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Abstract Drier parts of Kenya’s Central Highlands endure
persistent crop failure and declining agricultural productivity.
These have, in part, attributed to high temperatures, prolonged
dry spells and erratic rainfall. Understanding spatial-temporal
variability of climatic indices such as rainfall at seasonal level
is critical for optimal rain-fed agricultural productivity and
natural resource management in the study area. However,
the predominant setbacks in analysing hydro-meteorological
events are occasioned by either lack, inadequate, or inconsis-
tent meteorological data. Like in most other places, the sole
sources of climatic data in the study region are scarce and only
limited to single stations, yet with persistent missing/
unrecorded data making their utilization a challenge. This
study examined seasonal anomalies and variability in rainfall,

drought occurrence and the efficacy of interpolation tech-
niques in the drier regions of eastern Kenyan. Rainfall data
from five stations (Machang’a, Kiritiri, Kiambere and
Kindaruma and Embu) were sourced from both the Kenya
Meteorology Department and on-site primary recording. Ow-
ing to some experimental work ongoing, automated recording
for primary dailies in Machang’a have been ongoing since the
year 2000 to date; thus, Machang’a was treated as reference
(for period of record) station for selection of other stations in
the region. The other stations had data sets of over 15 years
with missing data of less than 10 % as required by the world
meteorological organization whose quality check is subject to
the Centre for Climate Systems Modeling (C2SM) through
MeteoSwiss and EMPA bodies. The dailies were also subject-
ed to homogeneity testing to evaluate whether they came from
the same population. Rainfall anomaly index, coefficients of
variance and probability were utilized in the analyses of rain-
fall variability. Spline, kriging and inverse distance weighting
interpolation techniques were assessed using daily rainfall da-
ta and digital elevation model in ArcGIS environment. Vali-
dation of the selected interpolation methods were based on
goodness of fit between gauged (observed) and generated
rainfall derived from residual errors statistics, coefficient of
determination (R2), mean absolute errors (MAE) and root
mean square error (RMSE) statistics. Analyses showed 90 %
chance of below cropping-threshold rainfall (500 mm) ex-
ceeding 258.1 mm during short rains in Embu for 1 year return
period. Rainfall variability was found to be high in seasonal
amounts (e.g. coefficient of variation (CV)=0.56, 0.47, 0.59)
and in number of rainy days (e.g. CV=0.88, 0.53) in
Machang’a and Kiritiri, respectively. Monthly rainfall vari-
ability was found to be equally high during April and Novem-
ber (e.g. CV=0.48, 0.49 and 0.76) with high probabilities
(0.67) of droughts exceeding 15 days in Machang’a. Dry spell
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probabilities within growing months were high, e.g. 81 and
60 % in Machang’a and Embu, respectively. Kriging interpo-
lation method emerged as the most appropriate geostatistical
interpolation technique suitable for spatial rainfall maps gen-
eration for the study region.

1 Introduction

The amount of soil-water available to crops depends on rain-
fall onset, length and cessation which influence the success/
failure of a cropping season (Ngetich et al. 2014). Understand-
ing climatic parameters, rainfall in particular, offers a critical
step towards improving the socioeconomic well-being of
smallholder farmers and optimal agricultural productivity.
This is particularly important in Sub-Saharan Africa (SSA)
where agricultural productivity is principally rain-fed which
is highly variable (Jury 2002). Drier parts of Kenya’s Central
Highlands, eastern Kenya continue to experience high unpre-
dictable rainfall patterns, persistent dry spells/droughts
coup l ed w i t h h i gh evapo t r an sp i r a t i on ( 2000–
2300 mm year−1) (Micheni et al. 2004). Generally, there is
enough rainwater on the annual total; however, it has been
reported to be poorly re-distributed over time (Kimani et al.
2003) with 25 % of the annual rain often falling within a
couple of rainstorms. Consequently, crops suffer from water
stress, often leading to complete crop failure (Meehl et al.
2007). Recha et al. (2011) noted that most studies do not
provide information on the much-needed character of
within-season variability despite its critical influence on soil-
water distribution and productivity.

There has been continued interest in understanding rain-
fall’s seasonal patterns by evaluation of its variables including
rainfall amount, rainy days, lengths of growing seasons and
dry spell frequencies (e.g. Mugalavai et al. 2008; Ngetich et al.
2014. Studies by Sivakumar (1991), Seleshi and Zanke (2004)
and Tilahun (2006) noted high variations in annual and sea-
sonal rainfall totals and rainy days in Ethiopia and Sudano-
Sahelian regions. Studies on rainfall patterns in the region
have been based principally on annual averages, thus missing
on within-season rainfall characteristics (Barron et al. 2003).
However, understanding the average amount of rain per rainy
day and the mean duration between successive rain events
aids in understanding long-term variability and patterns
(Akponikpè et al. 2008). Nonetheless, most meteorological
stations in the Kenya’s Central Highlands, which are sole
sources of climatic data, are only limited to single locations
spatially. In Sub-Saharan Africa, the predominant setbacks in
analysing hydro-meteorological events are occasioned by ei-
ther lack, inadequate, or inconsistent meteorological data.
Like in most other places, the rainfall data within the drier

parts of Embu county and the neighbouring stations are scarce
with missing data making their utilization quite intricate.

Geographic information systems (GIS) and modelling have
become critical tools in agricultural research and natural re-
source management (NRM), yet their utilization in the study
area is quite minimal and inadequate. Utilization of GIS
spatial-interpolation techniques such as inverse distance
weighted (IDW), spline and kriging interpolation techniques
are some of the applications exhausted in the ArcGIS tool
essential for data reconstruction. Most data on climatic vari-
ables (rainfall, temperature) are collected from point sources.
However, spatial array of these point data permits for a more
precise estimation of the value and properties of events at the
ungauged sites through interpolation. The value of data be-
tween two gauged points is interpolated by fitting an appro-
priate model to account for the anticipated variation. The prin-
cipal issue is the selection of the interpolation approach for
any given set of input data (Burroughs and McDonald 1998)
that will determine the accuracy of the output. This is true for
areas where collection of data is sparse and the measurements
for the given variables differ extensively even at somewhat
reduced spatial scales. Kriging is a geostatistical gridding and
flexible technique that has proven useful and popular in many
fields and is supported by the ArcGIS software. This tech-
nique generates visually appealing maps from intermittently
spaced data. Kriging attempts to convey the trends produced
by data, so that, for instance, high points being joined along a
ridge rather than be isolated by bull’s eye form of contours.
The kriging defaulting can be established to produce a
perfect grid of the data or it can be custom fit to a data
set, by specifying the fitting variogram replica. Kriging can
either be exact or a smoothing interpolator. This depends
on the user-specified parameters during data input. It inte-
grates anisotropy as well as the underlying trends in an
efficient and natural way (Yan et al. 2005). Unlike the
other interpolation techniques supported by the ArcGIS
Spatial Analyst, kriging utilizes an interactive analysis of
the spatial trends of the events represented by the z-values
before selecting the accurate estimation technique for
spawning the output surface.

IDW interpolation overtly implements the premise that
things that are close to each other are more identical than those
that are farther apart. Thus, predictably, values close to the
gauged point have predominant influence on the generated
value on assumption that the gauged value has a local influ-
ence which diminishes with distance. Philip and Watson
(1987) argue that the technique weights the points that are
close to the estimate point greater than those farther away
hence the name IDW. Spline technique estimates values via
a mathematical function which minimizes general surface cur-
vature, resulting into an even surface that interconnects all the
input points. Conceptually, the gauged points are extruded up
to the height of their magnitude. This implies that the
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technique curves the interpolated surface over which the input
points pass and at the same time minimizing the overall warp
of the surface to generate output points.

To aid in understanding spatio-temporal occurrence and
patterns in agro-climatic variables (e.g. rainfall), accurate
and inexpensive quantitative approaches such as GIS model-
ling and availability of long-term data are essential. Most me-
teorological data in the study area are inconsistent, unrecord-
ed, or missing, leading to more discrete and unreliable data for
analysis besides the main stations themselves being several
kilometres from the target area. This calls for use of data
reconstruction through interpolation.

On the other hand, the much-needed information on
inter-/intra-seasonal variability of rainfall in the region
is still inadequate despite its critical implication on soil-
water distribution, water use efficiency (WUE), nutrient
use efficiency (NUE) and final crop yield. To optimize
agricultural productivity in the region, there was need to
quantify rainfall variability at a local and seasonal level
as a first step of combating extreme effects of persistent
dry spells/droughts and crop failure. Since rainfall
which is heterogeneous, in particular, is the most critical
factor determining rain-fed agriculture, knowledge of its
statistical properties derived from long-term observation
could be utilized in developing optimal mitigation strat-
egies in the area. To redress problems of inadequate,
missing and inconsistent point data especially for
ungauged areas within the study area, this study sought
to further evaluate the efficacy of geostatistical and/or
deterministic interpolation techniques in daily rainfall
data reconstruction.

2 Materials and methods

2.1 The study area

The study was conducted in the drier parts of Kenya’s Central
Highlands, in Embu County. This region lies in the lower
midland 3, 4 and 5 (LM 3, LM 4 and LM 5), upper midland
1, 2, 3 and 4 (UM 1, UM 2, UM 3 and UM 4) and inner
lowland 5 (IL 5) (Jaetzold et al. 2007) at an altitude of approx-
imately 500 to 1800 m above sea level (a.s.l) (Fig. 1).

It has an annual mean temperature ranging from 14.4 to
27.5 °C (fromEmbu station increasing towardsMbeere stations
with a range of 12.1 to 33.3 °C), average annual rainfall of 700
to 900 mm and a range of 500 to 1400 mm. It has a population
density of 82 persons per km2 with an average farm size less
than 5.0 ha per household. Embu represent a densely populated
high potential humid area with humic nitosols soils and gener-
ally annual rainfall above 800 mm. Conversely, areas of the
sub-humid Mbeere sub-county are emblematic of a low agri-
cultural potential with less fertile and low soil water-holding
ferralsols, frequent droughts and annual rainfall of less than
600 mm (Jaetzold, et al. 2007). However, Mbeere sub-county
continues to experience population pressure occasioned by the
influx of immigrants from the over-populated high potential
areas such as Embu. These areas represent Kenya’s Central
Highlands and those of East Africa, predominant of smallhold-
er rain-fed, non-mechanized agriculture and diminutive use of
external inputs. Generally, the rainfall is bimodal with long
rains (LR) from March to May and short rains (SR) from
mid-October to December hence two potential cropping sea-
sons per year. Various agricultural studies have been carried out

Fig. 1 Map showing the study area and its elevation with studied point gauged rainfall data: Machang’a, Embu and Kiritiri
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in the region hence the rationale behind its selection. According
to (Mugwe et al. 2009), the region has experienced drastic
decline in its productivity potential rendering most farmers re-
source poor. The prime cropping activity is maize intercropped
with beans though livestock keeping is equally dominant.
Mbeere sub-county represents a sub-humid climate region,
with annual average rainfall of 781 mm while Embu is more
humid with annual average rainfall above 1210 mm (Table 1).

This region is a strategic production region, producing
about 20 % of the country’s maize cover (Ngetich et al.
2014). The inherently fertile nitosols in Embu are the reasons
for high-potential productivity while lower and erratic rainfall,
less fertile, shallow and sandy Ferralsols inMbeere region and
high drought frequency explain predominant crop failures
(Jaetzold et al. 2007).

2.2 Rainfall data

The rainfall data were from five rainfall stations: Machang’a,
Kiritiri, Kiambere and Kindaruma (herein commonly referred
to as Mbeere region) and Embu (Embu). Secondary daily rain-
fall data were sourced from both the Kenya Meteorology De-
partment (KMD) and research sites with primary recording sta-
tions within the study area. Primary dailies were recorded in
Machang’a station since 2000, without any missing data gaps,
owing to ongoing experimental trials in the area. Thus,
Machang’a was treated as reference station for selection of other
stations in the region. The other stations had data sets of over
15 years with missing data of less than 10 %. In addition, agro-
ecological zoning of the stations was considered during selec-
tion. The KMD regularly sends the raw data to the Centre for
Climate Systems Modeling (C2SM) through MeteoSwiss and
EMPA bodies for quality check, control and assurance before
the data is forwarded to theWorld Data Centre for archiving and
availability to the scientific community (KMD 2015). During
this study, the dailies were further subjected to homogeneity
testing to evaluate whether they came from the same population.
Summarily, the choice of rainfall stations used depended on
availability of the station, the agro-ecological zones and the
percentage of missing data (less than 10 % for a given year as
required by the world meteorological organization (WMO)).

2.3 Data analyses

Daily primary and secondary rainfall time series were cap-
tured into MS Excel spreadsheet where seasonal rainfall totals
for short rains (SR), long rains (LR), annual average and num-
ber of rainy days were computed. In cases of high data gaps
(unrecorded or missing), multiple imputations were utilized to
fill in missing daily data through creation of several copies of
data sets with different possible estimates. This method was
preferred to single imputation and regression imputation as it
appropriately adjusted the standard error for missing data
yielding complete data sets for analysis (Enders 2010). Being
a season-based analysis, the cumulative impact of rainfall
amount was underpinned. A rainy day was considered to be
any day that received more than 0.2 mm of rainfall as reported
by theWMO. Daily rainfall data were captured into the RAIN-
BOW software (Raes et al. 2006) for homogeneity testing
based on cumulative deviations from the mean to check
whether numerical values came from the same population.
The cumulative deviations were then rescaled by dividing
the initial and last values of the standard deviation by the
sample standard deviation values (Eq. 1).

Sk ¼
X k

i¼1
X i−X
� �

when k ¼ 1;…; n ð1Þ

where Sk is the rescaled cumulative deviation (RCD), n repre-
sents the period of record for K=1 and also when K=14

The maximum (Q) and the range (R) of the rescaled cumu-
lative deviations from the meanwere evaluated based on num-
ber of nil values, non-nil values, mean and standard deviations
as well as K-S values (Eqs. 2 and3) to test homogeneity. Low
values ofQ and Rwould indicate that data was homogeneous.

Q ¼ max sk=s�½ ð2Þ

R ¼ max sk=s�−min sk=s�½½ ð3Þ

whereQ is maximum (max) of SK and R in the range of SK and
min is minimum.

Table 1 Selected metadata of the meteorological stations used in the study

Station Lat Long Alt Record_P Rainfall Climate Data

Embu 0° 30′ S 37° 27′ E 1409 13 1210 Humid R

Machang’a 0° 46′ S 37° 39′ E 1106 13 781 S-humid R

Kiritiri 0° 41′ S 37° 38′ E 1153 13 934 Transitional s-humid R

Kindaruma 0° 48′ S 37° 41′ E 990 13 654 S-humid R

Kiambere 0° 42′ S 37° 46′ E 900 13 1041 S-humid R′

Lat latitude, Long longitude, Alt altitude, Record_P period of record
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The frequency analyses were based on lognormal probabil-
ity distribution with log10 transformation using cumulative
distribution function (CDF) for both LR and SR rainfall
amounts. The Weibull method was used to estimate probabil-
ities while the maximum likelihood method (MOM) was uti-
lized as a parameter estimation statistic. Homogeneous sea-
sonal rainfall totals for both seasons were then subjected to
trend and variability analyses based on rainfall anomaly index
(RAI) as described in (Tilahun 2006).

Seasonal variability was computed in tandem with annual
averages for both positive (Eq. 5) and negative (Eq. 6) anom-
alies using RAI.

RAI ¼ þ3
RF−MRF

MH10−MRF

� �
: ð5Þ

RAI ¼ −3
RF−MRF

ML10−MRF

� �
ð6Þ

whereMRF is mean of the total length of record,MH10 is mean
of 10 highest values of rainfall of the period of record and
ML10 is the lowest 10 values of rainfall of the period of record.

The coefficient of variance (coefficient of variation) statis-
tics were utilized to test the level of mean variations in LR and
SR seasonal rainfall, number of rainy days (RDs) and rainfall
amounts (RAs) and independent ttest statistic to evaluate the
significance of variation.

A dry day was taken as a day that received either less than
0.2 mm or no rainfall at all. A dry spell was considered as
sequence of dry days bracketed by wet days on both sides
(Kumar and Rao 2005). The method for frequency analysis
of dry spells was adapted fromBelachew (2000) as follows: in
the Y years of records, the number of times (i) that a dry spell
of duration (t) days occurs was counted on a monthly basis.
Then, the number of times (I) that a dry spell of duration
longer than or equal to t occurs was computed through accu-
mulation. The consecutive dry days (1, 2, 3 days …) were
prepared from historical data. The probabilities of occurrence
of consecutive dry days were estimated by taking into account
the number of days in a given month n. The total possible
number of days, N, for that month over the analysis period
was computed as, N=n×Y. Subsequently, the probability p
that a dry spell may be equal to or longer than t days was
given by Eq. 7: The probability q that a dry spell not longer
than t does not occur at a certain day in a growing season was
computed by Eq. 8; and probability Q that a dry spell longer
than t days will occur in a growing season was calculated by
Eq. 9 and probability p that a dry spell exceeding t days would
occur within a growing season was computed by Eq. 10 as
shown below:

P ¼ I
�
N ð7Þ

q ¼ 1−pð Þ ¼ 1−
1

N

� �
ð8Þ

Q ¼ 1−
1

N

� �n
ð9Þ

p ¼ 1−Qð Þ ¼ 1− 1−
1

N

� �n
ð10Þ

ArcGIS software tool combined with the digital elevation
model (DEM) to generate average spatial rainfall and maps
using various interpolation techniques were utilized for data
re-construction purposes. The stepwise methodology is sum-
marized in Fig. 2.

The efficacy of interpolation techniques was assessed using
mean absolute errors (MAEs) (Eq. 11), root mean square er-
rors (RMSE) (Eq. 12), prediction error (Pe) (Eq. 13) and co-
efficient of determination (R2) statistics plus validation using
gauged rainfall data.

MEA ¼ 1

n

X n

i¼1
Pi−Oið Þ ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X n

i¼1
Pi−Oið Þ2

r
ð12Þ

Pe ¼ Pi−Oið Þ
Oi

X100 ð13Þ

R2 ¼
1
n

X i

n¼1
Oi−O−ð Þ Si−S−ð Þ

� �2
X n

i¼1
Oi−O−ð Þ2

X n

i¼1
Si−S−ð Þ2

ðxivÞ

where Pi and Oi are the predicted and observed or mea-
sured rainfall values. The P− and O− are the respective means
of these values, and n is the number of observations.

Potential of deterministic and geostatistical rainfall



3 Results and discussion

3.1 Homogeneity testing

Homogeneity analyses had no nil-values (values below
threshold) but 100 % non-nil values (above threshold) show-
ing high homogeneity. The standard deviations (SDs) of the
normalized means for both LR and SR rainfall amounts were
low, e.g. lowest SD=0.1 (in Embu and Kiritiri during SRs)
and highest (SD=0.9 in Embu during LRs. Low SD values
indicated the restriction of variations (RCD) around mean
rainfall amounts indicating high homogeneity (Table 2).

The Kolmogorov-Smirnov (K-S value) test values, R-
square for the seasonal rainfall and the values of the average
rainfall means are summarized in Table 3.

A plot of homogeneity of the average seasonal rainfall
dailies for the stations studied showed deviations from the
zero mark of the RCDs not crossing probability lines. In this
regard, homogeneity was accepted at 99 % probabilities
(Fig. 3).

There was a normal distribution of the sampled-temporal
rainfall data with high goodness of fit (R2=92 to 96 %). This
showed continuity of the data from mother primary data indi-
cating high homogeneity (Raes et al. 2006). Kolmogorov-
Smirnov values (one-sided sample K-S test) showed K-S
values (0.15 to 0.23) consistently lower than the K-S table
value (0.302) for n=14 at α=0.005 probability indicating that
an exponential, continuous distribution of the studied data sets
was statistically acceptable, based on the empirical cumulative
distribution function (ECDF) derived from the largest vertical

difference between the extracted (observed K-S value) and the
table value (Botha et al. 2007; Mzezewa et al. 2010; MATL
AB Central 2013). Frequency analyses of meteorological data
require that the time series be homogenous in order to gain in-
depth and representative understanding of the trends over time
(Raes et al. 2006). Often, non-homogeneity and lack of expo-
nential distributions between data sets indicate gradual chang-
es in the natural environment (thus trigger variability) which
corresponds to changes in agricultural production (Huff and
Changnon 1973; Bayazit 1981).

Fig. 2 Flow chart showing
stepwise interpolation and data
reconstruction analyses (Adopted
from ESRI 2010)

Table 2 Mean, standard deviation and R2 values for the rainfall dailies
from study stations for the period between 2001 and 2013

Station Season Transformation NIL
values

Mean Standard
deviation
(SD)

R2

(%)

Embu LR Log10 0 3.2 0.9 94

SR Log10 0 2.7 0.1 92

Machang’a LR Log10 0 2.4 0.4 96

SR Log10 0 2.6 0.2 94

Kiritiri LR Log10 0 2.6 0.3 94

SR Log10 0 2.9 0.1 92

Kindaruma LR Log10 0 2.2 0.9 88

SR Log10 0 2.2 0.3 92

Kiambere LR Log10 0 2.2 0.8 90

SR Log10 0 2.4 0.4 96

SD standard deviation, LR long rains, SR short rains

M.O. Kisaka et al.



3.2 Probabilities of rainfall exceedance, return periods
and amounts

Results showed that there was at least 90 % chance of rainfall
exceeding 141.5 mm (lowest) and 258.1 mm (highest) during
LRs in Machang’a and Embu, respectively, within a return
period of about 1 year (Tables 4 and 5). Nonetheless, there
were observably low probabilities (10 %) that rains would
exceed 449.8 and 763.0 mm during LR seasons in Machang’a
and Embu, respectively, for a 10-year return period (Table 4).

Conversely, probabilities of monthly rainfall during
cropping seasons exceeding cropping threshold were equally
low, e.g. 5 % probability to exceed 419 mm in April and
331 mm in November (Table 5).

A study byMzezewa et al. (2010) established that seasonal
rainfall amount greater than 450mm is indicative of a success-
ful growing season and described it as a threshold rainfall
amount. During this study, the probabilities that seasonal rain-
fall would exceed this threshold were quite low (at most 30 %
for a return period of 3.33 years). Embu, being much wetter,
would probably (50 %) receive above threshold rainfall
amount (506.8 mm) after every 2 years (Tables 4 and 5).
Mzezewa et al. (2010) observed 47 % chance of seasonal
rainfall exceeding 580 mm but 0 % (no increase) of exceeding
total annual rainfall for a 5-year return period in the semi-arid
ecotope of Limpopo South Africa.

3.3 Variability and anomalies in seasonal rainfall amount

There was notable high inter-seasonal variability and temporal
anomalies in rainfall between 2001 and 2013. Results showed
neither station nor season with persistent near average (RAI=
0) rainfall especially from stations in the sub-humid region.
For instance, in Machang’a, the wettest LRs were recorded in
2010 (RAI=+4) while wettest SRs were recorded in 2001

(RAI=+4), 2006 (RAI=+3.8) and 2011 (RAI=+4) (Fig. 4).
In Embu, the highest positive anomalies (+5.0) were recorded
in 2002, 2005 and 2007 during LRs (Fig. 4). Noticeably,
Embu appeared to be receiving more near average rainfall
during SRs (2002, 2003, 2007 and 2011) contrary to the trends
observed in Mbeere region (Fig. 4). Variability in rainfall was
generally low in Kiritiri.

Generally, stations in sub-humid areas of Mbeere sub-
county recorded more negative anomalies in rainfall amount
received compared to Embu. An intra-station seasonal com-
parison showed that SRs in Embu were less variable but more
drier compared to LR seasons. Conversely, SRs in Mbeere
region were wetter than SRs in Embu but more variable in
the former. Assorted studies have cited unpredictability of LR
seasonal rainfall patterns and farmers’ reliance on SRs (e.g.
Cohen 1987; Shisanya 1990; Hutchinson 1996; Recha et al.
2011). According to Shisanya (1990), the failure of the LRs in
1984 in the whole country (Kenya) prompted the Kenyan
government to launch a national relief fund among other re-
sponses. Reducing LRs were also reported by Recha et al.
(2011) while studying rainfall variability in the upper eastern
dry areas (Tunyai and Chiakariga). Akponikpè et al. (2008)
also reported similar trends of high variability (coefficient of
variation (CV)=57 %) in temporal annual rainfall (mono-
modal rainfall between February and September), in the Sahel
region. Conversely, the incumbent study showed that the de-
cade between 2000 to 2013 experienced marked increases in
SRs and a decrease in LRs. Nicholson (2001) and Hulme
(2001) attributed the decrease in LRs to the desiccation (dry-
ing out) of the March-to-August rains in SSA. A study by
Tilahun (2006) based on the cumulative departure index
established that parts of northern and central Ethiopia persis-
tently received below average rainfall for the rains received
between February and August since 1970. While studying
vegetation dynamics based on the normalized difference veg-
etation index (NDVI), Tucker and Anyamba (2005) noted
persistent droughts and unpredictable rainfall patterns marked
by reduction in the NVDI values during LRs for periods ap-
proaching the twenty-first century. On the other hand, it was
apparent that SRs recorded consistent above-average rainfall
during this study, indicating possibilities of a reliable growing
season especially for the drier Machang’a region. In tandem
with this observation, findings by Hansen and Indeje (2004)
and Amissah-Arthur et al. (2002) observed that SRs constitut-
ed the main growing season in the drier parts of SSA and
Great Horne of Africa for crops such asmaize, sorghum, green
grams and finger millet. Ovuka and Lindqvist (2000) further
observed an increasing SR amounts for the period 1963–1976
in Murang’a, sub-county, of central Kenya. Generally, high
variability (often attributed to La Niña, El Niño and sea sur-
face temperatures) could occasion rainfall failures leading to
declines in total seasonal rainfall in the study area. According
to Shisanya (1990), La Niña events significantly contributed

Table 3 Homogeneity test for the rainfall dailies from study stations for
the period between 2000 and 2013

Station Season Transformation N K-S value K-S table value

Embu LR Log10 13 0.2330 0.302*

SR Log10 13 0.1722 0.302*

Machang’a LR Log10 13 0.1479 0.302*

SR Log10 13 0.19 0.302*

Kiritiri LR Log10 13 0.231 0.302*

SR Log10 13 0.221 0.302*

Kindaruma LR Log10 13 0.165 0.302*

SR Log10 13 0.066 0.302*

Kiambere LR Log10 13 0.127 0.302*

SR Log10 13 0.179 0.302*

K-S Kolmogorov-Smirnov; (K-S=0.302* exponential distribution ap-
plies and accepted)

Potential of deterministic and geostatistical rainfall



to the occurrence of persistent droughts and unpredictable
weather patterns during LRs in Kenya. In contrast, El Niño
events (of 1997 and 1998) have been cited as the key inputs of
the positive anomalies in SR seasonal rainfall in the ASALs of
Eastern Kenya (Anyamba et al. 2001; Amissah-Arthur et al.
2002).

3.4 Variations in rainfall amounts and number of rainy days

On average, the total amount of rainfall received in all stations
was below 900 mm (sub-humid stations) and 1400 mm
(humid) per annum. Yet, LRs contributed 314.9 and
586.3 mm while SRs contributed 438.7 and 479.1 mm

(Table 6) translating to a total of 754 and 1084mm of seasonal
rainfall in the respective station (Table 6).

These account for close to 90 % of total rainfall received
annually, implying that smaller proportions of rainy days sup-
plied much of the total amounts of rainfall received in the
region. Evaluation of variability based on CV in RA and num-
ber of RDs showed that most stations received highly variable
rainfall. It has been shown that a CV greater than 30 % in
rainfall data series indicate massive variability in rainfall
amounts and distributional patterns (Araya and Stroosnijder
2011). In Machang’a and Kiritiri, rainfall amounts during LRs
were highly variable (CV=0.41 and 0.39, respectively) than
those in Embu (CV=0.36). Variability was equally high in the
number of RDs, e.g. CV=0.51, in Kiritiri. Results also
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Fig. 3 Rescaled cumulative deviations for seasonal months and studied rainfall stations for the period between 2000 and 2013
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showed that LR and SR amounts were not significantly dif-
ferent from each other in most stations of Mbeere region but
different in Embu (Table 6). Lack of notable significance in
intra-seasonal rainfall amounts in the drier parts of Kenya
(represented by Machang’a in this study) were also reported
by Recha et al. (2011) while studying rainfall variability in the
upper eastern dry areas (Tunyai and Chiakariga). These results
indicate high variability of rainfall received across all AEZs in
the study area, further evidenced by massive rainfall anoma-
lies reported earlier by this study. Regionally, findings of
Seleshi and Zanke (2004) further showed that annual and sea-
sonal rainfall (Kiremt and Belg seasons) in Ethiopia were
highly variable with CV values ranging between 0.10 and
0.50.

3.5 Monthly variations in seasonal rainfall amounts
and number of rainy days

Results showed that rainfall amounts received within seasonal
months (March-April-May LRs and October-November-
December SRs) were highly variable (all with CV>0.3).

Notably, CV-RA were quite high during the months of
March (CV-RA=0.98) and December (CV-RA=0.86) in
Machang’a and CV-RA=0.61 March) (and CV-RA=0.97
(December) in Embu (Table 7). CV-RD for each seasonal
month was equally high in the two study stations. For in-
stance, March (CV-RD=0.61 and CV-RD=0.47) and Decem-
ber (CV-RD=0.34 and CV-RD=83) had the highest variabil-
ity in the number of rainy days in Machang’a and Embu,
respectively (Table 7).

Generally, onset months (March and October) and cessa-
tion months (May and December) received highly variable
rainfall amounts compared to mid-seasonal months. Notably,
Machang’a, though, being more of an arid region, it generally
recorded lower variability in number of rainy days during SR
seasonal months compared to those recorded at Embu during
the same season, evidence of reduced variability and wetting
of SRs in the region. In addition, it was evident that the
amount of rainfall and number of rainy days received in the
past decade in most stations were more consistent
(temporally) in April and November but highly unpredictable
in March (onset) and December (cessation). This significantly
affects the cropping calendar in rain-fed agricultural produc-
tivity of the region. Nonetheless, lower values of CV-RDs
indicated that variations in rainy days were fairly consistent
compared to variations in rainfall amounts received. It would
also appear that most stations in Mbeere region received more
rainfall during SR season with November alone accounting
for about 60% of total seasonal rainfall amount receivedwhile
April accounts for 51 % of the LR rainfall in the case of
Machang’a. Conversely, Embu received more rainfall during
LRs with April accounting for about 52 % of total rainfall
received. These trends indicate that SR seasons would be re-
ceiving more rainfall amounts than LRs in the region, a trend
acknowledged by most (67.3 %) smallholder farmers in SSA
Amissah-Arthur et al. (2002) and Barron et al. (2003). Trends

Table 4 Probability of rainfall exceedance and return periods for the LRs and SRs in the study area

Exceedance (%) Return (P) Magnitude of anticipated rainfall (mm)

Embu Machang’a Kiritiri Kindaruma Kiambere

LR SR LR SR LR SR LR SR LR SR

10 10 994.7 628.8 449.8* 763 465.8* 831.7 507.8 773.7 541.8 907.7

20 5 788.9 541.2 381.4 613.1 398.2 625.9 420.2* 617.9 454.2* 701.9

30 3.33 667.5 485.7 338.7 523.7 372.7 584.5 364.7 516.5 398.7 580.5

40 2.5 578.8 442.9 306 457.7 379.9 515.8 321.9 427.8* 355.9 491.8

50 2 506.8 406.3* 278.2 403.6* 343.3 443.8* 285.3 385.8 319.3 419.8*

60 1.67 443.5* 372.8 253.2 356 269.8 380.5 251.8 322.5 285.8 356.5

70 1.43 384.5 339.9 222.8 311.1 276.9 321.5 218.9 263.5 252.9 297.5

80 1.25 325.4 305.0 203.1 265.7 142 262.4 184 204.4 218 238.4

90 1.11 258.1 262.5 172.2 213.5 199.5 195.1 141.5 137.1 175.5 171.1

Exceedance (%) probability of exceedance (%), Return (P) return period (years), *seasonal rainfall exceeding cropping threshold

Table 5 Probability of average seasonal months’ rainfall exceedance
and return periods for the LRs and SRs in Mbeere sub-county

Exceedance (%) Return (P) Seasonal months

Mar Apr May Oct Nov Dec

20 5 164 419 253 258 331 117

40 2.5 118 330 181 179 264 74

50 2 100 295 154 149 237 59

60 1.67 84 262 129 122 212 45

80 1.25 50 193 79 70 159 18

Exceedance (%) probability of exceedance (%), Return (P) return period (years)
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of high variability in seasonal monthly rainfall reported by
this study have also been cited by Mzezewa et al. (2010)
who reported high coefficient of variation for seasonal
(315 %) and annual (50–114 %) rainfall in semi-arid
Ecotope, north-east of South Africa. Mutai et al. (1998)
observed high SR variability in Machakos Kenya, while
Phillips and McIntyre (2000) reported low inter-annual
variability during LRs attributing this to its insignificant
relationship with ENSO. The ENSO is the most dominant
perturbation responsible for inter-annual climate variabili-
ty, especially SRs over eastern and southern Africa.
Additionally, Sivakumar (1991) found that annual rainfall
in the Sudano-Sahelian zone of West Africa was less var-
iable (0.36) than monthly (0.54) rainfall.

3.6 Droughts and dry spell characterization

Results showed that the probability of occurrence of dry
spells of various durations varied from month to month of

Fig. 4 Decadal rainfall anomaly index for both LR_MAM and SR_OND in Embu, Machang’a and Kiritiri; RAI rainfall anomaly index

Table 6 Variability analyses: coefficient of variations in seasonal
rainfall amounts and number of rainy days in the study stations for the
period between 2000 and 2013

Station Season RA CV_RA RD CV_RD

Embu LR_MAM 586.3a 0.36 46a 0.09

SR_OND 457.2b 0.38 40a 0.27

Machang’a LR_MAM 314.9b 0.41 24b 0.26

SR_OND 458.7b 0.56 53c 0.88

Kiritiri LR_MAM 343.7b 0.39 24b 0.28

SR_OND 486.5b 0.45 52c 0.51

Kiambere LR_MAM 203.3c 0.29 17d 0.49

SR_OND 285.0d 0.30 37a 0.38

Kindaruma LR_MAM 285.5b 0.47 17d 0.43

SR_OND 316.9b 0.41 34e 0.37

Values connected by the same superscript letters in the RA column denote
no significant difference between the seasonal rainfall amount mean values.
RA rainfall amount in (mm), RD rainy days, CV-RA coefficient of variation
in rainfall amounts, CV-RD coefficient of variation in rainy days
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the growing season. High probabilities of dry spells were
in March (0.72 and 0.55) and December (0.8 and 0.6) in
average sub-humid (Machang’a, Kiritiri) stations and hu-
mid (Embu), respectively (Fig. 5). The probability of hav-
ing a dry spell increased with shorter periods (for in-
stance, more chance of having a 3 than a 10 or 21 days
of dry spell) (Fig. 5).

The probabilities that dry spells would exceed these day
durations were equally high (Fig. 6). There was 70 % chance
that dry spells would exceed 15 days in average Mbeere sta-
tions and 50 % in Embu (Fig. 6).

Dry spells during cropping months are quite common
that often trigger reduced harvests or even complete crop
failures, in the study region. Rainfall being a prime input
and requirement for plant life in rain-fed agriculture, the
occurrence of dry spells has particular relevance to rain-fed
agricultural productivity (Belachew 2000; Rockstrom and
De Rouw 1997). It was observed that lowest probabilities
of occurrence of dry spells of all durations were recorded
in the month of April (during LRs) and November (during
SRs). The occurrence of dry spells of all durations de-
creased from April towards May (LR) and November to-
wards December (SRs). Indeed, the months of April and
December coincides with the peak of rainfall amounts for
both SR and LR growing seasons in the region (Kosgei
2008; Recha et al. 2011). This trend is in line with works
reported by several studies in SSA, including Kosgei
(2008), Aghajani (2007) in Iran and Sivakumar (1991) in
East Africa. Dry spells during SR season in Makindu and
Katumani stations in Kenya’s lower eastern parts recorded
similar trends of high probabilities (averaging 88 %) in
October Mutai et al. (1998). High probabilities of dry spells
occurring and exceeding the same durations show the high
risks and vulnerability that rain-fed smallholder farmers are
predisposed to in the study area. Often, prolonged dry spells
are accompanied by poor distribution and low soil moisture
for the plant growth during the growing season. General
high probabilities of persistent dry spells in SSA have been
reported by Hulme (2001), Dai et al. (2004) and Mzezewa
et al. (2010). This could be attributed to the persistence of
intermediate warming scenarios in parts of equatorial East
Africa (Hulme 2001; Mzezewa et al. 2010). Prolonged dry
spells during cropping seasons directly impacts on the per-
formance of crop production. For instance, high evapora-
tive demand indicated by high aridity index (P>0.52) in the
drier parts of Eastern Kenya implies that rainwater is not
available for crop use and cannot meet the evaporative de-
mands (Kimani et al. 2003). Thus, deficit is likely to prevail
throughout the rain seasons as observed in other SSA

Table 7 Variability in rainfall amounts and number of rainy days
during seasonal months for studied stations for the period between 2000
and 2013

Parameter Mar April May Oct Nov Dec

Embu

RA (mm) 110.1 300.8 175.6 175.1 250.3 71.8

CV-RA 0.61 0.48 0.54 0.66 0.43 0.97

RD 20 14 12 10 13 17

CV-RD 0.47 0.27 0.27 0.59 0.25 0.83

Machang’a

RA (mm) 85.5 160.2 69.2 98.9 267.9 72

CV-RA 0.98 0.42 0.69 0.8 0.77 0.86

RD 8 11 5 14 29 10

CV-RD 0.61 0.22 0.61 0.35 0.23 0.34

Kiritiri

RA (mm) 88.7 167.1 87.9 110.4 274.3 101.8

CV-RA 0.61 0.48 0.54 0.66 0.43 0.97

RD 7 14 3 12 24 16

CV-RD 0.47 0.27 0.27 0.59 0.25 0.83

Kiambere

RA (mm) 41.8 97.8 63.8 45 147 93

CV-RA 0.88 0.46 0.59 0.83 0.67 0.81

RD 3 12 2 11 17 9

CV-RD 0.51 0.2 0.53 0.31 0.23 0.4

Kindaruma

RA (mm) 59.5 119.5 86.5 48.6 165.6 102.6

CV-RA 0.46 0.31 0.37 0.59 0.29 0.84

RD 2 12 3 9 18 7

CV-RD 0.62 0.48 0.52 0.46 0.36 0.84

RA (mm) rainfall amount in millimetres, CV-RA coefficient of variation in
rainfall amounts, RD number of rainy days, CV-RD coefficient of varia-
tion in rainy days

Fig. 5 Probability of a dry spell
of length≥n days, for n=3, 5, 7,
15 and 21, in each seasonal-
cropping month, based on raw
rainfall data from 2000 to 2013
for studied humid and sub-humid
stations
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regions (Li et al. 2003). Run-off collection and general con-
finement of rainwater within the crop’s rooting zone could

enhance rainwater use efficiency as demonstrated by Botha
et al. (2007).

Fig. 6 Probability of dry spells
exceeding the n (3, 5, 7, 10, 15
and 21) days for each seasonal
month calculated using the raw
rainfall data from 2000 to 2013
for studied humid and sub-humid
stations

Fig. 7 Annual rainfall maps of observed and those of reconstructed rainfall using IWM, kriging and spline interpolation techniques
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3.7 Spatial average rainfall interpolations (ArcGIS spatial
analyst application)

Performance of the different interpolation techniques was
varied. Kriging and spline techniques reported more repre-
sentative values of observed rainfall when compared to the
IDW method. Generally, kriging spatial interpolation capa-
bility for rainfall amounts was found to be high (predicting
670–742 mm for observed 800 mm) (Fig. 6). Evidently,
lower eastern parts of the region received low rainfall
amounts as interpolated across all the test methods (rang-
ing from 229 to 397 mm), adequately replicating trends of
the actual observed rainfall. Trends of the region receiving
high rainfall at Siakago (1200 mm p.a.) were adequately
predicted in kriging and IDW when compared to spline
prediction (Fig. 7).

Evaluation of the mean absolute error (MAE) and root
mean square error (RMSE) between reconstructed interpolat-
ed) and observed rainfall data further showed that the kriging
method (MAE=147 mm and RMSE=176.5 mm) would be
the best-bet technique to adopt for rainfall interpolation for the
region (Table 8).

Interpolations under IDW method was generally unsatis-
factory (R2=0.04) when compared to the spline (R2=0.23)
and kriging (R2=0.67) interpolation method.

Figure 8 show the scatter plots of recorded versus predicted
(interpolated) decadal average rainfall across the study sta-
tions based on kriging interpolation technique.

A comparison of the predicted and recorded rainfall
amounts showed further best-fit performance of the kriging
interpolation technique in ArcGIS. Predictions in
Machang’a recorded high values of best-fit (R2=0.92)
compared to Embu (R2=0.76) which could be attributed
to high missing data in the raw rainfall dailies in the latter
station (Fig. 8).

Assorted arguments regarding the varied performances of
the different interpolation techniques could explain the results
of this study. Both the IDWand spline methods are determin-
istic methods since their predictions are directly based on the
surrounding measured values or on specified mathematical
formulas (Burroughs and McDonald 1998). On the other
hand, kriging is a geostatistical method, which is based
on statistical models that include autocorrelation, which
underpins the statistical relationships among the mea-
sured and predicted data points (Heine 1986). Better
prediction of the kriging method established in this
study could be attributed to its capability of producing
a prediction surface, thus providing a measure of the
certainty or accuracy of the predictions. In this study,
the resultant patterns of spatial distribution for each map
were an outcome of the generated patterns from the
mapping of the index value (the mean annual precipita-
tion) and as influenced by the spatial local conditions

(elevation) including the non-existence of altitudinal
variability of the parameters of the distribution function
and the interpolation methods used. Statistically, the spatial
distribution of quantiles is theoretically better underpinned in
kriging method than in the other methods tested. For this
study, kriging was extended by the regional regression for
each index value for areas whose terrain or other controls
could have contributed to the spatial variability of the trends,
explaining its better predictability.

Table 8 Mean absolute error, RMSE andR2 values for the interpolation
produced from validation of IDW, kriging and spline methods

IDW Kriging Spline

Machang’a

Average P (O) 391.3 (781) 507.6 (781) 499.4 (781)

SD 115.5 137.5 106.7

MAE 276.7 147.6 248.6

RMSE (mm) 294.7 176.5 264.7

R2 0.04 0.67 0.23

Pe (±%) 0.51 0.33 0.47

Embu

Average P (O) 706 (1210) 900 (1210) 811 (1210)

SD 252 155 199.5

MAE −252 −155 −119.5
RMSE (mm) 63504 24025 39800

R2 0.43 0.71 0.38

Pe (±%) 0.416 0.256 0.33

Kiritiri

Average P (O) 497 (943) 742 (943) 669 (943)

SD 218.5 96 132.5

MAE −218.5 −96 −132.5
RMSE (mm) 47,742 9216 17,556

R2 0.11 0.58 0.32

Pe (±%) 0.468 0.206 0.284

Kiambere

Average P (O) 551 (1041) 749 (1041) 509 (1041)

SD 245 146 266

MAE −245 −146 −266
RMSE (mm) 60025 21316 70756

R2 0.39 0.65 0.42

Pe (±%) −0.4707 −0.2805 −0.51105
Kindaruma

Average P (O) 369 (654) 589 (654) 467 (654)

SD 147 32.25 93.5

MAE −147 −32.25 −93.5
RMSE (mm) 21,609 1040.063 8742.25

R2 0.44 0.79 0.63

Pe (±%) −0.44954 −0.09862 −0.28593

P predicted precipitation, O observed precipitation, SD standard devia-
tion, MAE mean absolute error, RMSE root mean square error, IDW in-
verse weighted mean
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4 Conclusion and recommendations

Results showed that available rainfall data series from study
station are homogenous, thus records of same population. Be-
fore frequency analysis of the rainfall data is done, various
transformations are essential for the data to follow particular
probability distribution patters. Weibull method for estimating
probabilities and MOM parameter estimation methods proved
to be sufficient for the task, in evaluating data series homoge-
neity and frequency. Decadal rainfall trends showed that both
LRs and average annual rainfall have decreased in the past
13 years in the region. Mbeere region appeared to have

experienced pronounced declines in rainfall amounts especial-
ly those received during LRs. Nonetheless, rainfall amount
during SRs markedly increased in most study stations, with
high amount gains established in the Mbeere stations. Evi-
dently, probabilities that seasonal rainfall amounts would ex-
ceed the threshold for cropping (500–800 mm) were quite low
(10 %) in all stations. The amount of rainfall received during
LRs and SRs varied significantly in Embu but not in
Machang’a. There was evidence of increasing rainfall vari-
ability from Embu station towards Mbeere stations to as high
as CV=0.88 in Machang’a. Probabilities that the region
would experience dry spells exceeding 15 days during a

Fig. 8 Comparison between recorded and ArCGIS kriging predicted average decadal rainfall amount across study stations. Error bars denote standard
deviation of observed means, n=13
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cropping season were equally high, e.g. 46 % in Embu and
87 % in Machang’a. This replicates high chances that soil
moisture could be lost by evaporation bearing inmind the high
chances (81 %) the same dry spells exceeding 15 days could
reoccur during the cropping season. On the other hand,
kriging technique was identified as the most appropriate
(R2=0.67). Geostatistical interpolation techniques that can
be used in spatial and temporal rainfall data reconstruction
in the region. Based on these findings, it is apparent that
farmers in the lower eastern Mbeere region be encouraged to
intensify cropping during SRs as compared to LRs. It is equal-
ly important that they schedule supplementary irrigation, only
based on timely, regular and accurate dissemination daily
monthly and seasonal forecasts by the Kenya Meteorological
Department. High rainfall variability and chances of
prolonged dry spells established in this study also demands
that farmers ought to keenly select crop varieties and types
that are more drought resistant (sorghum andmillet) other than
commonmaize cropping. For instance, probabilities of having
dry spells exceeding 15 days is relatively high (63, 80 and
57 % for Machang’a, Kiritiri and Embu, respectively) during
both SR and LR seasons. In this regard, the choice of crop
variety and type should be based on the degree of its tolerance
to drought. These decisions can be optimized if the probability
of dry spells is computed after successful (effective) planting
dates. There is need for establishing further precise, timely
weather forecasting mechanisms and communication systems
to guide on seasonal farming. In most arid and semi-arid re-
gions, soil moisture availability is primarily dictated by the
extent and persistency of dry spells. It is thus essential to
match the crop phenology with dry spell length-based days
after sowing to meet the crop water demands during the sen-
sitive stages of crop growth. Knowledge of lengths of dry
spells and the probability of their occurrence can also aid in
planning for supplementary risk aversion strategies through
prediction of high water demand spells.
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