the observed rain gauge data but as
a substitute when adequately corrected. However, correction is
site-specific and should be customised as per the agro-ecological zone.

The variations in the degree of agreement observed across the
counties could be attributed to the findings of various studies that re-
ported the agreement to be affected by factors such as proximity to large



Table 10. Comparison of satellite rainfall estimate and observed rain gauge on onset, cessation and length of growing period during LR and SR in Meru County.

Year LR SR

Onset
(Jth day)

Cessation
(Jth day)

Length
(J days)

Onset
(Jth day)

Cessation
(Jth day)

Length
(J days)

Obs Sat Obs Sat Obs Sat Obs Sat Obs Sat Obs Sat

1999 76 76 145 146 86 70 284 269 378 358 94 89

2000 76 76 141 146 75 70 291 269 369 358 78 89

2001 76 76 141 146 85 70 283 269 365 362 82 93

2002 62 62 146 146 93 84 280 269 389 370 109 101

2003 62 62 141 146 84 84 290 269 361 358 71 89

2004 72 72 141 146 101 74 287 269 393 359 106 90

2005 60 60 141 159 73 99 291 272 357 358 66 86

2006 74 74 161 146 83 72 262 266 397 370 135 104

2007 60 60 141 146 83 86 280 275 389 358 109 83

2008 60 60 141 146 74 86 277 275 357 358 80 83

Mean 57 68 141 147 84 79 283 270 376 361 93 91

CC -0.08 -0.16 -0.36 0.17 0.57 0.63

P-value ns ns ns ns ns ns

Table 11. Comparison of satellite rainfall estimate and observed rain gauge on onset, cessation and length of the growing period during LR and SR in Tharaka-Nithi
County.

Year LR SR

Onset
(Jth day)

Cessation
(Jth day)

Length
(J days)

Onset
(Jth day)

Cessation
(Jth day)

Length
(J days)

Obs Sat Obs Sat Obs Sat Obs Sat Obs Sat Obs Sat

1999 47 76 168 144 121 68 292 281 384 364 92 83

2000 47 76 176 144 129 68 271 281 368 360 97 79

2001 65 76 164 144 99 68 273 281 361 360 88 79

2002 61 62 164 144 103 82 279 278 376 369 97 91

2003 61 62 164 144 103 82 290 278 356 360 66 82

2004 77 72 164 144 87 72 290 278 360 360 70 82

2005 80 60 184 160 104 100 290 272 356 360 66 88

2006 58 74 164 144 106 70 289 272 404 369 115 97

2007 61 60 164 144 103 84 278 283 396 360 118 77

2008 82 60 164 144 82 84 275 279 356 360 81 81

Mean 64 68 168 146 104 78 283 278 372 362 89 84

CC -0.55 0.83 -0.33 -0.54 0.63 0.16

P value ns <0.00 ns ns ns ns

Table 12. Pearson correlation and Root mean square error comparison of daily satellite rainfall estimates and observed rain gauge data.

County Correlation analysis RMSE

Correlation Coefficient P value

Embu 0.44 0.0001 4.31

Meru 0.59 0.0001 2.98

Tharaka-Nithi 0.62 0.0001 2.84
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water bodies like oceans (Mohamed 2013), satellite-ground misregis-
tration and spatial and temporal resolution (Kidd et al., 2003). For
instance, satellite-ground misregistration and low spatial and temporal
resolution can cause a change in both place and time of precipitation.
This could result in significant differences between the satellite estimates
and observed rain gauge data. Displacement in time of the precipitation
leads to differences observed in the onset, cessation and length of the
growing period. Spatial displacement of the precipitation might also
mean precipitation reading recorded for one region might be received in
another region. The poor temporal resolution also explains the stronger
agreement of the data sets on a monthly scale than at daily scale. This is
14
because, at a monthly scale, the systematic error arising from the low
temporal resolution is reduced by the averaging the daily readings.
Reducing the causes of such errors is essential in improving the reliability
of satellite estimates.

Satellite rainfall estimate was observed to underestimate rainfall
values as portrayed visually by cumulative departure index and statisti-
cally by the root mean square error that had high positive values. The
finding supports the observation made by Sungmin et al. (2016) in
southeast Austria while comparing the daily rainfall data from Wege-
nerNet and observed rain gauge data, where WegenerNet data under-
estimated the observed rainfall data. Mohamed (2013) reported similar



Figure 8. Scatter plots comparing satellite estimates and rain gauge based data sets at daily (a), (c) and (e) for Embu, Meru and Tharaka-Nithi respectively and
monthly (b), (d) and (f) for Embu, Meru and Tharaka-Nithi respectively from 1999 to 2008.
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findings while comparing the satellite estimates from African Rainfall
Climatology Project of the Climate Prediction Centre and the observed
rain gauge from various regions of Tanzania. The underestimation by the
satellite-based rainfall estimation was also observed by Sanchez-Moreno
et al. (2014) when comparing the rainfall estimates from TRMM with
observed rain gauge data in Cape Verde Islands. These reports indicate
that all satellite-based rainfall estimates tend to underestimate the
observed rainfall. The underestimation could be as a result of physical
differences between satellite retrievals and validation retrievals
(Mohamed, 2013), among other factors, both statistical and environ-
mental. While some of these causes can be improved by statistical
adjustment of the various parameters involved, others are as a result of
the surrounding environment, and thus correction should be
environment-specific. This, therefore, requires further investigation to
accurately come up with the ideal correction factor as per the region of
interest.

4. Conclusion

Rainfall onset across the seven counties under consideration ranged
from 25th of February to 3rd of April during long rains and from 12th of
September to 10th of October during short rains. Cessation dates ranged
from 21st May to 2nd June for LR and from 3rd to 26th of January for SR.
The length of the growing period was between 81 to 92 and 97–133 days
for LR and SR, respectively. Both the onset and cessation dates showed
high variation indicating difficulties in the timing of the planting date
among farmers. The length of the growing period also showed high
variation with the short rains being more variable than the long rains.
However, the short rains proved to be more reliable than the long rains
due to a longer length of growing period across the counties and years,
15
thus the primary cropping season. Farmers in Central highlands of Kenya
should, therefore, be ready to plant at the first rains received around the
projected onset period to maximize on the length of a crop growth
period. They should also focus more on the short rains as their main
growing season.

Generally, rainfall in the CHK showed high temporal variation across
the years with the spatial variation difficult to determine due to the na-
ture of the data used. The satellite rainfall estimate data used in rainfall
characterisation, averaged rainfall values for various points on a wider
geographical location, thus unreliable when analysing spatial charac-
teristics. Rainfall, however, was fairly distributed temporally with a low
intensity that encouraged agricultural production. Thus, the impact of
high variability in agricultural production is abridged by good distribu-
tion and low rainfall intensity.

While the dry spell was a common occurrence in the region with a
high probability of future occurrences, the more frequently experienced
dry spells were of low magnitudes that do not have a severe impact on
crop production. The most common dry spell experienced was the dry
spells of more than five to ten days. These could lower the crop yield
depending on the crop stage of growth and the sensitivity of the crop to
moisture stress but does not cause serious damages like complete crop
failure. However, there is a need for farmers to put mechanisms to
ameliorate its impact. Use of soil moisture conservation technologies and
supplemental irrigation in case of severe dry spells are some of the po-
tential ameliorative measures. More research needs to be done on effi-
cient use of the available soil moisture and on drought-tolerant crop
varieties to reduce the impact of drought on crop productivity.

Validation of the satellite rainfall estimate and observed rain gauge
data showed that the two data sets are in agreement especially at the
monthly scale where the satellite can substitute the observed rain gauge
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data aside from being a complementary source. However, satellite data
underestimated the rainfall readings. To ensure more reliability of the
satellite estimates even at daily scale, proper correction method of sat-
ellite estimates needs to be devised and customised for each region.
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