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Syntrophobotulus glycolicus Friedrich et al. 1996 is currently the only member of the genus 
Syntrophobotulus within the family Peptococcaceae. The species is of interest because of its 
isolated phylogenetic location in the genome-sequenced fraction of tree of life. When grown 
in pure culture with glyoxylate as carbon source the organism utilizes glyoxylate through 
fermentative oxidation, whereas, when grown in syntrophic co-culture with homoacetogenic 
or methanogenic bacteria, it is able to oxidize glycolate to carbon dioxide and hydrogen. No 
other organic or inorganic carbon source is utilized by S. glycolicus. The subdivision of the 
family Peptococcaceae into genera does not reflect the natural relationships, particularly re-
garding the genera most closely related to Syntrophobotulus. Both Desulfotomaculum and 
Pelotomaculum are paraphyletic assemblages, and the taxonomic classification is in signifi-
cant conflict with the 16S rRNA data. S. glycolicus is already the ninth member of the family 
Peptococcaceae with a completely sequenced and publicly available genome. The 
3,406,739 bp long genome with its 3,370 protein-coding and 69 RNA genes is a part of the 
Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain FlGlyRT (= DSM 8271) is the type strain of 
Syntrophobotulus glycolicus within the monotypic 
genus Syntrophobotulus [1], which is affiliated to the 
family Peptococcaceae within the order Clostridiales 
[2]. The genus name is derived from the latinized 
Greek syntrophos meaning having grown up with 
one, and the Latin botulus, sausage, a syntrophic sau-

sage-like item [3]. The species epithet is derived 
from the Neo-Latin acidum glycolicum meaning 
'glycolic acid', 'referring to the key substrate of this 
species, glycolic acid [3]. The major characteristic 
that differentiates this genus from other bacteria is 
the ability to oxidize glyoxylate under anaerobic 
conditions [3]. The major source of glycolate in na-
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ture is excretion by algae and other photoautotrophs 
and chemoautotrophs [4-7]. Strain FlGlyRT was iso-
lated from anoxic sewage sludge in Konstanz, Ger-
many [3], but was also mentioned in earlier reports 
[8]. No further isolates have been reported until 
now. Here we present a summary classification and 
a set of features for S. glycolicus FlGlyRT, together 
with the description of the complete genomic se-
quencing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain FlGlyRT was compared using NCBI BLAST [9] 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the Green-
genes database [10] and the relative frequencies of 
taxa and keywords (reduced to their stem [11]) 
were determined, weighted by BLAST scores. The 
most frequently occurring genera were Desulfitobac-
terium (45.4%), Desulfosporosinus (19.3%), Dehalo-
bacter (18.0%), Heliobacterium (13.8%) and Syntro-
phobotulus (2.6%) (85 hits in total). Regarding the 
single hit to sequences from members of the species, 

the average identity within HSPs was 99.7%, whe-
reas the average coverage by HSPs was 99.7%. 
Among all other species, the one yielding the highest 
score was Dehalobacter restrictus (Y10164), which 
corresponded to an identity of 95.0% and an HSP 
coverage of 85.2%. (Note that the Greengenes data-
base uses the INSDC (= EMBL/NCBI/DDBJ) annota-
tion, which is not an authoritative source for nomen-
clature or classification.) The highest-scoring envi-
ronmental sequence was AJ278164 (‘Dehalobacter 
sp. clone SHD-11' [12]), which showed an identity of 
95.3% and an HSP coverage of 86.8%. The most fre-
quently occurring keywords within the labels of en-
vironmental samples which yielded hits were 'soil' 
(6.5%), 'microbi' (6.4%), 'respons' (4.8%), 'paddi, 
rice' (4.6%) and 'condit' (4.5%) (165 hits in total). 
The most frequently occurring keyword within the 
labels of environmental samples which yielded hits 
of a higher score than the highest scoring species 
was 'dehalobact' (100.0%) (1 hit in total). The 
BLAST analysis results concur with earlier reports 
on the ecology and the physiology of the isolate 
whereby it was isolated from a co-culture with other 
sulfate-reducing bacteria [3,8]. 

 
Figure 1. Phylogenetic tree highlighting the position of S. glycolicus relative to the type strains of the most closely re-
lated genera within the family Peptococcaceae. The tree was inferred from 1,306 aligned characters [13,14] of the 
16S rRNA gene sequence under the maximum likelihood (ML) criterion [15] and rooted with the type species of the 
family. The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the 
branches are support values from 700 ML bootstrap replicates [16] (left) and from 1,000 maximum parsimony boot-
strap replicates [17] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in 
GOLD [18] are labeled with one asterisk, those also listed as 'Complete and Published' with two asterisks [19-21]. 
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Figure 1 shows the phylogenetic neighborhood of S. 
glycolicus in a 16S rRNA based tree. The sequences 
of the four 16S rRNA gene copies in the genome 
differ from each other by up to eight nucleotides, 
and differ by up to 14 nucleotides from the pre-
viously published 16S rRNA sequence X99706, 
which contains two ambiguous base calls. 
As two of the genera selected for Figure 1, Desulfo-
tomaculum and Pelotomaculum, appeared as para-
phyletic in the tree, we conducted both uncon-
strained heuristic searches for the best tree under 
the maximum likelihood (ML) [15] and maximum 
parsimony (MP) criterion [17] as well as searches 
constrained for the monophyly of all genera (for 
details of the data matrix see the figure caption). 
The best-known ML tree had a log likelihood of -
12,054.61, whereas the best trees found under the 
constraint had a log likelihood of -12,209.39 and 
were significantly worse in the SH test as imple-
mented in RAxML [15] (p < 0.01). The best-known 
MP trees had a score of 2,018 whereas the best 
trees found under the constraint had a score of 
2,076 and were significantly worse in the KH test as 
implemented in PAUP* [17] (p < 0.0001). Accor-
dingly, the current classification of the group is in 
significant conflict with the 16S rRNA data and ap-
parently does not reflect its natural relationships. 
The classification could be improved if combina-
tions of phenotypic character states were found 
which characterize a set of appropriately rear-
ranged, then monophyletic genera. However, it 
might also be that the goal to 'define' each genus in 
terms of unique combinations of few, potentially 
arbitrarily selected character states is over-
ambitious, if not misleading in this group of organ-
isms. Apparently a taxonomic revision of the family 
appears to be necessary which focuses more 
strongly on the genealogy of the organisms than 
previous treatments. 
Cells of strain FlGlyRT are Gram-positive, spore 
forming and slightly curved rods of 2.5-3.5 by 0.5 µm 
in size [3] (Figure 2). Though the organism is re-
ported to be non-motile, numerous genes associated 
with flagellar motility are present in the genome 
(see below). Growth occurs between 15°C and 37°C 
with an optimum at 28°C, and in a pH range of 6.7 to 
8.3, with an optimum at pH 7.3 [3] (Table 1). The 
reported habitat for this strain is sewage sludge and 
anoxic freshwater sediments [3]. Initial isolation 
condition was from defined co-cultures of ferment-
ing bacteria with homoacetogenic or methanogenic 
bacteria which converted glycolate completely to 

CO2 and H2, with concomitant reduction of CO2 to 
either acetate or methane [3,8]. Later strain FlGlyRT 
was identified as the primary fermenting partner in 
these co-cultures and glyoxylate was the substrate 
[3]. Strain FlGlyRT grows optimally in freshwater 
medium although growth also occurred in brackish-
water medium with 110 mM NaC1 and 5 mM MgCl 
[3]. Strain FlGlyRT is strictly anaerobic, growing 
chemotrophically in pure culture by fermentative 
oxidation of glyoxylate [3]. In pure culture, glyoxylic 
acid is fermented to carbon dioxide, hydrogen, and 
glycolic acid [3]. However, in syntrophic co-culture 
with, e.g., Methanospirillum hungatei or Acetobacte-
rium woodii as a partner, glycolic acid is converted to 
carbon dioxide and hydrogen [3]. Glycolate oxida-
tion to glyoxylate and vice versa is coupled to a 
membrane-bound electron transport system that 
catalyzes either a proton potential-driven reversed 
electron transport from glycolate to hydrogen or a 
hydrogen-dependent glyoxylate reduction coupled 
to ATP synthesis by electron transport phosphoryla-
tion [34,35]. Due to the oxygenase activity of the D-
ribulose-1,5-bisphosphate carboxylase at low CO2 
and high O2 concentrations, the phosphoglycolate 
formed in these organisms is subsequently dephos-
phorylated to glycolate [8]. It is reported that no 
other organic or inorganic substrates are used [3], 
even though a total of 78 carbohydrate transport 
and metabolism genes are found the genome of this 
organism (COGS table). Neither sulfate, sulfite, thi-
osulfate, elemental sulfur, nor nitrate are reduced 
[3]. 

 
Figure 2. Scanning electron micrograph of S. glycolicus 
FlGlyRT 
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Chemotaxonomy 
Strain FlGlyRT has no cytochromes and the cells 
contain menaquinone-7-10, with MK-9 as major 
fraction [3]. Although the cells stain Gram-
negative, the ultrastructural analysis shows a 
Gram-positive cell wall architecture [3]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [36], and is part 

of the Genomic Encyclopedia of Bacteria and Arc-
haea project [37]. The genome project is deposited 
in the Genome On Line Database [18] and the 
complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 

Table 1. Classification and general features of S. glycolicus FlGlyRT according to the MIGS recommendations [22] 
and the NamesforLife database [23]. 

MIGS ID Property Term Evidence code 

 Current classification 

Domain Bacteria TAS [24] 
Phylum Firmicutes TAS [25,26] 
Class Clostridia TAS [27,28] 
Order Clostridiales TAS [29,30] 
Family Peptococcaceae TAS [29,31] 
Genus Syntrophobotulus TAS [3] 
Species Syntrophobotulus glycolicus TAS [3] 
Type strain FlGlyR TAS [3] 

 Gram stain negative TAS [3] 
 Cell shape rod shaped, slightly curved TAS [3] 
 Motility non-motile TAS [3] 
 Sporulation sporulating TAS [3] 
 Temperature range 15°C-37°C TAS [3] 
 Optimum temperature 28°C TAS [3] 
 Salinity tolerates ~6% NaCl TAS [3] 
MIGS-22 Oxygen requirement strictly anaerobic TAS [3] 
 Carbon source glyoxylate TAS [3] 
 Energy metabolism chemotrophic TAS [3] 
MIGS-6 Habitat marine, sludge, fresh water TAS [3] 
MIGS-15 Biotic relationship free-living TAS [3] 
MIGS-14 Pathogenicity not reported  
 Biosafety level 1 TAS [32] 
 Isolation anoxic sludge from municipal sewage treatment plant TAS [3,8] 
MIGS-4 Geographic location Konstanz, Germany TAS [3,8] 
MIGS-5 Sample collection time 1991 or before TAS [3,8] 
MIGS-4.1 Latitude 47.67 NAS 
MIGS-4.2 Longitude 9.16 NAS 
MIGS-4.3 Depth unknown  
MIGS-4.4 Altitude about 420 m NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a 
direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, 
isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence 
codes are from of the Gene Ontology project [33]. If the evidence code is IDA, the property was directly observed 
by one of the authors or an expert mentioned in the acknowledgements. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (13 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 167.0 × Illumina; 48.0 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3 (Roche), Velvet 0.7.63, phrap SPS - 4.24 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002547 
 Genbank Date of Release March 4, 2011 
 GOLD ID Gc01670 
 NCBI project ID 38111 
 Database: IMG-GEBA 2503707006 
MIGS-13 Source material identifier DSM 8271 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
S. glycolicus FlGlyRT, DSM 8271, was grown anae-
robically in DSMZ medium 298b (FlGlyM-medium) 
[38] at 28°C. DNA was isolated from 0.5-1 g of cell 
paste using Jetflex Genomic DNA Purification kit 
(GENOMED 600100) following the standard pro-
tocol as recommended by the manufacturer, add-
ing 10 µL proteinase K to the standard lysis solu-
tion for 50 minutes at 58°C. DNA is available 
through the DNA Bank Network [39]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [40]. Py-
rosequencing reads were assembled using the 
Newbler assembler. The initial Newbler assembly 
consisting of 38 contigs in two scaffolds was con-
verted into a phrap [41] assembly by making fake 
reads from the consensus, to collect the read pairs 
in the 454 paired end library. Illumina sequencing 
data (602.6 Mb) was assembled with Velvet [42] 
and the consensus sequences were shredded into 
1.5 kb overlapped fake reads and assembled to-
gether with the 454 data. 454 draft assembly was 
based on 163.5 Mb 454 draft data and all of the 
454 paired end data. Newbler parameters are -
consed -a 50 -l 350 -g -m -ml 20. The 
Phred/Phrap/Consed software package [41] was 
used for sequence assembly and quality assess-
ment in the subsequent finishing process. After 
the shotgun stage, reads were assembled with pa-
rallel phrap (High Performance Software, LLC). 

Possible mis-assemblies were corrected with ga-
pResolution [40], Dupfinisher, or sequencing 
cloned bridging PCR fragments with subcloning or 
transposon bombing (Epicentre Biotechnologies, 
Madison, WI) [43]. Gaps between contigs were 
closed by editing in Consed, by PCR and by Bubble 
PCR primer walks (J.-F. Chang, unpublished). A 
total of 331 additional reactions were necessary to 
close gaps and to raise the quality of the finished 
sequence. Illumina reads were also used to correct 
potential base errors and increase consensus 
quality using a software Polisher developed at JGI 
[44]. The error rate of the completed genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 215.0 × coverage of the ge-
nome. The final assembly contained 327,738 py-
rosequence and 15,336,223 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [45] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [46]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) non-redundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [47]. 
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Genome properties 
The genome consists of a 3,406,739bp long chro-
mosome with a GC content of 46.4% (Figure 3 and 
Table 3). Of the 3,439 genes predicted, 3,370 were 
protein-coding genes, and 69 RNAs; 119 pseudo-

genes were also identified. The majority of the 
protein-coding genes (68.7%) were assigned a 
putative function while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. 

 
Figure 3. Graphical circular map of chromosome. From outside to the center: Genes on forward strand (color 
by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs 
red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 3,406,739 100.00% 
DNA coding region (bp) 2,989,609 87.76% 
DNA G+C content (bp) 1,579,030 46.35% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,439 100.00% 
RNA genes 69 2.01% 
rRNA operons 4  
Protein-coding genes 3,370 97.99% 
Pseudo genes 119 3.46% 
Genes with function prediction 2364 68.74% 
Genes in paralog clusters 710 20.65% 
Genes assigned to COGs 2,399 69.76% 
Genes assigned Pfam domains 2,561 74.47% 
Genes with signal peptides 463 13.46% 
Genes with transmembrane helices 848 24.66% 
CRISPR repeats 2  

 

Table 4: Number of genes associated with the general COG functional categories 

Code value %age Description 
J 152 5.8 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 230 8.8 Transcription 
L 156 6.0 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 33 1.3 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 98 3.8 Defense mechanisms 
T 162 6.2 Signal transduction mechanisms 
M 170 6.5 Cell wall/membrane/envelope biogenesis 
N 68 2.6 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 43 1.7 Intracellular trafficking, secretion, and vesicular transport 
O 74 2.8 Posttranslational modification, protein turnover, chaperones 
C 156 6.0 Energy production and conversion 
G 78 3.0 Carbohydrate transport and metabolism 
E 214 8.2 Amino acid transport and metabolism 
F 65 2.5 Nucleotide transport and metabolism 
H 140 5.4 Coenzyme transport and metabolism 
I 49 1.9 Lipid transport and metabolism 
P 195 7.5 Inorganic ion transport and metabolism 
Q 27 1.0 Secondary metabolites biosynthesis, transport and catabolism 
R 282 10.8 General function prediction only 
S 220 8.4 Function unknown 
- 1,040 30.2 Not in COGs 
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