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Abstract: For a triad of short dipoles (or of small loops), in perpendicular orientation relative to each other but collocated in
space, this study derives a lower bound for their error in direction-of-arrival estimation and polarisation estimation, accounting
for the possibility of failure in any individual dipoles (or loops).

1 Introduction
1.1 Dipole triad and loop triad

A short dipole (a small loop) measures one Cartesian component of
an incident electric (magnetic) field vector. With three such dipoles
(loops) collocated and oriented orthogonally among themselves,
every element of the entire 3 × 1 electric (magnetic) field vector
may be measured distinctly. The collocated orthogonal dipole triad
(a.k.a. a ‘tripole’) has been used in [1–25] for azimuth-elevation
direction-finding, tracking, or polarisation estimation. The dipole
triad has been implemented in hardware [26] and is commercially
available from Winncom Technologies (Solon, OH, USA) for the
5.125–6.1 GHz frequency band.

More precisely, a completely polarised transverse
electromagnetic wave with unit power, having travelled through an
homogeneous isotropic medium, may be characterised in Cartesian
spatial coordinates by its 3 × 1 electric-field vector [27]:

e(θ, ϕ, γ, η) =
ex

ey

ez

=
cos(θ)cos(ϕ) −sin(ϕ)
cos(θ)sin(ϕ) cos(ϕ)

−sin(θ) 0

sin(γ)ejη

cos(γ)
,

(1)

where θ ∈ [0, π] refers to the polar angle measured from the
positive z-axis, ϕ ∈ [0, 2π) denotes the azimuth angle measured
from the positive x-axis, γ ∈ [0, π /2) denotes the auxiliary
polarisation angle, and η ∈ [ − π, π) is the polarisation phase
difference.

The corresponding magnetic field vector equals

h θ, ϕ, γ, η = e θ, ϕ, γ − π
2 , − η ejη, (2)

which represents a duality to the electric-field vector of (1). Hence,
the results derived subsequently for a dipole triad are fully
applicable to a loop triad, by the changing γ and η as indicated in
(2). The collocated orthogonal loop triad has been used in [5, 13,

15, 22, 23, 28] for azimuth-elevation direction-finding, tracking, or
polarisation estimation.

1.2 Approximate lower bound that accounts for antenna
failure

The Cramér–Rao bound (CRB) lower bounds the variance
attainable by any unbiased estimator. For the estimation of the
direction-of-arrival/polarisation of a source impinging upon a
dipole/loop triad, closed-form expressions of the CRB are derived
in [22, 29, 30] explicitly in terms of the signal parameters. The
dipole/loop triad's CRB is plotted (but not stated as any closed-
form mathematical equation) in [5, 8, 10, 12, 21].

A real-world antenna could fail. To account for such a practical
consideration, an approximate lower bound (ALB) is defined in
[31] as a weighted sum of various Cramér–Rao bounds, each
corresponding to a unique subset of all antennas that are
operational.

The summation weights are set equal to the probability of that
subset of antennas alone being operational (This ALB has been
applied to direction finding at a linear array of L number of
uniformly spaced sensors in [31], and at an acoustic vector sensor
in [32].).

The present paper will derive this ALB for the direction-of-
arrival/polarisation estimation of a dipole/loop triad: (see (3)) and
similarly ALB ≥ 2(ϕ), ALB ≥ 2(γ), and ALB ≥ 2(η). In (3), px (py, pz)
denotes the probability that the x-oriented (y-oriented, z-oriented)
antennas could fail. Here, each antenna is assumed to fail
independently of all other antennas. If more than one antenna fails
in the triad, there would be insufficient data for two-dimensional
direction finding or for polarisation estimation.

2 Statistical model of the data
To concentrate on the stochastic breakdown of the antennas, an
uncomplicated model of the incident source and the noise will be
presumed below. For more complicated source/noise situations, the
analytic approach here may be generalised accordingly.

A spatially point-size emitter is fixed in the far field, and emits
a unit power sinusoid signal of s(m) := σsexp j (2πc/λ)Tm + φ  at
the mth time instant, with a known amplitude of σs, a known

ALB ≥ 2(θ): = (1 − px)(1 − py)(1 − pz)CRBx, y, z(θ) + px(1 − py)(1 − pz)CRBy, z(θ)
+(1 − px)py(1 − pz)CRBx, z(θ) + (1 − px)(1 − py)pzCRBx, y(θ), (3)
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wavelength of λ, a known propagation speed c, a known discrete-
time sample period of T, and a known initial phase of φ.

This signal impinges upon a dipole/loop triad located at the
spherical coordinates’ origin. At this triad, the incident signal is
corrupted by an additive noise of n~(m), which is modelled as
Gaussian distributed, zero in mean, with a diagonal spatial
covariance matrix of Γ0 = diag[σn

2 , σn
2 , σn

2], and with a white
temporal self-correlation.

The scalars θ, ϕ, γ, η, and σn are modelled here as deterministic
but a priori unknown. They are grouped together to form the
elements of a vector ξ := [ϕ, θ, γ, η, σn].

At each discrete-time instant m, the triad would collect an L × 1
vector of data:

z~(m) = Je(θ, ϕ, γ, η)s(m) + Jn~(m), (4)

where the L × 3 selection matrix J is defined in Table 1. 
This selection matrix J arises because the triad's constituent

antennas may each either function well or fail, over the entire
temporal duration when data are collected. The receiver would
disregard any output from any inoperational antenna. Table 1 lists
the only seven possible states of the dipole/loop triad. Any two
antennas are modelled here as failing with stochastic independence.
Direction-finding and polarisation estimation would become
infeasible if more than one antenna break down (as in cases #1–#3
in Table 1), but such a scenario would occur very rarely for a well-
designed system and is assumed in the subsequent analysis not to
occur.

If there exist altogether M number of discrete-time samples, the
dataset may be represented as

z: = {z~(1)}T, {z~(2)}T, …, {z~(M)}T T

= s ⊗ e(θ, ϕ, γ, η) + n,
(5)

where s := [s(1), s(2), …, s(M)]T,
n := [{n~(1)}T, {n~(2)}T, …, {n~(M)}T]T, the superscript T denotes
transposition, and ⊗ denotes the Kronecker product.

Direction finding aims to estimate the azimuth arrival angle ϕ
and the polar arrival angle θ, based on the observation z.
Polarisation estimation aims to estimate the polarisation parameters
of γ and η, also based on the observations z.

This paper will derive an ALB for the direction-of-arrival/
polarisation estimation error variance, conditioned on the event that
the whole receiver system remains operational – in other words,
conditional on the event of at least two antennas remain
operational. This event corresponds to the union of Table 1’s cases
#4 to #7.

3 Review of Cramér–Rao bound basics

The CRB lower bounds the variance of the estimation error of any
unbiased estimator.

Consider a general case where the azimuth-polar direction-of-
arrival (ϕ, θ) and the bivariate polarisation (γ, η) are all
deterministically unknown.

Let F(ξ) denote the Fisher information matrix (FIM). Its (k, r)th
entry equals (see (3.8) on page 72 of [33])

F(ξ) k, r = 2Re ∂μ
∂[ξ]k

H
Γ−1 ∂μ

∂[ξ]r
+ Tr Γ−1 ∂Γ

∂[ξ]k
Γ−1 ∂Γ

∂[ξ]r
, (6)

with

μ := E[z] = s ⊗ Je(θ, ϕ, γ, η), (7)

Γ := E (z − μ)(z − μ)H = σn
2 ILM, (8)

where Re{ ⋅ } symbolises the real-value part of the entity inside the
curly brackets, Tr{ } denotes the trace of the entity inside the curly
brackets, the superscript H indicates conjugate transposition, E[ ]
represents the statistical expectation of the entity inside the square
brackets, and ILM refers to an LM × LM identity matrix.

Since μ of (8) is independent of σn, it holds that ∂μ/∂σn = 0,
thereby rendering the last row and the last column to comprise zero
entries only. On the other hand, Γ of (8) is independent of θ, ϕ, γ
and η, it holds that 0 = ∂Γ/∂θ = ∂Γ/∂ϕ = ∂Γ/∂γ = ∂Γ/∂η, thereby
rendering the trace in (6) to equal zero for all entries of F(ξ),
except for F(ξ) 5, 5, which corresponds to only [ξ]5 = σn. These
considerations together give

F(ξ) =

Fϕ, ϕ Fϕ, θ Fϕ, γ Fϕ, η 0
Fϕ, θ Fθ, θ Fθ, γ Fθ, η 0
Fϕ, γ Fθ, γ Fγ, γ Fγ, η 0
Fϕ, η Fθ, η Fγ, η Fη, η 0

0 0 0 0 Fσn, σn

, (9)

where

Fσn, σn
= 4LM

σn
2 .

This block-diagonal form in (9) implies that σn is decoupled from
the other four unknown parameters. Hence, the last row and the last
column of the FIM may henceforth be ignored in the effort to lower
bound the estimation of ϕ, θ, γ, η. That is,

Table 1 Various failure cases for the dipole/loop triad (pℓ defines the probability of the ℓ-oriented antenna breaking down, with
ℓ ∈ {x, y, z}.)
failure case # x-axis antenna functional? y-axis antenna functional? z-axis antenna functional? J Probability
1 √ × × 1 0 0 (1 − px)pypz

2 × √ × 0 1 0 px(1 − py)pz

3 × × √ 0 0 1 pxpy(1 − pz)
4 √ √ × 1 0 0

0 1 0
(1 − px)(1 − py)pz

5 √ × √ 1 0 0
0 0 1

(1 − px)py(1 − pz)

6 × √ √ 0 1 0
0 0 1

px(1 − py)(1 − pz)

7 √ √ √ 1 0 0
0 1 0
0 0 1

(1 − px)(1 − py)(1 − pz)
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CRB(ϕ) ∗ ∗ ∗
∗ CRB(θ) ∗ ∗
∗ ∗ CRB(γ) ∗
∗ ∗ ∗ CRB(η)

=

Fϕ, ϕ Fϕ, θ Fϕ, γ Fϕ, η

Fϕ, θ Fθ, θ Fθ, γ Fθ, η

Fϕ, γ Fθ, γ Fγ, γ Fγ, η

Fϕ, η Fθ, η Fγ, η Fη, η

−1

,

(10)

where * represents elements not of interest to the present
investigation.

For the entries remaining in (10):

F[ξ]k, [ξ]r
= 2

σn
2 Re ∂μ

∂[ξ]k

H ∂μ
∂[ξ]r

,

where

∂μ
∂[ξ]k

H ∂μ
∂[ξ]r

= s ⊗ J ∂e(θ, ϕ, γ, η)
∂[ξ]k

H
s ⊗ J ∂e(θ, ϕ, γ, η)

∂[ξ]r

= sHs
:= σs

2M

⊗ J ∂e(θ, ϕ, γ, η)
∂[ξ]k

H
J ∂e(θ, ϕ, γ, η)

∂[ξ]r

= Mσs
2 J ∂e(θ, ϕ, γ, η)

∂[ξ]k

H
J ∂e(θ, ϕ, γ, η)

∂[ξ]r
.

Hence

F[ξ]k, [ξ]r
= 2M

σs
2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂[ξ]k

H
J ∂e(θ, ϕ, γ, η)

∂[ξ]r
. (11)

The next section will apply (10) and (11) to the various failure
cases in Table 1, to derive the ‘ALB’ of (3).

4 Derivation of the ALB
The following derivation will focus on the dipole triad of (1). The
corresponding loop triad results may be obtained via (2).

4.1 If all three antennas operational

When all three antennas are operational, (11) gives

Fϕ, ϕ = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂ϕ
H

J ∂e(θ, ϕ, γ, η)
∂ϕ

= 2M
σs

2

σn
2 {1 − sin2(θ)sin2(γ)},

Fϕ, θ = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂ϕ
H

J ∂e(θ, ϕ, γ, η)
∂θ

= M
σs

2

σn
2 sin(θ)sin(2γ)cos(η),

Fϕ, γ = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂ϕ
H

J ∂e(θ, ϕ, γ, η)
∂γ

= − 2M
σs

2

σn
2 cos(θ)cos(η),

Fϕ, η = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂ϕ
H

J ∂e(θ, ϕ, γ, η)
∂η

= M
σs

2

σn
2 cos(θ)sin(2γ)sin(η),

Fθ, θ = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂θ
H

J ∂e(θ, ϕ, γ, η)
∂θ

= 2M
σs

2

σn
2 sin2(γ),

Fθ, γ = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂θ
H

J ∂e(θ, ϕ, γ, η)
∂γ

= 0,

Fθ, η = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂θ
H

J ∂e(θ, ϕ, γ, η)
∂η

= 0,

Fγ, γ = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂γ
H

J ∂e(θ, ϕ, γ, η)
∂γ

= 2M
σs

2

σn
2 ,

Fγ, η = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂γ
H

J ∂e(θ, ϕ, γ, η)
∂η

= 0,

Fη, η = 2M
σs

2

σn
2 Re J ∂e(θ, ϕ, γ, η)

∂η
H

J ∂e(θ, ϕ, γ, η)
∂η

= 2M
σs

2

σn
2 sin2(γ) .

The FIM's 4 × 4 leading submatrix of (10) becomes

M
σs

2

σn
2

ℱϕ, ϕ ℱϕ, θ ℱϕ, γ ℱϕ, η

ℱϕ, θ 2sin2(γ) 0 0
ℱϕ, γ 0 2 0
ℱϕ, η 0 0 2sin2(γ)

, (12)

with

ℱϕ, ϕ = 2 1 − sin2(θ)sin2(γ)
ℱϕ, θ = sin(θ)sin(2γ)cos(η)
ℱϕ, γ = − 2cos(θ)cos(η)
ℱϕ, η = cos(θ)sin(2γ)sin(η) .

Using (10), the corresponding Cramér–Rao bounds may be
expressed as

CRBx, y, z(ϕ) = F(ξ) −1
1, 1

= 1
2M

σn
2

σs
2

1
sin2(η){sin2(γ) + sin2(θ)cos(2γ)} ,

(13)

CRBx, y, z(θ) = F(ξ) −1
2, 2

= 1
2M

σn
2

σs
2

sin2(γ)sin2(η)cos2(θ) + cos2(γ)sin2(θ)
sin2(γ)sin2(η){sin2(γ) + sin2(θ)cos(2γ)} ,

(14)
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CRBx, y, z(γ) = F(ξ) −1
3, 3

= 1
2M

σn
2

σs
2

cos2(θ) − sin2(η)cos(2θ)cos2(γ)
sin2(η){sin2(γ) + sin2(θ)cos(2γ)} ,

(15)

CRBx, y, z(η) = F(x) −1
4, 4

= 1
M

σn
2

σs
2

1 − sin2(γ)sin2(θ)
2sin2(γ){sin2(γ) + sin2(θ)cos(2γ)} .

(16)

The above subscripts to CRB indicate the axes along which the
antennas are operational.

4.2 If only the x-oriented antenna fails

When only the antenna along the x-axis is inoperational, the FIM's
4 × 4 leading submatrix of (10) becomes

M
σs

2

σn
2

𝔽ϕ, ϕ 𝔽ϕ, θ 𝔽ϕ, γ 𝔽ϕ, η

𝔽ϕ, θ 𝔽θ, θ 𝔽θ, γ 𝔽θ, η

𝔽ϕ, γ 𝔽θ, γ 𝔽 γ, γ 𝔽 γ, η

𝔽ϕ, η 𝔽θ, η 𝔽 γ, η 𝔽η, η

, (17)

where (see equation below) The corresponding CRB expressions
are (see (18) and (19)) (see (19) and (20)) (see (20)) 

CRBy, z(η) = F(ξ) −1
4, 4

= 1
2M

σn
2

σs
2

1
sin2(γ)sin2(θ) .

(21)

4.3 If only the y-oriented antenna fails

When the antenna along the y-axis is inoperational, the FIM's 4 × 4
leading submatrix of (10) becomes

𝔽ϕ, ϕ = 2cos2(θ)cos2(ϕ)sin2(γ) + 2sin2(ϕ)cos2(γ) − cos(θ)sin(2ϕ)sin(2γ)cos(η),
𝔽ϕ, θ = sin(θ)sin2(ϕ)sin(2γ)cos(η) − 0.5sin(2θ)sin(2ϕ)sin2(γ),
𝔽ϕ, γ = 0.5{1 + cos2(θ)}sin(2ϕ)sin(2γ) − 2cos(θ) sin2(ϕ)cos(2γ) + sin2(γ) cos(η),
𝔽ϕ, η = cos(θ)sin2(ϕ)sin(2γ)sin(η),
𝔽θ, θ = 2{1 − sin2(θ)cos2(ϕ)}sin2(γ),
𝔽θ, γ = 0.5sin(2θ)cos2(ϕ)sin(2γ) + sin(θ)sin(2ϕ)sin2(γ)cos(η),
𝔽θ, η = 0,
𝔽 γ, γ = 2cos2(ϕ)sin2(γ) + 2 1 − cos2(θ)cos2(ϕ) cos2(γ) − cos(θ)sin(2ϕ)sin(2γ)cos(η),
𝔽 γ, η = cos(θ)sin(2ϕ)sin2(γ)sin(η),
𝔽η, η = 2 1 − cos2(θ)cos2(ϕ) sin2(γ) .

CRBy, z(ϕ) = F(ξ) −1
1, 1

= 1
2M

σn
2

σs
2

1
sin2(η)sin2(θ)

cos2(γ){sin2(ϕ) − 0.25cos4(ϕ)sin2(2θ)} − cos2(ϕ)cos2(θ){cos2(ϕ)cos2(θ) − cos(2ϕ)}
+0.25sin2(2ϕ)sin2(γ){cos(2θ)cos2(η) + 1} + 0.5cos(θ)sin(2ϕ)sin(2γ)cos(η){cos2(ϕ)cos2(θ) − 1}

{sin2(γ)[1 − sin2(θ)cos2(ϕ)] − sin2(ϕ)}2 ,

(18)

CRBy, z(θ) = F(ξ) −1
2, 2

= 1
2M

σn
2

σs
2

1
sin2(γ)sin2(η)

cos4(ϕ)cos2(θ)sin2(η) + cos2(γ){cos2(γ)sin2(ϕ) + cos2(ϕ)cos2(θ)[cos(2η) − cos2(ϕ)cos2(θ)sin2(γ)
−cos2(η)(1 + sin2(ϕ))cos2(γ) + 0.5sin(2γ)sin(2ϕ)cos(θ)cos(η)] − 0.5sin(2γ)sin(2ϕ)cos(θ)cos(η)}

{sin2(γ)[1 − sin2(θ)cos2(ϕ)] − sin2(ϕ)}2 ,

(19)

CRBy, z(γ) = F(ξ) −1
3, 3

= 1
2M

σn
2

σs
2

1
sin2(η)sin2(θ)

cos2(γ){sin2(θ) + cos(2θ)sin4(ϕ)cos2(η) + cos2(ϕ)cos2(θ)[sin2(θ) + sin2(ϕ)(1 + sin2(θ))
+cos2(ϕ)cos4(θ)] − [1 + sin2(ϕ)]cos2(ϕ)} + cos2(ϕ)cos4(θ){1 − cos2(ϕ)cos2(θ)}

+0.5cos3(θ)sin(2ϕ)sin(2γ)cos(η){cos2(ϕ)cos2(θ) − 1}
{sin2(γ)[1 − sin2(θ)cos2(ϕ)] − sin2(ϕ)}2 ,

(20)
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M
σs

2

σn
2

𝔉ϕ, ϕ 𝔉ϕ, θ 𝔉ϕ, γ 𝔉ϕ, η

𝔉ϕ, θ 𝔉θ, θ 𝔉θ, γ 𝔉θ, η

𝔉ϕ, γ 𝔉θ, γ 𝔉γ, γ 𝔉γ, η

𝔉ϕ, η 𝔉θ, η 𝔉γ, η 𝔉η, η

, (22)

where (see equation below) The corresponding CRB expressions
are (see (23) and (24)) (see (24) and (25)) (see (25)) 

CRBx, z(η) = F(ξ) −1
4, 4

= 1
2M

σn
2

σs
2

1
sin2(γ)sin2(θ) .

(26)

4.4 If only the z-oriented antenna fails

When the antenna along the z-axis is inoperational, the FIM's 4 × 4
leading submatrix of (10) becomes

M
σs

2

σn
2

ℱϕ, ϕ ℱϕ, θ ℱϕ, γ ℱϕ, η

ℱϕ, θ ℱθ, θ ℱθ, γ ℱθ, η

ℱϕ, γ ℱθ, γ ℱγ, γ ℱγ, η

ℱϕ, η ℱθ, η ℱγ, η ℱη, η

, (27)

where

𝔉ϕ, ϕ = 2cos2(θ)sin2(ϕ)sin2(γ) + 2cos2(ϕ)cos2(γ) + cos(θ)sin(2ϕ)sin(2γ)cos(η),
𝔉ϕ, θ = sin(θ)cos2(ϕ)sin(2γ)cos(η) + 0.5sin(2θ)sin(2ϕ)sin2(γ),
𝔉ϕ, γ = 2cos(θ){sin2(ϕ)cos(2γ) − cos2(γ)}cos(η) − 0.5{1 + cos2(θ)}sin(2ϕ)sin(2γ),
𝔉ϕ, η = cos(θ)cos2(ϕ)sin(2γ)sin(η),
𝔉θ, θ = 2 1 − sin2(θ)sin2(ϕ) sin2(γ),
𝔉θ, γ = 0.5sin(2θ)sin2(ϕ)sin(2γ) − sin(θ)sin(2ϕ)sin2(γ)cos(η),
𝔉θ, η = 0,
𝔉γ, γ = 2sin2(ϕ)sin2(γ) + 2cos2(γ) 1 − cos2(θ)sin2(ϕ) + cos(θ)sin(2ϕ)sin(2γ)cos(η),
𝔉γ, η = − cos(θ)sin(2ϕ)sin2(γ)sin(η),
𝔉η, η = 2 1 − cos2(θ)sin2(ϕ) sin2(γ) .

CRBx, z(ϕ) = F(ξ) −1
1, 1

= 1
2M

σn
2

σs
2

1
sin2(θ)sin2(η)

0.25sin2(2ϕ){1 + cos(2θ)sin2(γ)cos2(η)} + 0.5cos(θ)sin(2ϕ)sin(2γ)cos(η){1 − sin2(ϕ)cos2(θ)}
+0.25sin2(2θ) + cos2(γ){cos4(ϕ) − 0.25sin4(ϕ)sin2(2θ)}

−cos2(ϕ)cos2(θ){sin2(ϕ) + sin2(θ)[sin2(ϕ) + 1]}
{sin2(γ)[1 − sin2(ϕ)sin2(θ)] − cos2(ϕ)}2 ,

(23)

CRBx, z(θ) = F(ξ) −1
2, 2

= 1
2M

σn
2

σs
2

1
sin2(γ)sin2(η)

cos4(γ)cos2(θ)cos2(η){cos4(ϕ) − 1}
+sin4(ϕ)cos2(θ)sin2(η) + 0.5cos(θ)sin(2ϕ)cos2(γ)sin(2γ)cos(η){1 − cos2(θ)sin2(ϕ)}

+cos4(γ){cos2(ϕ) + cos4(θ)sin4(ϕ)} + cos2(γ)cos2(θ)sin2(ϕ){cos(2η) − cos2(θ)sin2(ϕ)}
{sin2(γ)[1 − sin2(ϕ)sin2(θ)] − cos2(ϕ)}2 ,

(24)

CRBx, z(γ) = F(ξ) −1
3, 3

= 1
2M

σn
2

σs
2

1
sin2(θ)sin2(η)

cos2(γ){cos4(ϕ) − cos4(θ)sin2(θ) + cos2(ϕ)cos2(θ)[sin2(ϕ) − sin2(θ)cos2(ϕ) − (1 + sin2(ϕ))cos4(θ)]}
+cos(2θ)cos4(ϕ)cos2(γ)cos2(η) + 0.5cos3(θ)sin(2ϕ)sin(2γ)cos(η){1 − sin2(ϕ)cos2(θ)}

+cos4(θ)sin2(ϕ){1 − cos2(θ)sin2(ϕ)}
{sin2(γ)[1 − sin2(ϕ)sin2(θ)] − cos2(ϕ)}2 ,

(25)
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ℱϕ, ϕ = 2 1 − sin2(θ)sin2(γ) ,
ℱϕ, θ = sin(θ)sin(2γ)cos(η),
ℱϕ, γ = − 2cos(θ)cos(η),
ℱϕ, η = cos(θ)sin(2γ)sin(η),
ℱθ, θ = 2sin2(θ)sin2(γ),
ℱθ, γ = − 0.5sin(2θ)sin(2γ),
ℱθ, η = 0,
ℱγ, γ = 2 1 − sin2(θ)cos2(γ),
ℱγ, η = 0,
ℱη, η = 2cos2(θ)sin2(γ) .

The corresponding CRB expressions are

CRBx, y(ϕ) = F(ξ) −1
1, 1

= 1
2M

σn
2

σs
2

1
cos2(θ)sin2(γ)sin2(η) ,

(28)

(see (29)) 

CRBx, y(γ) = F(ξ) −1
3, 3

= 1
2M

σn
2

σs
2

1
sin2(γ)sin2(η) ,

(30)

CRBx, y(η) = F(ξ) −1
4, 4

= 1
2M

σn
2

σs
2

1 − sin2(γ)sin2(θ)
cos4(θ)sin4(γ) .

(31)

4.5 Approximate lower bound

If the triad has more than one of its constituent-antennas failing,
there would be insufficient data to estimate (ϕ, θ, γ, η). For
example, if two constituent-antennas fail, there would only be one
complex-value scalar time series of observation, but four real-value
parameters in (ϕ, θ, γ, η) to be estimated.

Hence, conditioned on at least two constituent antennas being
operational, the ALB equals (see (32)) where ( ⋅ ) refers to any of
(ϕ), (θ), (γ), and (η). The above numerator's four terms correspond
to cases #4–#7 of Table 1.

ALB ≥ 2( ⋅ ) → CRBx, y, z( ⋅ ) as p f → 0 which is expected since
when the probability of any antenna failure is zero, then the
problem will reduce to the only case where all antennas are
functional.

Fig. 1 shows the four ‘approximate lower bounds’
i . e . ALB ≥ 2(θ), ALB ≥ 2(ϕ), ALB ≥ 2(γ), ALB ≥ 2(η)  at various

values of the failure rate (pf) and at various polarisation states.
There, the impinging signal has its polarisation phase difference (η)

varying from 90° to 0° to −90∘, with the auxiliary polarisation
angle (γ) constant at 45° – i.e. from left circular polarisation, to 45°
linear polarisation, to right circular polarisation. The other
parameters are set at θ = 40∘, ϕ = 30∘, M = 200 snapshots, and
signal-to-noise power ratios (SNR): σs

2/σn
2 = 20 dB. Fig. 1 shows

benchmarks to the engineer in his/her tripole design to meet a
given level of estimation error. In that figure, all four ALB ≥ 2( ⋅ )
clearly increases with an increasing pf, but not linearly so
(ALB ≥ 2(ϕ), ALB ≥ 2(θ), and ALB ≥ 2(γ) → ∞, as η → 0. This is
because of the sin η factor in the denominators of the various CRBs
in Sections 4.1–4.4. This is not caused by pf ≠ 0, but is an inherent
limitation of the tripole as a sensing system.). 

5 Special case of Section 4, now with the incident
signal being left-hand circular polarisation
(η = π /2, γ = π /4)
The preceding Section 4 has derived the ALB for an incident signal
of any azimuth-polar direction-of-arrival (ϕ, θ) and any
polarisation (γ, η). To visualise how each antenna's failure
probability pf may affect the ALB, this section will consider the
special case of the incident signal being left-hand circularly
polarised, i.e. η = π /2 and γ = π /4.

5.1 All three antennas operational

Substituting η = π /2 and γ = π /4 into (13)–(16),

CRBx, y, z(ϕ) = 1
M

σn
2

σs
2 , (33)

CRBx, y, z(θ) = 1
M

σn
2

σs
2 , (34)

CRBx, y, z(γ) = 1
2M

σn
2

σs
2 , (35)

CRBx, y, z(η) = 1
M

σn
2

σs
2 {1 + cos2(θ)} . (36)

For any finite (1/2M)(σn
2 /σs

2), each CRB above must be finite.

5.2 Only antenna along x-axis inoperational

Substituting η = π /2 and γ = π /4 into (18)–(21),

CRBy, z(ϕ)

= 1
M

σn
2

σs
2

cos2(θ){sin2(θ) + sin4(ϕ)} + sin2(ϕ)sin4(θ){1 + cos2(ϕ)}
sin2(θ){sin2(θ)cos2(ϕ) − cos(2ϕ)}2 ,

(37)

CRBx, y(θ) = F(ξ) −1
2, 2

= 2
M

σn
2

σs
2

sin2(η){cos(2θ) + sin2(γ)sin2(θ)} + cos2(γ)sin4(θ)
sin2(2θ)sin4(γ)sin2(η) ,

(29)

ALB ≥ 2( ⋅ ) =
pf(1 − pf)

2 CRBx, y( ⋅ ) + CRBx, z( ⋅ ) + CRBy, z( ⋅ ) + (1 − pf)
3CRBx, y, z( ⋅ )

∑L = 2
3 3

L
(1 − pf)Lpf

3 − L

= (1 + 2pf)(1 − pf)
2

=
pf CRBx, y( ⋅ ) + CRBx, z( ⋅ ) + CRBy, z( ⋅ ) + (1 − p f )CRBx, y, z( ⋅ )

1 + 2pf
,

(32)
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CRBy, z(θ)

= 1
M

σn
2

σs
2

1 − sin4(θ)cos4(ϕ) − 0.25sin2(2ϕ){1 + 2cos2(θ)}
{sin2(θ)cos2(ϕ) − cos(2ϕ)}2 ,

(38)

CRBy, z(γ)

= 1
M

σn
2

σs
2

0.25cos2(θ)cos(2θ)sin2(2ϕ) + sin2(θ){1 − sin2(θ)cos2(ϕ)}2

sin2(θ){sin2(θ)cos2(ϕ) − cos(2ϕ)}2 ,

(39)

CRBy, z(η) = 1
M

σn
2

σs
2

1
sin2(θ) . (40)

The multiplicative factor sin(θ) appears in the denominators of
CRBy, z(ϕ), CRBy, z(γ), and CRBy, z(η) – all of which would
approach ∞ as θ → 0, π.

Moreover, the multiplicative factor sin2(θ)cos2(ϕ) − cos(2ϕ)
appears in the denominators of CRBy, z(ϕ), CRBy, z(θ), and
CRBy, z(γ) – all of which would approach ∞ as
sin2(θ)cos2(ϕ) − cos(2ϕ) → 0.

5.3 Only antenna along y-axis inoperational

Substituting η = π /2 and γ = π /4 into (23)–(26),

CRBx, z(ϕ)

= 1
M

σn
2

σs
2

1 − sin2(ϕ) [1 + cos2(ϕ)]cos2(θ) + sin2(ϕ)sin4(θ)
sin2(θ){sin2(θ)sin2(ϕ) + cos(2ϕ)}2 ,

(41)

CRBx, z(θ)

= 1
M

σn
2

σs
2

1 − sin2(ϕ) sin2(θ)[sin2(θ)sin2(ϕ) − 2cos2(ϕ)] + 3cos2(ϕ)
{sin2(θ)sin2(ϕ) + cos(2ϕ)}2 ,

(42)

(see (43)) 

CRBx, z(η) = 1
M

σn
2

σs
2

1
sin2(θ) . (44)

As in Section 5.2, the multiplicative factor sin(θ) appears here in
the denominators of CRBy, z(ϕ), CRBy, z(γ), and CRBy, z(η) – all of
which would approach ∞ as θ → 0, π.

Fig. 1 
(a) ALB ≥ 2(ϕ), (b) ALB ≥ 2(θ), (c) ALB ≥ 2(γ), (d) ALB ≥ 2(η) – each versus the incident signal's polarisations and versus the dipoles’ failure rate

 

CRBx, z(γ) = 1
M

σn
2

σs
2

0.25sin2(2ϕ){1 − 3sin2(θ)} + sin2(θ) − sin4(θ)sin4(ϕ){1 + cos2(θ)}
sin2(θ){sin2(θ)sin2(ϕ) + cos(2ϕ)}2 , (43)
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Moreover, the multiplicative factor sin2(θ)sin2(ϕ) + cos(2ϕ)
appears in the denominators of CRBy, z(ϕ), CRBy, z(θ), and
CRBy, z(γ) – all of which would approach ∞ as
sin2(θ)sin2(ϕ) + cos(2ϕ) → 0.

5.4 Only antenna along z-axis inoperational

Substituting η = π /2 and γ = π /4 into (28)–(31),

CRBx, y(ϕ) = 1
M

σn
2

σs
2

1
cos2(θ) , (45)

CRBx, y(θ) = 1
M

σn
2

σs
2

1 + cos2(θ)
sin2(θ) , (46)

CRBx, y(γ) = 1
M

σn
2

σs
2 , (47)

CRBx, y(η) = 1
M

σn
2

σs
2

1 + cos2(θ)
cos4(θ) . (48)

As in Section 5.2, the multiplicative factor sin(θ) appears here in
the denominators of CRBy, z(θ), which would approach ∞ as
θ → 0, π.

Furthermore, the multiplicative factor cos(θ) appears in the
denominators of CRBy, z(ϕ) and CRBy, z(η) – both of which would
approach ∞ as θ → π /2.

5.5 Approximate lower bound

From the ALB expression of (32), the ALB ( ⋅ ) would approach
infinity if any of CRBx, y( ⋅ ), CRBx, z( ⋅ ), CRBy, z( ⋅ ), and
CRBx, y, z( ⋅ ) approaches infinity.

This implies, for any non-zero pf, that

A. ALB ≥ 2(ϕ) → ∞ if

i. θ = π /2, or
ii. sin2(θ)sin2(ϕ) = − cos(2ϕ), or
iii. sin2(θ)cos2(ϕ) = cos(2ϕ).

These contours are plotted in Fig. 2.

B. ALB ≥ 2(θ) → ∞ if

i. sin2(θ)sin2(ϕ) = − cos(2ϕ), or
ii. sin2(θ)cos2(ϕ) = cos(2ϕ).

These contours are plotted in Fig. 3.

C. ALB ≥ 2(γ) → ∞ if

i. sin2(θ)sin2(ϕ) = − cos(2ϕ), or
ii. sin2(θ)cos2(ϕ) = cos(2ϕ).

These contours are plotted in Fig. 3.

D. ALB ≥ 2(η) → ∞, if θ ∈ {0, π /2, π}.

6 Monte Carlo simulations
To illustrate the tightness of the approximate lower bounds of (32)
that family of bounds are compared here against the maximum-
likelihood estimate, through Monte Carlo simulations. The
simulation settings are as follows: θ = 43∘, ϕ = 39∘, γ = 37∘,
η = 63∘, φ = 41∘, pf = 0.1, and (c/λ)T = 0.3, M = 100 time

Fig. 2  Regions (contours) where ALB ≥ 2(ϕ) would be infinite
 

Fig. 3  Regions (contours) where ALB ≥ 2(θ) would be infinite (also
applicable to ALB ≥ 2(γ))

 

Fig. 4  Tightness of the proposed/derived ALB ≥ 2(θ) and ALB ≥ 2(ϕ) at
various SNR
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samples, and P = 1000 independent Monte Carlo experiments per
icon in each graph. Figs. 4 and 5 show that the ALB of (32) tightly
predicts the Monte Carlo simulations’ root-mean-square error of
the direction-of-arrival and polarisation at various SNR
(RMSE(θ^) := (1/P)∑p = 1

P ϕ
^

p − ϕ
2
 for the azimuth angle, where

θ
^
p represents the estimate in the pth Monte Carlo experiment.

Similarly, RMSE(ϕ^), RMSE(γ^), and RMSE(η^) may be defined.).
Figs. 6 and 7 show a similar tightness over various failure rates
(pf). There, the SNR equals 10 dB. 

7 Conclusion
This work proposes a lower bound for the estimation of an incident
electromagnetic signal's direction-of-arrival and polarisation, using
a triad of collocated and perpendicular dipoles that are electrically
short. This lower bound's singularity region is the union of its
constituent Cramér–Rao bounds’ singularity regions. These new
lower bounds are expressed analytically and plotted graphically in
terms of individual dipoles’ failure rate. These provide benchmarks
to the engineer in his/her tripole design to meet a given level of
estimation error.

While this paper examines only the admittedly simple case of
one incident source at one tripole, the approach here may be
readily extended to the case of many source impinging upon many
tripoles. Though the preceding analysis has focused on the dipole
triad of (1), a corresponding analysis for a loop triad may readily
be obtained via (2).
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