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1. Introduction 
Pneumonia is an infection of the lungs that is caused by bacteria, viruses, fungi, or parasites which is 

characterized primarily by inflammation of the alveoli in the lungs or by alveoli that are  filled with fluid. Bacteria 

and viruses are the primary causes of pneumonia. When a person breath pneumonia-causing pathogens into his lungs  

and the body’s immune system cannot prevent entry, the organisms settle in the small air sacs called alveoli and 

continue to multiply. The host body sends white blood cells to attack the infection causing the sacs to be filed with 

fluid and pus-causing pneumonia. The people most susceptible to Pneumonia are the  old, infants, the sick and those 

with  impaired immune systems [1].  

According to WHO, childhood pneumonia can be spread through inhaling viruses and bacteria, air-borne 

droplets from a cough or sneeze, direct contact or  through blood, especially during and shortly after birth. 

Pneumonia symptoms include cough, custy or green mucus coughed up from lungs, fever, fast breathing and 

shortness of breath, chills, chest pain that usually worsens when taking a deep breath , fast heartbeat, fatigue and 

feeling very weak, nausea and vomiting, diarrhea, sweating, headache, muscle pain, confusion or delirium and dusky 

or purplish skin color (cyanosis) from poorly oxygenated blood [2-4].    

Childhood pneumonia is a major public health issue for Kenya. In 2008, joint report by Unicef and WHO 

pneumonia was described as ‘forgotten killer of children’ because it was the second cause of death among less than 

fives years, claiming equivalent to 16 % of child mortality in Kenya. According to WHO, Pneumonia can be 

This paper presents a deterministic model for pneumonia transmission and uses the 

model to assess the potential impact of therapy. The model is based on the Susceptible-

Infected-Treatment-Susceptible compartmental structure with the possibility of infected 

individual recovering from natural immunity. Important epidemiological thresholds such 

as the basic and control reproduction numbers ( 𝑅𝑜and 𝑅𝑐  respectively) and a measure of 

treatment impact are derived. Infection free point was found to be locally stable but 

globally unstable. We found that if the control reproduction number is greater than unity, 

then there is a unique endemic equilibrium point and it is less than unity, the endemic 

equilibrium point is globally asymptotically stable, and pneumonia will be eliminated. 

Numerical simulations using Matlab software suggest that, besides the parameters that 

determine the basic reproduction number, natural immunity plays an important role in 

pneumonia transmissions and magnitude of the public health impact of therapy. Further, 

treatment regimens with better efficacy holds great promise for lowering the public 

health burden of pneumonia disease. 
 

Keywords: Basic reproduction number, Control reproduction number, Infection free point, Endemic 

equilibrium point, Local and global stability of equilibrium points. 

Contribution/ Originality 

This study contributes in the existing literature by considering places where no studies have been 

done on types of pneumonia available in the population.This study uses new estimation methodology of 

determining initial conditions. This study originates new formula for determining dynamics of childhood 

pneumonia.This study is one of very few studies which have investigated possibility of infection during 

treatment with different strains especially where isolation of Pneumonia is not done before treatment.The 

paper contributes the first logical analysis of the model and validation through simulation. The paper's 

primary contribution is finding that boosting natural immunity and treatment are important intervention 

strategy of childhood Pneumonia.This study documents policy recommendation and recommendation for 

further research. 
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prevented by immunization, proper nutrition and by addressing environmental factors. Previous mathematical 

modeling studies on pneumonia use numerical simulation models rather than mathematical analysis. Moreover most 

of the models concentrate on bacterial pneumonia, antibiotic resistance and vaccination.  

Huang, et al. [4] considered a pneumococcal transmission model which takes into account the risk of higher rates 

of transmission for children who attend child-care centres. Children are assumed to be able to carry only one 

serotype in a closed community. The results stress the importance of child-care centres in transmission.  

Lipsitch, et al. [5] studied the issue of coexistence of pneumonia serotypes in a population and stressed  the 

importance of correctly modeling the possibility of a host being able to become simultaneously invaded by more than 

one strain, taking into account difficulties in obtaining a second strain if already colonized and considering acquired 

immunity of new strains.   

Otieno, et al. [6] considered bacterial pneumonia with possibility of carriers, temporal immunity and treatment. 

The results stressed importance of treatment and quarantine where possible. 

This paper considers the weak nature of a child’s immune system which is vulnerable to different types of 

pneumonia as long as they coexist in population. It also considers the effects of treatments and the likelihood of 

wrong treatment due to similar symptom. It stresses treatment above critical point and boosting of natural immunity  

to completely eradicate childhood pneumonia.  

 

2. Model Development 
The model is formulated as follows, P (t) be the total population density which is divided into three sub-classes: 

the susceptible class S(t), the infective class I(t) and class under treatment T(t). With pneumonia infective children 

can become susceptible again after treatment. γ is recovery rate, the recruitment rate of the Susceptible class is  , 

death due to disease occur at a rate α in infectious class, μ is the natural death rate,    and    are infection rates in 

infectious class and treatment class respectively, Ψ is death rate due to disease during treatment, ф is the rate of 

treatment for children  and τ is the rate of recovery from infectious state through natural immunity. Pneumonia 

infection occurs when susceptible individuals come into contact with infected individuals and/or those under 

treatment.        is force of  infection (number of individuals who become infected per unit of time) 

              

        since treatment reduces significantly level of infectiousness of an individual after contact and health 

officers are likely to create awareness on how to handle  patients after visiting Health centers hence reducing the 

level of infectivity.    

       since the level of recovery after treatment is higher than natural immunity. 

    since treatment reduces likelihood of dying significantly. 

We obtain the following systems of equations 

 
  

  
      μ        ,                                                                                    (1) 

  

  
         ,                                                                                                             (2) 

  

  
         ,                                                                                                                                                               (3) 

where, 

                                                                    , 

                                                                   , 

                      
 

3. Model Analysis 
3.1. Positivity and Boundness of the Solutions 
Theorem 1. 

 The region R given by 

  {[              ]    
                                

 

 
} 

is positively invariant and attracting with respect to  the system of equations (1) - (3). 

Proof  

 Let (S, I, T) be any solution of the system with non –negative initial conditions From equation (1), 
  

  
          γ        

the right hand side of above equation is a first order linear equation in S, it follows that                  
 

  
[      ∫ {        }  

 
 ]   ,since        ∫  {        }   

 
   is a non negative function of t, thus S(t) stays positive. 

From equation (2), 
  

  
        , 

This implies 
  

  
       , 

  

 
        , 

             , 

where C is constant of integration, applying initial condition at t = 0,  

      , 
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                  , 

  it implies that 

                    . 

Also from equation 
  

  
         

        , 

it follows that 

                           . 

For boundedness of solution we take the time derivative of our total population along its solution to obtain: 
  

  
 

  

  
 

  

  
 

  

  
      μ  γ  τ        μ  α  τ      –         Ψ , 

   μ        α  Ψ    μ  α    , 

now, 

  

  
  μ    α  Ψ   

   

so that  

                     
 

μ
       μ ) 

where is a constant of integration 

   
   

     
 

μ
 

This proves the boundedness of the solutions inside R. This implies that all solutions of the  system (1) - (3) 

starting in R remain in R for all time      . Thus R is positively invariant and attracting and hence it is sufficient to 

consider the dynamics of our system in R [7, 8]. 

 

3.2. Equilibrium Points and Reproduction Number 
3.2.1. Disease-Free Equilibrium Point (DFE) 

The disease-free equilibrium point (DFE) of the system (1) - (3), is obtained by setting all  the infectious classes 

and treatment classes to zero. We get 

  μ     

         which yields  

    
 

 
 

The DFE point for our system is given by,                                  

                  
 

 
     

 
 

3.2.2. The Basic Reproduction Number Ro and Control Reproduction Number RC 
We use the next-generation matrix method to determine the basic reproduction number, R0, and control 

reproduction number Rc of the model [6-10]. Using the notation ƒ for a matrix of new infections terms and  for the   ކ 

matrix of the remaining transfer terms in our system, we get, 

   (
  
 

ކ  , (  (
   

       
). 

Let                                       . 

We obtain the matrices F and V by finding the Jacobian matrices of ƒ and ކ evaluated at DFE point respectively 

to obtain. 

  (

       

  

       

  

       

  

       

  

)  ,    (

       

  

       

  

       

  

       

  

)   , 

This yield 

  (        

  
)    (

   
    

) 

    
 

    
(
   
   

)  ,      (
{        }  

    

    

  

  
) 

The basic reproduction number is given by the spectral radius ζ (the dominant eigenvalue) of the matrix FV 
−1

, 

denoted by ζ(FV 
−1

). To obtain the eigenvalues η of      we solve the equation  

            

where H is 2 by 2 identity matrix to obtain 

|
{        }  

    
  

    

  

   
|   , 

   
        

    
   , 
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The eigenvalues are      and     
{        }  

    
 

                 
    

  
 

     

    
 

Rc is control reproduction number with treatment and natural immunity. 

In absence of control measures such as treatment the basic reproduction number Ro is obtained  

By observing that 

         ,               , 

giving the spectral radius of  F   , 

    
    

          
 

 

3.3. Stability Analysis of DFE Point for Pneumonia Model 

3.3.1 Local Stability of the DFE Point 
Theorem 2.  

The DFE of the system (1) - (3) is locally asymptotically stable whenever RC < 1. 

Proof 

Let 

                μ        , 
                                                                     , 
                                                                     

To establish the local stability of E
o
, we use the Jacobian of the model evaluated at E

o
. Stability of this steady 

state is then determined based on the eigenvalues of the corresponding Jacobian which are functions of the model 

parameters. 

       

(

 
 
 
 

       

  

       

  

       

  
       

  

       

  

       

  
       

  

       

  

       

  )

 
 
 
 

 

The Jacobian matrix for system (1) - (3) is given by 

   (

                  
          
     

) 

The Jacobian of the model at E
o
 is: 

        (

                

            

     

) 

Solving the equation 

             , 

Where H is an identity matrix we obtain 

|

                  

              

       

|   , 

 (     |
             

      
|   , 

      , 

                                      
 

        [  
    

  
]          {   

    

  
 

     

    
 }     

        {      ]  
     

    
         {    }     

A general quadratic of form 

         , 

     
 

 
   { 

 

 
    }. 

For negative real part       ,     0, 

     0, 

     . 

this proves theorem 2. 
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3.3.2. Global Stability of the DFE Point 
Theorem 3 

The DFE is globally stable if 
  

    
 

 

  
 

  

 
   [11]. 

 

 

 

Proof 

We propose the following Lyapunov function 

                   
 

  
          

it satisfies  the conditions; 

                             (i) 
                          (ii) 
therefore          is positive definite. 

For  
         

  
  to be negative definite, it must satisfies 

            

  
         (iv) 

         

  
           (v) 

where X and Y are positive constants to be determined. 

At DFE point for our system E
0
= (  ,   ,   )  ,from equation (i) above 

                        
  

  
          

                                                                 

The DFE point for our system                satisfies, 

    
 
      

 
     μ   γ   τ  ,                                                

                                                  μ  . 

Determining the differential of equation (i) 
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   μ  γ         
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    γ 

  

 
   

  

 
   

 
     

 
       

            
Now the positive constants X and Y are chosen such that the coefficients of I       to zero we obtain the 

following equation, 

              , 

        , 

Solving 

  
  

    
 

 

  
,   

 

  
 

Substituting for X and Y in equation (i) we obtain 
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Since, 

γ, τ, ф,   ,   ,S,     0 [11]. 

 

3.4. Existence and Stability Analysis of the Endemic Equilibrium Point (EEP) for the Model 

3.4.1. Existence of Endemic Equilibrium point.   

Let                 represents an arbitrary endemic equilibrium of the model (1) - (3). 

For which at least one of the infected components of the model (1) - (3)  is non-zero).This implies 

              which can be expressed as,  

       
   

   
 

 
                (i) 

be the forces of infection  at steady-state. 

Solving the equations of the model (1)-(3) at steady-state gives: 

   
           

     
,    

  

  
[
           

     
],    

   

    
[
           

     
] 

we obtain  equations (ii) in term of  * 

    
     

                         , 

   
    

                         
 

    
 

    
{
[                          ]               

                         } 

Substituting I* in (i), and simplifying, gives, 

    
         

                          

    ,     
             

           
, 

    
           

     –       
 

                

since  

                                

 

the positive endemic equilibrium of the model  (1) - (3) 

      

Substituting for  * we obtain equations (ii) 

                                                               
 

   
, 

    
         

         –        
, 

    
        

         –        
. 

is the endemic equilibrium point E* [6]. 

 

3.4.2. Local Stability and Global Stability of the Endemic Equilibrium Point 
For system (1) - (3), when RC >1, it has a unique positive EEP. 

Theorem 5 

The EEP is globally asymptotically stable if     . 

Proof 

We propose the following Lyapunov function 

                    
 

     (         
 

  
)             

 

   .  

where C and D are positive constants to be determined. This type of Lyapunov function has been  mentioned in [1]. 

The positive equilibrium E* = (S*, L*,  ) satisfies the following equations. 

   
 
      

 
     μ   γ   τ  , 

                            (               
 
      

 
    , 

                                           ф                . 
We can now write the time derivative of  L as 
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                 Now the positive constants C and D are chosen such that the coefficients of SI, S T, I and 

T are equal to zero, that is, 
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                                                                 ST , 

τ   ф  μ  α  τ   ф                                      I, 

γ                                                                     T. 

Solving the above equations yields 

    ,   
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The lyapunov function becomes 
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since the arithmetic mean is greater than or equal to the geometric mean of the quantities 
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   0,  

   

   
   0 and  

   

   
     

Then 
         

  
 = 0 holds only when S =   , I = I* and T =   : So the maximal compact invariant set in  

{(S; E; I) ∈ ⨅: 
         

  
   } EEP is the only singleton using Lasalle's invariance principle [1, 12].   

         

  
    

If       

 

4. Numerical Simulation 
To observe the dynamics of pneumonia model over time, numerical simulations are done using Matlab software. 

The parameters in table 1 are used in simulation  based on the data of children under five years of age. Some values 
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assigned to the parameters have been derived from epidemiological literature while  others  are estimated. The red 

line represents Infectious children, the blue line represent susceptible children and the black line represent treated 

children. 

The results obtained are shown in figures (1 - 3) after varying parameters τ and ф. 

\  
Figure-1. τ = 0, ф = 0                                    Figure-2. τ = 0.55, ф = 0.3545 

                                   

 
Figure-3. τ = 8, ф = 50 

 

Explanation; 

Figure i; when pneumonia invades the population the number infected increases with time while the number 

susceptible children decreases with time until they reach endemic equilibrium point.  

Figure ii; After intervening with critical treatment and recovery from natural immunity, the the number  

infectious children decreases until it reaches an equilibrium whereby number of infectious children is equal to 

number of treated children. 

  Figure iii; Suggest that any treatment at critical treatment and increase in recovery from natural immunity can 

reduce number of infectious individual to zero. 

 

5. Interpretation of the Model and Biological Implication 
5.1. Local and Global Stability of  Disease Free Equilibrium (DFE) Point and Endemic Equilibrium 

Point (EEP). 
When equilibrium point is locally stable all the point near it tends to move towards it over time. Equilibrium 

point is globally stable if all initial starting conditions lead to it over time.  

DFE point of Model was locally stable; this means that if initial conditions were to start near DFE they would 

move to it over time but they do not always start at neighborhood of DFE point. DFE point of Model was globally 

unstable; this means all initial starting conditions would not lead to it over time hence urgent need of intervention 

because the disease can establish itself by attaining endemic equilibrium point. 

EEP of Model was globally stable if and only if RC < 1 all the point near it tend to move towards it over time, 

this means intervention by policy makers would eradicate pneumonia over time. Our aim is to make EEP unstable so 

that it switches to DFE point; this requires intervention measures like treating disease with high efficacy drugs and 

adequate preventive measures.  

 

5.2. Equilibrium Points and Thresholds 

   
    

          
 

     

                     
 

The treatment threshold is determined by equating RC  to one and solving for   (critical treatment) 
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. 

When actual treatment is greater than critical treatment it can ensure total eradication of pneumonia i.e 

      . 

Also, treatment with sufficient coverage can succeed in eliminating infection when Rc is below unity. Because Rc 

measures the intensity of the epidemic, treatment, by lowering Rc, can have significant public health impact even if it 

fails to eliminate infection in a specific population. 

Following McLean and Blower [10], a measure of treatment impact based on the reproduction numbers can be 

defined as 

        
  

  
, 

   
   

    
, 

   
   

         
.: 

Thus, population-level impact of treatment is always positive provided that effective drugs are used for 

treatment.  

 

5.3. Sensitivity of Effective Control Number RC. 
It can be shown that RC = R0 when ф = 0. As expected, the control reproduction number becomes the basic 

reproduction number in the absence of treatment. It is important to investigate the sensitivity of RC to changes in the 

treatment and natural immunity parameters ф and τ respectively. It can be shown that RC is partly inversely related to 

ф and partly directly and inversely related to ф. 

Since  1>  2, 

    

       
 

     

                
 

Hence when ф increase RC decreases. Thus, differentiating RC with respect to ф yields 

 
   

  
 

    

              
    

                     
 

     

                      , 

  
                          

                       . 

RC is negatively related to ф, therefore, higher treatment rates with drugs with higher and faster recovery rates 

and lower failure rates will decrease the control reproduction number and the intensity of the endemic. 

Likewise, RC is negatively related to τ. This can be shown by partially differentiating Rc with respect to τ yielding 

  
   

  
  

    

              
     

                      , 

   
                   

                      . 

 

As τ increases Rc decreases. We conclude that high immunity level will decrease the control reproduction 

number and the intensity of the endemic. 

 

6. Discussion and Conclusion 
Our main objective in this paper was to provide a general mathematical explanation of  pneumonia transmission 

dynamics, taking into consideration the role of natural immunity and treatment in the transmission. We considered 

the possibility of a child contracting all types of  pneumonia as long as they exist in a population since children who 

are under five years of age have a weak immune system. Poor nutrition and inadequate breastfeeding in developing 

compromises child’s health status making the body vulnerable to pneumonia causing pathogens. 

The model that we have discussed here is based on the initial model that was studied by Otieno, et al. [6]. When 

studying the transmission dynamics of infectious diseases with an objective of suggesting control measures, it is 

important to consider the stability of equilibrium points. In this paper we have established basic reproduction 

number, effective reproduction number, existence and stability of the equilibrium points. Our main results indicate 

that the disease free equilibrium is locally stable but globally  unstable. That means the diseases can invade and 

persist in population if not intervened. The global stability of the endemic equilibrium point is achieved when  

    . This is a clear indication that the control measure for pneumonia through treatment and boosting child’s 

immune system can completely eradicate pneumonia, this would require all infected children to seek proper 

treatment which may not be completely achieved. 

The analytical results from  this paper are in agreement with those of  Matlab numerical simulations. However, 

we need some interesting results in the numerical simulation to quantify recovery from natural immunity which still 

remains a challenge. 
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 Appendix 
Table-1. Summary of model variables and parameters. 

 

 
Table-2. Terminologies in the pneumonia model and their meanings 

Endemic It is long term infection which stays in the population at least 10 to 20 years. 

Susceptible population Proportion of the children population who are free of infection but at risk of contracting the 

infection 

Infectious population Proportion of the children population with the disease causing pathogen and capable of 

transmitting the infection to other children on contact. 

Treated population Proportion of the children population with the disease causing pathogen under treatment 

and capable of transmitting the infection to other children on contact. 

Infectious Disease Diseases where individuals are infected by pathogen micro-organisms, for instance viruses, 

bacteria, fungi or other micro parasites. 

Alveoli Microscopic sacs in the lungs that absorb oxygen. 

Morbidity Impairments as a result of a disease 

Mortality Susceptibility to death 

Pathophysiology Medical displine that converges pathology and physiology 

Virulence The degree of pathogenicity of a microorganism as indicated by the severity of disease 

produced and the ability to invade the tissues of the host. 

 

 
Table-3. Summary of parameters estimation in the model 

Parameters Value Source 

 1 0.22 [4] 

 2 0.176 Estimated 

   P(0) [4] 

  0.0476 to 0.0952 Estimated 

  0.33 [4] 

  0.0002 per day [4] 

Ф 0.3545 Estimated 

Ψ 0.132 Estimated 

  0.0238 to 0.0476 per day [4] 

                                                    2 is estimated as 80% of  1 since  1 >  2, 

  is estimated as 200% range of τ, 
P (0) is estimated as; 

P (0) = S (0) +I(0) +T(0) =20010, 

Where, 
S(0) = 20000, I(0) = 10, T(0) = 0. 

Ψ is estimated as 40% range of α, 

Ф is estimated at   . 

 
Views and opinions expressed in this article are the views and opinions of the authors, Journal of Life Sciences Research shall not be responsible or 

answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content. 

 

Variable Description 

T(t) Population of treated children. 

I(t) Population of Infected children, 

S(t) Population of susceptible children. 

Parameters Description 

 1 Infection rate with infected children 

 2 Infection rate with children under treatment 

  Recruitment rate  

  Recovery rate due to treatment. 

  Rate of death due to disease in the infective class 

  Constant natural death rate  

Ф Treatment Rate of infected children   

Ψ Death rate due to disease in treatment class 

  Recovery rate due to natural immunity 

http://www.ethiopianreview.net/index/

