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ABSTRACT 

Different signal processing technique performances are compared to each other with regard to separating the mean and 
fluctuating velocity components of a simulated one-dimensional unsteady velocity signal comparable to signals ob-
served in internal combustion engines. A simulation signal with known mean and fluctuating components was gener-
ated using experimental data and generic turbulence spectral information. The simulation signal was generated based on 
observations on the measured velocity data obtained using LDV in a motored Briggs-and-Stratton engine at about 600 
RPM. Experimental data was used as a guide to shape the simulated signal mean velocity variation; fluctuating velocity 
variations with specified spectrum and standard deviation was used to mimic the turbulence. Cyclic variations were 
added both to the mean and the fluctuating velocity signals to simulate prescribed cyclic variations. The simulated sig-
nal was introduced as input to the following algorithms: ensemble averaging; high-pass filtering; Proper-Orthogonal 
Decomposition (POD); Wavelet Decomposition (WD) and Wavelet Decomposition/Principal Component Analysis 
(WD/PCA). The results were analyzed to determine the best method in correctly separating the mean and the fluctuating 
velocity information, indicating that the WD/PCA performs better compared to other techniques. 
 
Keywords: Proper-Orthogonal Decomposition; Wavelet Decomposition; Principal Component Analysis; LDV; Signal 

Processing 

1. Introduction 

Understanding the nature of turbulence in internal com-
bustion engines is important in studying the underlying 
mechanisms between turbulence and related phenomena, 
such as noise generation or lean/clean combustion [1]. 
Combustion quality depends on the turbulent mixing of 
fuel and air; turbulence defines the flame speed, burning 
temperature and the emission of pollutants from combus-
tion processes. Much research has been undertaken to 
study the in-cylinder flow fields using many different 
experimental techniques [2], including hotwire anemom-
etry [3], particle tracking velocimetry (PTV) [4-7], parti-
cle image velocimetry (PIV) [7-9] and LDV [10-18]. 
Among these techniques, LDV has been widely used 
since LDV can be easily adapted to study flow fields 
within hard to reach geometries such as the valve exit 
flow or, the flow inside complex bowl-piston configura-
tions [19]. 

Literature survey indicates that previous research in 
studying the in-cylinder flow fields is mainly focused on 
analyzing the data collected in various types of engines 
using various methods. Erdil et al. [3] used a Ricardo 

E6/T variable compression engine under motored condi-
tions at 1500 and 2000 RPM and obtained data using 
hot-wire anemometry for various engine configurations. 
Data were analyzed using a turbulence filter, ensemble 
averaging and POD techniques. Roudnitzky et al. [20] 
applied POD on 2-D time-resolved PIV data obtained in 
a single transparent cylinder at 1200 RPM to determine 
the mean component, coherent structures and random 
Gaussian fluctuations. Fogleman et al. [21] applied the 
POD technique to datasets obtained in internal combus-
tion engines to emphasize the tumble breakdown insta-
bility. 

Sullivan et al. [22] used ensemble averaging, high- 
pass filtering and the Wavelet Decomposition in a com-
parative fashion to analyze the characteristics of turbu-
lence in an L-Head research engine using LDV data ob-
tained at 900 RPM. Their analysis showed that there 
were no major differences between the mean velocity 
values plotted as velocity vs. crank-angle profiles, but the 
power spectral density plots showed considerable differ-
ence at frequencies higher than 10 Hz in the range of 0 - 
100 Hz. The turbulence energy calculated by the ensem-
ble-averaging technique was about twice the one calcu-

Copyright © 2012 SciRes.                                                                                OJFD 



S. ÖLÇMEN  ET  AL. 71

lated using high-pass filtering and WD techniques. An-
cimer et al. [23] proposed a WD based noise filtering 
technique to remove the cyclic variations that can occur 
in the mean velocity to separate the turbulence and the 
mean velocity variations. Park et al. [18] report LDV 
measurements made under motored conditions at 1000 
RPM in a single cylinder of a V6 3.1 L optical engine, 
and analysis made using continuous and discrete WD in 
addition to ensemble averaging and high-pass filtering 
techniques. 

Söderberg et al. [24] discussed the correlation between 
the heat release and turbulence measurements obtained 
near the spark plug by a two-component LDV system on 
a four valve spark ignition engine using WD technique. 
Measurements were made in a single-cylinder version of 
a Volvo engine under skip-fired conditions at about 1500 
RPM using five different camshafts. Results indicate that 
combustion rate increases with increased high turbulence 
rate and results do not change with the use of different 
wavelet functions. Sen et al. [25] measured the pressure 
variation in a four-stroke, single-cylinder Aprilia/Rotax 
spark ignition engine under six different loading condi-
tions to determine the maximum pressure variation in 
each cycle. The maximum pressure values obtained were 
then analyzed using Morlet wavelets to determine the 
periodicity in the signals. The signals were shown to be-
come turbulent at lower cycle counts with increased 
torque loading. Zhang et al. [26] discuss the difficulties 
involved in describing turbulence by conventional meth-
ods and use an RI-spline-6 wavelet to define the unsteady 
turbulence intensity using data obtained in a constant- 
volume cylindrical vessel equipped with optical access to 
measure the unburned flow velocity using the LDV tech-
nique and the flame speed. They further study the effect 
of the turbulence intensity on the turbulent burning ve-
locity. 

A brief summary of the previous research given with 
selected references and the references included in these 
publications indicate that ensemble averaging; high-pass 
filtering; Proper-Orthogonal Decomposition; and Wave-
let Decomposition techniques are commonly used in pre-
vious research in comparison to each other without the 
exact knowledge of the performance of the technique in 
determining the turbulence. In the present work an un-
steady signal generated as sum of the mean and fluctuat-
ing parts with known statistics is used to compare differ-
ent analysis techniques and evaluate the performance of 
these methods. The signal was generated based on the 
single component velocity data obtained in a Briggs- 
Stratton engine using an LDV probe. 

In the following sections first the research outline is 
given, experimental data obtained in a Briggs-and-Strat- 
ton engine is briefly described. Section 2 discusses the 
simulated signal. Section 3 is devoted to describing the 

analysis methods. Comparison of the performance of 
analysis methods is given in Section 4, and conclusions 
derived from the present work are given in Section 5. 

1.1. Research Outline 

In the current research a simulated signal representing 
the velocity signal of an internal combustion engine was 
used to determine the performance of existing methods in 
calculating the mean and the fluctuating variations of this 
signal in time. Research was focused on determining the 
effects of signal duration and signal amplitude on the 
performance of the methods. 

Simulation signal with prescribed mean and fluctuat-
ing variations in time was generated based on single ve-
locity component data obtained in a motored engine. A 
modulated sine wave and multiple Gaussian pulses were 
used to generate the mean velocity signal. Simulation 
mean velocity signal amplitude was adjusted such that 
the arithmetic average of the signal at 1 degree crank 
angle increments would closely follow the experimental 
data variation. Low frequency modulations were em-
ployed on the mean signal to represent cyclic variations 
that might be present in the mean velocity during engine 
operation. Fluctuating velocity signal with a known 
spectral variation, essentially constant below 100 Hz and 
varying as f−5/3 above 100 Hz, was generated to mimic 
the velocity spectra observed in other experimental work 
[3,27-29]. Amplitude modulations mimicking cyclic 
variations were also employed in generating the fluctu-
ating velocity signal to approximately match the standard 
deviation variations observed in measured velocity data 
at different crank angle ranges. 

The simulation signal was then used to compare the 
performance of different existing methods in separating 
the mean and the fluctuating velocity components from 
each other, both in the time domain and in the averaged 
sense. Time-dependent mean and fluctuating velocity 
information was sought since it was considered that rela-
tions between combustion processes and turbulence 
relevant to engine efficiency would be time-dependent. 
In order to determine the performance of the methods 
under different conditions, simulation signal duration and 
the fluctuating velocity amplitude were parametrically 
varied. Two scenarios were simulated: 1) Signal duration 
was changed between 0.6 s and 10.2 s, while the simu-
lated fluctuating velocity signal standard deviation,  , 
was essentially kept constant; 2) the signal duration was 
kept as 1 s, while the fluctuating velocity signal standard  

deviation was varied between 
1

4
  and 4 .   

Time dependent mean and fluctuating velocity signals 
obtained using each method were compared to the simu-
lated mean and fluctuating velocity signals by determin-
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ing the correlation coefficient between the mean and the 
fluctuating velocity signals separately. Correlation coef-
ficient values and the fluctuating velocity standard devia-
tion calculated by each method were used to determine 
the best method in separating the mean and the fluctuat-
ing velocity components from each other. 

1.2. Experimental Data 

The unsteady flow simulation signal used in the current 
paper was based on experimental observations made by 
the authors using laser-Doppler velocimetry data ob-
tained within a motored Briggs and Stratton single-cyl- 
inder air-cooled engine designed for low emission opera-
tion. Engine specifications are given in Table 1. Crank-
shaft angular position was determined via BEI H25 in-
cremental encoder with 0.05˚ crank angle (CA) resolu-
tion. In this paper, 0˚ CA corresponds to top-dead-center 
(TDC) at the end of the exhaust stroke. Cylinder pressure 
data were measured with a Kistler 6041A piezoelectric 
pressure transducer coupled to a Kistler Type 5010 
charge amplifier. Engine data were recorded by a Na-
tional Instruments USB-6221 data acquisition system. 
For each test, the engine was motored nominally at 600 
RPM (RPM varied between 580 - 610) using its starter 
and a freshly charged 12V battery continuously replen-
ished by a 40 amp charger. 

The LDV probe and the system used in the present 
work to collect the data are described in the paper by 
Esirgemez and Ölçmen [30]. In the present work, single 
component velocity measurements were made using the 
two-simultaneous velocity component, miniature LDV 
probe that was placed in the spark-plug hole of the 
Briggs and Stratton engine (Figure 1). Data was col-
lected by a TSI-FSA-4000 frequency-based processor 
and reduced by an in-house code to obtain the time varia-
tion of a velocity at a location near the spark-plug loca-
tion. Probe volume with 70 µm × 70 µm × 1.3 mm size 
was located 3.6 mm away from the piston when it is at its 
top-dead-center. Time alignment of the LDV and the 
engine data was accomplished via an in-house code. 
Figure 2 shows the experimental data non-dimensional- 
ized with the maximum value of the ensemble-averaged 
mean velocity. Positive velocity values indicate flow into 
the engine, such as the velocity values observed during 
 

Table 1. Briggs and Stratton test engine relevant data. 

Model Number 256427 

Combustion Chamber Type L Head 

Bore [mm] 87.31 

Stroke [mm] 66.68 

Displacement [cc] 399.3 

intake valve
footprint

exhaust valve
footprint

spark plug
pressure transducer
access port

LDV 
probe

laser beam
access port

5.0 

8.
8 

 

Figure 1. The combustion bowl, crossing of the schematic 
laser beams indicate the measurement probe volume. Dis-
tances shown have mm units. 
 
the intake stroke (0 - 180 degree range). Experimental 
data general characteristics were next used to specify the 
general characteristics of the simulated signal, rather than 
analyzing the data, similar to the approach taken by 
Kevlehan et al. [31], where the authors used multiple 
methods to identify the vortical structures they generated 
by a test function. 

Data was used to calculate the mean velocity values in 
1 degree crank angle increments using ensemble averag-
ing (see Section 3.1). Difference between the time-de- 
pendent velocity and the mean velocity at a given crank 
angle was further used to calculate the standard deviation 
of the data, data   0.205, (Section 3.1). dataThe   
was further used to adjust the standard deviation of the 
fluctuating component of the simulated signal. Thus 
measured data was used both to adjust the simulated sig-
nal mean and fluctuating velocity signals. The experi-
mental data was used to aid in defining the simulation 
signal; the simulation signal was not intended to replicate 
the experimental data. The data acquisition rate during 
the experiments was not high enough to capture the fre-
quency variation of the signal. Thus the data were plotted 
as velocity vs. the crank-angle range to obtain the veloc-
ity distribution. The data rate also varied with the crank 
angle resulting in more samples at different crank-angle 
ranges. Thus this precursory experimental data was used 
only to define the general characteristics of the simula-
tion signal. 

2. Signal Generation 

The goal of the present work was to compare analysis 
methods and determine the best method that could be 
used to separate the time varying mean velocity and the 
time varying fluctuating velocity signals from each other. 
Thus the LDV data was used in a limited role to adjust   
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Figure 2. LDV data and simulated signal mean velocity variation with the crank angle. 
 
and match the variations of the mean and fluctuating 
components of the simulated signal to the experimental 
data. Figure 2 shows the simulated mean velocity varia-
tion and the collected data. The turbulent part of the sig-
nal was generated using a prescribed power spectrum as 
described in Section 2.2. This approach was taken since 
the LDV measurement technique results in data that is 
unequally spaced in time, requiring pre-processing tech-
niques prior to the application of the methods discussed 
in the current paper [32]. Although LDV technique has 
been employed in unsteady flows for the last three dec-
ades, its inherently temporally irregular data acquisition 
continues to be investigated in obtaining spectrum from 
such data [33,34]. 

A data stream of one second duration was simulated 
for use in the discussion of the analysis methods de-
scribed in Section 3 for easiness of presentation of the 
results. However, the Matlab code written could be used 
to generate any desired time length of data. Longer dura-
tion simulated signal data has been generated and used in 
further analysis as discussed in Section 4 of the current 
paper. 

2.1. Mean Velocity Signal 

A sinusoidal wave with unity amplitude was used as the 
base signal. The amplitude of the signal was varied to 
mimic the cycle-to cycle variations that may be observed 
during an engine run (Figure 3(a)). The signal frequency 
was chosen as 10 Hz, corresponding to ten crank revolu-
tions per second (five full-engine cycles per second), and 
600 RPM, a typical idle speed. The period of the signal 
was kept constant assuming the RPM of the engine does 
not change during the analysis. Next, Gaussian pulses 

were added to vary the signal locally in time similar to 
the ensemble-averaged mean velocity variation of the 
experimental data. Gaussian pulses are used since it al-
lows signal generation with desired magnitude and 
bandwidth at a prescribed point in time. Multiple Gaus-
sian pulses (yg) were used as needed to effectively define 
the simulated signal. The simulated mean velocity varia-
tion is expressed as: 

         1 0.1*sin 0.4*π* *sin 2*π*

1 2 3 4 5

U t t t

yg yg yg yg yg

  

    


(1) 

  10*tt                    (2) 

 t  denotes the variation of crank angle in time. 
Gaussian pulses were generated using: 

 
    

1

2 2 2 2

0.3

*π * *
* exp( )*cos 2*π* *

4*ln 10
c

c

yg C

t td bw f
f t td





 
 
  

 (3) 

C1 = magnitude, td = time delay, t = time, fc = cut-off 
frequency, bw = bandwidth of the signal. Five Gaussian 
pulses together with different parameters were used. The 
parameters are given in the Table 2. 
 
Table 2. Gaussian-modulated sinusoidal pulse parameters. 

Parameters/functions yg1 yg2 yg3 yg4 yg5 

Magnitude −0.68 −0.66 0.23 0.2 0.05 

Time delay 0.053 0.128 0.063 0.188 0.101

Cut-off frequency 2.5 2.5 2.5 2.5 2.5 

Bandwidth 30 8 20 28 15 
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Figure 3(b) shows the sum of signals yg1 through yg5. 
The sum of the Gaussian pulse signals and the base sig-
nal describing the simulated mean velocity variation in 
time is shown in Figure 3(c). 

2.2. Turbulence Signal 

The fluctuating velocity signal was generated using a 
generic turbulence normalized power spectrum that is 
also observed in IC engine flow fields, 

 
   0 5/3

0

1

1 32*
hw f f

f f

 
  







         (4) 

[3,27,28,35] and using the Yule-Walker relations [36], 
where, f is the frequency, f0 is the highest frequency in 
the spectrum (f0 = 3600 Hz), and “hw” is the normalized 
power of the signal at a particular f/f0 [37]. The 
Yule-Walker relations calculate the coefficients of an 
auto-regressive model (a digital filter) to alter a Gaussian 
white-noise signal (Figure 4(a)) with a standard devia-
tion of unity to obtain a signal with normalized pre-
scribed power-spectrum at desired frequencies, such as 
the frequencies prescribed in the function “hw” given by 
Equation (4). Once this filter is applied in time domain to 
a Gaussian white-noise signal, a time-series signal with 
the prescribed power spectrum is obtained (Figure 4(b)). 
In the present work, forty-five Yule-Walker filter coeffi-
cients were used. Time-domain filter used was a filter 
that would result in a zero-phase distortion in the filtered 
signal. A random number generator stream was chosen to 
generate the Gaussian white-noise so that at every pro-
gram run the random number stream would initialize to 
the same value for the repeatability of the results. The  

time step used in signal generation was, 1 7200 st  . 
Next, modulations were employed on the filtered Gaus-
sian signal to simulate cyclic variations that might be 
present in the fluctuating velocity. It is believed that the 
cyclic variations in mean quantities would result in cyclic 
variations of the turbulence in such unsteady flows.  
Filtered Gaussian white noise amplitude was changed 
using a modifier signal (Figure 4(c)): 

    0.2*sin π* 1 * 6 7 8MS t yg yg yg         (5) 

The signal is composed of sine modulated Gaussian 
pulses, where yg6 and yg7 are described by Equation (3), 
and the parameters given in Table 3. 

Cyclic variations were considered since the turbulence 
transport is directly related to the spatial gradients of 
correlations and velocity products calculated using the 
mean and fluctuating velocity values and fluctuating 
pressure as described by the transport equation for the 
Reynolds stresses [38]. Effect of unsteadiness on the de-
velopment of turbulence has been subject to multiple 
papers, such as, in accelerating pipe flows [39], pulsating 
channel flows [38], or flow over airfoils under deep stall 
conditions [40], where unsteadiness causes unsteady 
variations in turbulence quantities. Cyclic variations in 
turbulence were also contemplated by Enotiadis et al., 
[29]; Fansler, [28]; however no explicit relations were 
suggested. 

Amplitude of the filtered and modified Gaussian noise 
was next adjusted to match the fluctuating velocity varia-
tions observed in the experimental data at different crank 
angles. For this purpose ensemble averaged standard 
deviation variation of the experimental fluctuating veloc-
ity data with the crank angle was calculated and the fil-
tered and modified Gaussian noise amplitude was ad- 
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Figure 3. Simulated mean-velocity signal: (a) Base signal; (b) Gaussian pulses; (c) Composite mean-velocity signal. 
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Figure 4. (a) Gaussian white noise; (b) Filtered Gaussian white noise; (c) Modifier signal; (d) Simulated fluctuating velocity 
signal; (e) Single sided spectrum of the fluctuating velocity signal. 
 
Table 3. Gaussian-modulated sinusoidal pulse parameters 
used in fluctuating velocity modifier signal. 

Parameters/functions yg6 yg7 yg8 

Magnitude 1 0.8 0.5 

Time delay 0.035 0.1675 0.115 

Cut-off frequency 2.5 2.5 2.5 

Bandwidth 10 12 30 

 
justed so that the standard deviation of the simulated 
signal would follow the variations of the experimental 
data at different crank angle ranges. Overall root-mean- 
square of the simulated signal and the experimental data 
were also matched. Turbulence signal is defined as: 

    filtered Gaussian noise* 0.6 1.8*u t MS    (6) 

and has the standard deviation as same as of the original 
data, data   0.205 (Figure 4(d)). While Equation (5) 
describes the amplitude modifier signal, the use of it to-
gether with Equation (6) allows imposing periodic varia-
tions on the fluctuation signal. Single-sided power spec-
trum of the fluctuating velocity signal (Figure 4(e)) in-
dicates that the power decreases as ~f−5/3, as prescribed 
by Equation (4), with the effect of amplitude modifica-
tions by Equation (5) observed in 100 - 200 Hz range. 

2.3. Composite Signal 

The time-dependent simulated velocity variation is ex-
pressed as: 
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       U t U t u t              (7) 

where,   t , is the crank angle varying in time between 
0˚ and 720˚ for a full cycle of a four stroke engine;    
denotes the mean velocity value at a crank angle; 

 denotes the fluctuating velocity. Figure 5(a) 
shows the composite signal. Figure 5(b) shows the en-
semble averaged mean velocity signal and the time- 
varying signal presented as a function of the crank angle. 
Single-sided power spectrum of the composite signal is 
shown in Figure 5(c). The power contained in the fre-
quencies above 100 Hz decreases as ~f−5/3. 

 u  t

2.4. Statistical Quantities 

The average mean-velocity variation with crank-angle 
using only the original mean velocity signal is defined as: 

    
i

i

iU U t
 


 





 
 
 
 iN          (8) 

where i  denotes the prescribed crank angles at which 
the mean velocity values are calculated, 

0,1, 2, ,719 ;i     1 ;  
 i t

  is the number of 
samples in the range i

,iN
        for the whole 

duration of the signal. This averaging assumes that the 
cycle-to-cycle variations in the mean velocity can be 
ignored and the mean velocity within a prescribed 

crank-angle range can be represented with a single mean 
value. Figure 6(a) shows the composite velocity varia-
tion with the crank angle. 

A standard deviation related to the mean velocity 
variation is defined using different representations of the 
mean velocity: 

         
2

or,mean

1

1

i

i

i i
i

U t U
N

 


   





 
     

   (9) 

This value is different than zero due to cyclic variation 
in the original mean velocity signal (Figure 6(b)). Fig-
ure 6(b) indicates that presenting the mean velocity sig-
nal with averaged values within crank angle intervals 
results in the calculation of a standard deviation different 
than zero, which could be wrongfully interpreted as tur-
bulence signal. 

The fluctuating velocity signal  was next 
used to obtain the standard deviation at prescribed crank 
angle intervals, the absolute value of the fluctuating ve-
locity, and an overall average standard deviation, given 
with the following equations, respectively. 

 u t 

       2
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u t
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        (10) 

     2

oru t u t                    (11) 
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Figure 5. Simulated composite signal: (a) Signal variation in time; (b) Signal velocity distribution with crank angle (scatter 
plot) and mean velocity calculated using the original mean (line); (c) Single-sided spectrum of the composite signal. 
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Figure 6. Simulated signal statistics: (a) Signal velocity distribution with crank angle; (b) Mean velocity standard deviation 
(Equation (9)) calculated using the original mean and the ensemble averaged mean velocity; (c) Standard deviation variation 
with the crank angle; (d) Absolute value of the fluctuating velocity in time. 
 

   2

or,ave iu t N            (12) 

where  or i   describes an ensemble averaged varia-
tion of the fluctuating velocity signal (Figure 6(c)), the 

or,ave  defines a single standard deviation value for the 
fluctuating velocity signal ( or,ave   0.205 for the cur-
rent signal). The oru  shows the variations of the signal 
from the mean in the absolute sense (Figure 6(d)). 

3. Analysis Methods-Description/Discussion 

Different methods used in the analysis of the simulation 
signal were, ensemble averaging, high-pass filtering, 
Proper Orthogonal Decomposition (POD) also known as 
Principal Component Analysis (PCA) [41], Wavelet De-
composition (WD), WD and PCA together (WD/PCA). 
In this section these methods are described and some 
analysis results about their use are given. 

Methods discussed in this section are the most com-
monly used methods in the analysis of cycle-to-cycle 
variation of engine data. Usually multiple techniques are 
employed within the same research. While the ensem-
ble-averaging method is the most commonly used me- 
thod [5,27,42-45], high-pass filtering method has been 
frequently employed [22,27,28,44-46]. Literature survey 
indicates that POD, WD and the WD/PCA methods have 

been less frequently employed [3,18,20-25]. 
Previous research on cyclic variability indicates that 

the time varying velocity in highly unsteady IC engine 
flows has usually been expressed as sum of mean and 
fluctuating components,    ( )?U t U t u t  . In general, 
the mean velocity component is considered as the com-
ponent causing the cyclic variability in the signal; al-
though cyclic variability in the fluctuating velocity has 
also been contemplated [28,29]. The methods used by 
different researchers differ in how the mean and the 
fluctuating velocities are determined. 

In ensemble-averaging method it is assumed that the 
mean velocity does not vary from one cycle to the next 
and arithmetic averages of the velocities at specified 
crank angle intervals can be used to describe the mean 
velocity variation,         enen

In the high-pass (hp) filtering method [27], (named as 
“cycle resolved analysis” by Liou and Santavicca, [44] 
and Fraser and Bracco [45]; named as “cyclic averaging” 
by Sulivan et al. [22], time varying velocity signal is 
filtered at a pre-determined cut-off frequency to calculate 
the low-pass (lp) filtered signal and this signal is referred 
to as the mean velocity signal,  

U t U u t    . 

        hp U t U t u t   
lp

. A variant of this tech-
nique uses a polynomial curve fitting to obtain the mean 
velocity component [47]. 
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Another variant of high-pass filtering method, named 
as “filtered ensemble averaging” by Fansler [28] (named 
as “phase averaging”, Erdil et al. [3]), uses three terms to 
describe the velocity signal. In this method the difference 
between the low-pass filtered velocity and the ensem-
ble-averaged mean velocity is defined as low frequency 
(LF) fluctuating velocity and the u’(t) is then considered 
as composed of a high frequency (HP) component, 

          LF HP U t U u t u t      
en

. In this vari-
ant the mean velocity is defined as, 
       en LFen

U t U u t   


, and the fluctuating veloc-
ity as, . In essence high-pass filtering 
and the filtered ensemble averaging methods are equiva-
lent to each other, and in each method different cut-off 
frequencies could be used at each cycle; although usually 
one frequency is used for the whole signal. 

   HPu t u t 

In the WD method the velocity signal is decomposed 
into “details”, where the sum of the details gives the ori- 
ginal velocity signal. The fluctuation velocity informa-
tion contained in the “detail” decreases with the increas-
ing “detail” level. In this technique a high order “detail” 
is considered as the mean velocity signal. 

In the POD method, velocity signal is re-expressed 
using new axes found as the eigenvectors of a covariance 
matrix formed using the velocity signal. The eigenvec-
tors and the associated eigenvalues describe new coordi-
nate axes on which the data lie the closest; the larger the 
eigenvalue the closer the data is to the eigenvector. In a 
reverse transformation to the original axes, neglecting the 
variations of signal along the axes with low eigenvalues 
allows defining the mean velocity component. In the 
WD/PCA method first the velocity signal is decomposed 
into details and then the POD is applied on these details. 
Similar to the WD method a high order detail is then 
considered as the mean velocity signal. 

Additional unique methods, such as “turbulence filter-
ing” by Erdil et al. [3], discuss possibility of separating 
the mean and the fluctuating velocities within the fre-
quency domain using a filter function. In the current re-
search, both the mean and the fluctuating velocities were 
considered to be time dependent and both were consid-
ered to have cyclic variations. In each method fluctuating 
velocity signals were next used to study turbulence sta-
tistics. 

3.1. Ensemble Averaging 

In the ensemble averaging method, time dependent ve-
locity is defined as the sum of the ensemble-averaged 
mean velocity and the fluctuating velocity: 

       i enen
U t U u t              (13) 

where, , is the crank angle;  t    denotes average 
value; i , are the prescribed crank angles at which the 

mean velocity values are calculated. Ensemble averaging 
assumes that the mean flow variation from one cycle to 
another is negligible and an average velocity value can 
be used to represent the mean value at a crank angle. The 
average velocity at a crank angle is calculated as the 
arithmetic mean of the velocity values within a pre-
scribed crank angle interval: 

 
   i

i

i en
i

U t
U

N

 
 








         (14) 

0,1,2, ,719i   ; 1  
 

;  is the number of 
samples in the range 

,iN
 ti i        for the whole  

duration of the signal. The  i en
U   (Equation (14)) is  

different than the  iU   (Equation (8)), since the en-

semble averaged mean velocity is obtained using the 
composite signal rather than the mean velocity variation 
alone. Figure 7(a) shows both ensemble averaged mean- 
velocity variations calculated using the composite signal 
and using only the mean component of the composite 
signal (shown as smooth line). 

A standard deviation is calculated using the differ-
ences between the ensemble-averaged mean velocity and 
the mean velocity of the original signal at the prescribed 
crank angles using the whole duration of the signal as: 

 

     
,mean

21

( 1)
i

i

en i

i en
i

U t U
N

 


 

 



     


    (15) 

Figure 7(b) shows the  ,meanen i   variation calcu-
lated using Equation (15). The variation shown is differ-
ent than the variation shown in Figure 6(b) calculated 
using Equation (9) due to the differences in the mean 
velocity definitions used. Figure 7(b), as Figure 6(b), 
indicates to the fact that ensemble averaging results in 
large velocity fluctuations due to predicting the mean 
velocity variation incorrectly by ignoring cycle-to-cycle 
variations. The difference between the original signal 
mean and the ensemble mean (Equation (14)) results in a 
fluctuating signal. 

The fluctuating velocity is next used to obtain standard 
deviation of the fluctuating velocity at prescribed crank 
angles: 

       21

1
i

ien i en
i

u t
N

 
  




       (16) 

A standard deviation, ,en ave  using the whole signal is 
calculated by: 

   ,en ave iu t N             (17) 

Figure 7(c) shows the diffe nce between the standard  re      
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Figure 7. (a) Ensemble averaged mean velocity variations,  i en
U   and  iU  ; (b)  en i ,mean  given by Equation (15); (c) 

Difference between  en i   and the  i or  nondimensionalized by  i or . 

 
deviations for the fluctuating velocities normalized by 
the standard deviation of the original signal. 

In the application of the technique, simulated data with 
prescribed durations were used to calculate the mean 
velocity and the standard deviation variation with crank 
angle. Calculated variations for different signal durations 
differ from each other since the simulated signal contains 
cyclic variations that affect the calculated values. Calcu-
lation of the mean and the standard deviation variation by 
averaging the data values over the span of the signal 
rules out the use of the technique to obtain time-resolved 
variations. 

3.2. High-Pass Filtering 

In the high-pass filtering method the simulated signal is 
split into high and low frequency components at a cut-off 
frequency, fc, chosen by observation (fc = 30 Hz). The 
time dependent signal is low-pass filtered to obtain the 
mean velocity variation in time, 

low pass
 (Figure 

8(a)). The difference between the original signal and the 
low-pass filtered signal is considered to be the fluctuat-
ing velocity signal. 

  U t

       
low pass hpfU t U t u t           (18) 

In the present work a single frequency value is used 

for the full length of the signal to separate the low and 
the high frequency contents. A Fast-Fourier-Transform is 
applied to the original signal to determine the power 
spectrum of the signal and to subsequently determine a 
cut-off frequency. The original time series signal was 
next filtered using a sixth order Chebyshev filter in the 
time domain to obtain the low frequency component. A 
relation exists between the mean velocity differences and 
the fluctuating velocity differences calculated using the 
original velocity signal and the velocity signals calcu-
lated by the method: 

           
low pass hpfU t U t u t u t           (19) 

Velocity differences are presented in Figure 8(b). 
High frequency signal was then used to calculate the 
fluctuating velocity standard deviation at different crank 
angles, and an overall average standard deviation: 

     21

( 1)
i

i
hpf i hpf

i

u t
N

 


  




          (20) 

   2
,hpf ave hpf iu t  N                (21) 

Cut-off frequency fc = 30 Hz, results in ,hpf ave  = 
0.1957. Different cut-off frequency values result in dif-
ferent ,hpf ave  values; for fc = 10, 15, 20, and 25 Hz, the 
standard deviations are ,hpf ave  = 0.3441, 0.2426,  
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Figure 8. (a) Mean velocity variation obtained using high-pass filtering method and the simulated signal mean velocity varia-

tion (solid line in red); (b) Variations of      
 

U t U t    low pass
, and      hpfu t u t       with time; (c) Difference 

between  hpf i   and the  i or  nondimensionalized by  i or . 

 
0.2223, and 0.2129, respectively. With the use of a 5 
second long signal the values obtained for the fc = 10, 15, 
20, 25 and 30 Hz, are ,hpf ave  = 0.2604, 0.2119, 0.2102, 
0.1954, 0.1788 respectively, indicating that the signal 
length does have an effect on the values calculated, but 
the effect is not significant at high frequency end. 

Figure 8(a) shows the mean velocity calculated by the 
high-pass filtering technique and the mean velocity varia- 
tion of the original signal in time. Figure 8(c) shows the 
difference between the standard deviations for the fluctu-
ating velocities normalized by the standard deviation of 
the original signal. 

3.3. Proper-Orthogonal Decomposition (POD) 

The proper orthogonal decomposition (POD) was first 
introduced by Lumley [48] to identify coherent structures 
in turbulent flows. POD, also known as the Principal 
Component Analysis technique [41] allows one to repre-
sent data points each defined with N coordinates in a new 
N dimensional coordinate system such that the data 
points now lie closer to the new axes, allowing variations 
along preferred directions to be determined [49]. For 
example data maybe the realization of three fluctuating 
velocity components obtained in time, where the fluctu-

ating velocities are the coordinates defining the data 
point obtained in time. In the representation of the data in 
the new coordinate system, the axes are sorted such that 
the data lie closer to the first axis than the other axes and 
the data lie closer to the second axis than to the third axis 
and so on. Representation with the new variables is 
sometimes referred to as sorting the data by their energy 
content. One of the advantages of the POD technique is 
that after the representation of the data in the new coor-
dinate system, one can then approximate the data by re-
ducing the number of coordinates used, say by neglecting 
the less energetic coordinates in representing the data. 
For more details and examples of POD technique on 
fluid mechanics measurements, the reader is referred to 
Tropea et al. [50]. 

In the numerical calculations of the POD technique 
multiple signals collected simultaneously are first stored 
in a data matrix, ,i jX , and the data matrix is then used to 
calculate a covariance matrix. 

    , ,, *
T

i j i i j iCov i j X X X X          (22) 

where, iX   denotes the average of the data values in the 
ith row, thus iX   is a different value for each row; su-
perscript T denotes the transpose of the matrix; covari-
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ance matrix,  is an M × M square matrix.  ,Cov i j
The next step is calculation of the eigenvalues and the 

eigenvectors of the covariance matrix. Eigenvalues, k , 
where k = 1 to M, and the eigenvector matrix ,i k , where 
i = 1 to M and k = 1 to M, of the covariance matrix, are 
calculated using Matlab. An eigenvector corresponding 
to an eigenvalue, 

V

k  is listed in the kth column of the 
eigenvector matrix ,i k . The eigenvectors of the covari-
ance matrix correspond to the set of orthogonal axes 
(new coordinates) to represent the data. Once the eigen-
vectors are sorted in order corresponding to the eigen-
values of the covariance matrix, the projection of the 
original data along the eigenvector directions represents 
the data in these new orthogonal coordinates. During the 
process the sum of the square of the distances between 
the new axes (along the eigenvector directions corre-
sponding to eigenvalues in descending order) and the 
data are minimized. 

V

Projection of the original data along the direction of 
the unit eigenvectors can be obtained using: 

, , i j i*T
i kProj V X X                (23) 

This process can be reverted to obtained the original 
signal ,i jX , and can be recalculated using: 

 , ,i j i k , ,* *T
i k i j i iX V V X X X           (23) 

The computations in Equation (24) also work if some 
of the eigenvectors corresponding to less energetic ei-
genvalues are omitted (set to zero) during the reversal 
process, leaving behind a signal close to the original sig-
nal that has been cleaned of outlier data points. 

In the present work, first the complete velocity signal 
was converted into a data matrix, ,i jX , with each row of 
the matrix representing a full cycle of a four stroke en-
gine spanning 720˚ of crank angle, with the first 720˚ 
signal (corresponding to the first cycle) in the first row, 
next 720˚ signal in the next row and so on. In describing 

,i jX , i = 1 to M, where, M represent the number of cy-
cles used in the signal and j = 1 to N representing col-
umns of the data corresponding to one full cycle of data 
spanning 720˚ of crank angle. Although this is strictly 
different than the conventional use of the POD technique, 
it allows working with a single dimensional data. Thus 
the data matrix is generated as if different cycle veloci-
ties were acquired simultaneously, resulting in velocities 
corresponding to same crank-angle to be listed in a single 
column. Presenting one dimensional data in an array al-
lows using each cycle velocity value as a separate coor-
dinate in the POD process. 

In the present work the mean velocity signal was cal-
culated using the largest eigenvalue containing 92.2% of 
the energetic contributions to the signal (Figure 9(a)) 
and the contributions from other eigenvalue/eigenvector 
couples were considered as turbulence contributions. The 

five eigenvalues obtained in the increasing order are 
108.6, 150, 236.7, 280.9, and 2735.7. The contributions 
for the eigenvalues for a 10 second signal results in 50 
eigenvalues, and the approximation improves with the 
simulated signal duration (discussed in Section 4.1). 

In the POD method time dependent velocity is defined 
as the sum of the mean and the fluctuating velocity 
components: 

       podpod
U t U t u t          (25) 

Statistical quantities are defined similar to other 
method statistical quantities: 

          podpod
U t U t u t u t          (26) 

       21

1
i

ipod i pod
i

u t
N

 
  




        (27) 

   2
,pod ave pod iu t  N              (28) 

Figure 9(b) shows the difference between the mean 
velocities and the fluctuating velocities for the original 
signal and the ones calculated by the POD technique. 
Figure 9(c) shows the difference between the standard 
deviation calculated using the POD technique and stan-
dard deviation of the original fluctuating velocity nor-
malized by the standard deviation of the original signal. 

3.4. Wavelet Decomposition 

Wavelet transformation determines the correlations be-
tween the original signal and the prescribed wavelet 
function at different frequency ranges of the original 
signal [51]. Following the description used by Farge [52] 
continuous wavelet transform is defined as the convolu-
tion of a wavelet ( )t , with the original signal to deter-
mine the wavelet coefficients,  

     ,, a bC a b f t t t  d           (29) 

where 

  1/2
,a b

t b
t a

a
   

 

            (29) 

“a” denotes the scale of the wavelet and related to the 
frequency of the signal, “b” is time value used in trans-
lating the wavelet;  ,a b t  is the daughter wavelets 
generated by translating and dilating (scaling) the mother 
wavelet. The wavelet coefficients thus calculated can be 
used to approximate the original signal at different scales. 
Reconstruction of the original signal is obtained using 
linear combination of the wavelet and the wavelet coeffi-
cient 

     1 2
,,  a bf t C C a b t a a b    d d       (31) 
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Figure 9. (a) Mean velocity variation obtained using the POD and the simulated signal mean velocity variation (solid line in 

red); (b) Variations of      
pod

U t U t  
  

- , and      podu t u t       with time; (c) Difference between  pod i   and 

the  i or  nondimensionalized by  i or . 

 
where C , is a constant and depends on the wavelet 
used. The coefficients with small scale values correspond 
to high frequency component of the signal and the ones 
with larger scale values correspond to low frequency 
values. During the reconstruction of the signal, length 
scales corresponding to the high frequency content can 
be omitted to obtain the low frequency (or mean) varia-
tion of the original signal. A history and a formal de-
scription of the wavelet transforms can be found in arti-
cles by Farge [53] and Tropea et al. [50]. 

    1 2, d
t b

C a b f t a t
a

    
         (32) 

where and the 
transformation gives the wavelet coefficients, 

2 , *2 . 1, 2, ,  1, 2 ,j ja b k j k    
 , ,C a b . 

The original signal can be recovered without any loss 
using the inverse transform: 

    ,, j k
j k

f t C j k  t            (31) 

While the mother wavelet can be presented in a func-
tional form for a simple wavelet such as the Haar wavelet, 
in general an algebraic functional form does not exist. 
The mother wavelet , which can be a real or com-
plex valued function, is chosen to satisfy multiple condi-
tions, such as admissibility condition requiring that the 
energy contained within the wavelet to be a limited value, 
zero mean condition requiring the wavelet to have a zero 
mean value, and a requirement that its higher order mo-
ments vanish [53]. 

 t

For a fixed value of j, summation on the k gives the 
“detail” at the jth level: 

    ,,j
k

D t C j k t j k             (34) 

and thus, 

  j
j

 f t D t                 (35) 

An approximation to the signal can be made using a 
limited number of details. For example  f t  can be 
separated into two components, one using indices j ≤ J, 
corresponding to the scales, 2 2j Ja    and one with j 
> J. 

In the discretized wavelet transform the scale and the 
position “t” are described using powers of 2. Matlab [54] 
gives details about the discrete wavelet transform and the 
reader is referred to this document for further details. For 
a continuous signal  f t , the discrete wavelet trans-
form is given

       j j J
j J j J j J

jf t D t D t A D
  

    t      (36) 
 as: 
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If desired, the reconstructed signal could then be ex-
pressed only as “approximation”, Ai, at level J. A relation 
exists between different approximations as: 

1J J j JA A D                    (37) 

Increasing values of J indicates that lesser details are 
used in generating the approximate signal, thus the 
approximation becomes closer to signal’s mean variation. 
The value of J should also not be chosen large such that 
the details in the mean variation are also sacrificed. 

In the current work Daubechies 12, Symlet 8, and 
Coiflet 5 wavelets were tested and the results obtained 
did not vary with the use of different wavelets. Thus 
Daubechies 12 wavelet was chosen for further analysis of 
the data. Figure 10 shows the scaling and the wavelet 
functions for the Daubechies-12 wavelet. 

In the wavelet decomposition time dependent velocity 
is thus defined as an approximation plus the details: 

       wdwd
U t U t u t            (38) 

where        ,J wd jj Jwd
U t A u t D t 


   , and J =  

8. Figure 11(a) presents the    8wd
U t A   and the 

original mean velocity variation in time. 
Statistical quantities are calculated using: 

          wdwd
U t U t u t u t          (39) 

     21

( 1)
i

iwd i wd
i

u t
N

 
  




        (40) 

   2
,wd ave wd iu t N                (41) 

Figure 11(a) shows the original mean velocity and the 
mean velocity calculated by the WD technique. Figure 
11(b) shows the mean and the fluctuating velocity dif-
ferences, Figure 11(c) shows the difference between the 
standard deviation calculated using the WD technique 
and standard deviation of the original fluctuating velocity  

normalized by the standard deviation of the original sig-
nal. 

3.5. Principal Component Analysis and Wavelet 
Decomposition 

In this analysis method the advantages of the Principal 
Component Analysis and the Wavelet Decomposition 
methods are used simultaneously [55]. In the technique 
first wavelet decomposition is applied on the signal to 
calculate the “details” and one “approximation” to the 
signal. Next PCA analysis is employed on each of the 
detail signals and the approximation. PCA analysis re-
sults are used to determine which principal components 
to keep in the signal using the Kaiser rule. Kaiser rule 
keeps only the eigenvalues, which have values greater 
than the mean of all eigenvalues in re-construction of the 
signal. As a next step the details and the approximation 
reconstructed using the PCA are used in the reconstruc-
tion of the signal using the wavelet decomposition. In the 
detection of the mean velocity signal the wavelet de-
composition allows the signal to be analyzed at different 
scales and the principal component analysis allows 
de-noising of the signal at every detail. 

In the WD/PCA method time dependent velocity is 
defined as the sum of the mean and the fluctuating veloc-
ity components, 

       wdpcawdpca
U t U t u t           (42) 

Statistical quantities are defined using, 

          wdpcawdpca
U t U t u t u t         (43) 

 
    21

 
1

i

i

wdpca i wdpca

i

u t
N

 


  





 
  

  
       (44) 

   2
,wdpca ave wdpca iu t  N          (45) 
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Figure 10. (a) Scaling and (b) The wavelet functions for Daubechies-12 wavelet. 
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Figure 12(a) shows the original mean velocity and the 

mean velocity calculated by the WD technique. Figure 
12(b), shows the mean and the fluctuating velocity dif-
ferences, Figure 12(c) shows the difference between the 
standard deviation calculated using the WD/PCA tech-
nique and standard deviation of the original fluctuating 
velocity normalized by the standard deviation of the 
original signal. 

4. Results and Further Discussion 

A comparison between the Figures 8(a), 9(a), 11(a), and 
12(a) show that all the mean velocity variations calcu-
lated by different methods follow the general variations 
observed in the simulated signal. Figures 8(b), 9(b), 
11(b), and 12(b) show the differences of the mean and 
the fluctuating velocities between the original velocity 
components and the components calculated after each 
method, and give a sense of how well the methods per-
form in describing both the mean velocity and the fluctu-
ating velocity vs. the crank angle. If a method could per-
fectly separate the mean and the fluctuating velocity val-
ues in time then the plots would be a straight line at zero. 
Figures indicate that the differences between the velocity 

signals are the smallest using the WD/PCA method, and 
that the POD method results contain high frequency con-
tent. POD performance improves with increased signal 
duration and the high frequency diminishes. 

Figures 7(c), 8(c), 9(c), 11(c), and 12(c) show the 
normalized difference between the computed and the 
original signal standard deviations. Figures 8(c) and 11(c) 
indicate that the high-pass filtering and the WD tech-
niques result in larger differences between the standard 
deviations than the other methods. The differences be-
tween the fluctuating and the mean velocities obtained 
using the original simulated velocity signal and the ve-
locities computed after each method both contribute in 
the calculation of the fluctuating velocity standard devia-
tion. This is due to the fact that the difference between 
the original velocity signal and the calculated mean ve-
locity signal is considered as a contribution to the fluc-
tuation velocity calculated by a method. For the 1 second 
analysis results shown in the figures, large non-dimen- 
sional differences are observed at locations where the 
original  or i   values are small such as in the 250˚ - 
280˚ and 450˚ - 500˚ ranges. Overall, the WD/PCA tech-
nique results follow the original standard values better 
han the other techniques. t   
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4.1. Simulated and Calculated Signal Correlation 

—Effect of Signal Duration 

In order to quantitatively determine the performance of 
each method in separating the mean and the fluctuating 
velocity variations, and the signal duration required to 
effectively separate the mean and the fluctuating velocity 
signal components correlation coefficients were calcu-
lated between the original simulation signal and the cal-
culated signals. Correlation coefficients were calculated 
using: 

     
  


  
method

mean 2

method

*
corr coeff

*

U t U t

U t U t

 

 




 
2



(46) 

and 

     
     

method
fluc 2 2

method

*
corr coeff

*

u t u t

u t u t

 

 

 


 



 
 (47) 

A correlation coefficient of 1 indicates a perfect match 
between the two signals. Correlation coefficients calcu-
lated for signal durations of 0.6 s to 10.2 s with 0.6 s in-
crements plotted in Figure 13 indicate that the WD/PCA 
method performs better than the other methods in calcu-
lating the mean and the fluctuating velocity signals. Both 
Figures 13(a) and (b) indicate that the performance of 
the methods get better with increased signal duration. 
Results do not show appreciable improvement after the 
first 3 seconds, and the changes after 8 seconds are 

minimal indicating that 3 seconds of data could be suffi-  
cient to extract the mean and the fluctuating velocity 
signals. Plots in Figures 13(a) and (b) show similar 
variations since poor mean velocity prediction by a method 
directly reflects on the fluctuating velocity prediction 
performance of the technique. Results also indicate that 
the WD and the high-pass filtering methods predict the 
mean and the fluctuating velocity variations poorly even 
with increased signal duration. Correlation coefficients as 
low as 0.8 obtained for the fluctuating signal indicate that 
the time variation of the fluctuating velocity calculated 
by these methods is a poor representation of the original 
fluctuating velocity signal. Figure 13(b) shows that the 
correlation coefficient values calculated even with the 
WD/PCA method is about 0.95 indicating to the need for 
further improved methods for accurate time variation 
prediction of the fluctuating velocity signal. 

Figure 14 shows the ratio of the average standard de-
viations calculated by each method to the original signal 
average standard deviation for a given duration of signal. 
Normalized standard deviation (NSD) was calculated 
using: 

method, or,

Normalized standard deviation

ave ave 
         (48) 

Figure 14 indicates that the standard deviation calcu-
lated by the WD/PCA method is approximately the same 
as the or,ave  once a 5 s signal duration is used. All the 
other methods except the ensemble-averaging method 
underestimate the or,ave ; ensemble averaging method  
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Figure 13. Correlation coefficient values obtained between the simulated mean and the simulated fluctuating velocity signals 
and the mean and fluctuating velocity components obtained by analysis methods. (a) Mean velocity; (b) Fluctuating velocity 
results. 
 

 

0.8

0.85

0.9

0.95

1

1.05

0 1 2 3 4 5 6 7 8 9 10 11

no
rm
al
ize
d 
st
an
da
rd
 d
ev
ia
tio
n

signal duration (second)

ensemble high-pass pod wd wdpca

no
rm

al
iz

ed
 s

ta
nd

ar
d 

de
vi

at
io

n
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overestimates the or,ave  by a few percent. The NSD 

alues calculated using the highv -pass filtering and the 
WD methods show erformance decrease followed 
with a performance increase with the increased sample 
duration. POD values monotonically increase with the 
signal duration and reach a plateau at about 5 seconds. 
Results indicate that a signal with 5 s duration together 
with the WD/PCA method could be used to accurately 
estimate the or,ave

 a p

 ; although the   achieved after 3 
seconds is within a few percent of the or,ave . 

4.2. Effect of Fluctuating Velocity ve on  σor,a

tude 
in th ods was investigated next 

Method Performance 

The effect of the fluctuating velocity overall magni
e performance of the meth

by varying the signal or,ave  and calculating correlation 
coefficients for the mean and the fluctuating components 
using the Equations (4 d (47). Comparisons were 
made for 1 second and 5 second duration signals (Table 
4). Results indicate that POD and the WD/PCA methods 
are superior to the high-pass filtering and the WD meth-
ods. While the WD/PCA works better than the POD 
method once the signal standard deviation is as same as 
the original 

6) an

  and 2 , POD method works better once 
the signal standard deviation is 4  and once a longer 
duration signa s used. For the signals with 1/2l i   and 
1/4  the mean velocity signal is predicted well by all 
the methods. For these cases the POD and the WD/PC  
methods redict the fluctuating velocity signal better than 
the other methods with better predictions by the POD  

A
 p

velocity prediction capability decreases for all the meth-
technique once a longer period signal is used. Fluctuating 

ods with decreasing   values. 

4.3. Effects of Imposing Cyclic Variation on 
Fluctuating Velocity on Method 

Add k the effect of 
imposi ations on the fluctuating component 

Performance 

itional calculations were made to chec
ng cyclic vari

of the signal as described in Section 2.2 on the perform-
ance of the methods. For this purpose another fluctuating 
signal without the cyclic variations was generated. This 
signal uses only the filtered Gaussian signal without the 
cyclic variations. The amplitude of this new signal was 
adjusted to re-obtain the standard deviation of the ex-
perimental data. In this case the turbulence signal was 
defined as: 

   filtered Gaussiannoise*1.3744u t     (49) 

The constant multiplier was used to match the 
deviations of this signal, the experimental data and the 
ori

ted
alues. 

standard 

ginal fluctuating velocity signal. The analysis methods 
were then used to determine the performance of each 
method by calculating the correlation coefficients be-
tween the original mean and fluctuating signals and the 
signals obtained after the use of methods. The correlation 
coefficients for the mean signals obtained with the cyclic 
variation and without the cyclic variation vary less than 
0.2%, while the correlation coefficients for the fluctuat-
ing signals vary less than 1% with less correlation coeffi- 

 the calculated velocity by different analysis methods for 1 
 
Table 4. Correlation coefficients obtained between the simula
second (first row) and 5 seconds (second row) signal for different σor,ave v

σor,ave  Sim-high-pass filter Sim-POD Sim-WD Sim-WD/PCA 

0.205 (original) Mean velocity 
0.9757 
0.9798 

0.9841 
0.9938 

0.9770 
0.9782 

0.9894 
0.9943 

 Fluctuating velocity 

(2σ) Mean velocity 

 Fluctuating velocity 

(4σ) Mean velocity 

 Fluctuating velocity 

(1/2σ) Mean velocity 

 Fluctuating velocity 

(1/4σ) Mean velocity 

 Fluctuating velocity 
0.4141 0.7631 0.3842 0.6681 

0.7532 
0.7775 

0.8344 
0.9350 

0.7729 
0.7628 

0.8906 
0.9419 

0.9325 
0.9399 

0.9394 
0.9795 

0.9319 
0.9394 

0.9598 
0.9856 

0.8292 
0.8298 

0.8457 
0.9456 

0.8280 
0.8230 

0.9004 
0.9627 

0.7795 
0.8151 

0.7791 
0.9220 

0.7708 
0.8177 

0.8500 
0.8271 

0.8538 
0.8448 

0.8474 
0.9451 

0.8444 
0.8403 

0.9087 
0.8489 

0.9865 
0.9905 

0.9950 
0.9974 

0.9880 
0.9885 

0.9953 
0.9964 

0.5789 
0.6365 

0.7925 
0.8924 

0.6363 
0.6082 

0.8191 
0.8638 

0.9892 
0.9932 

0.9977 
0.9982 

0.9907 
0.9911 

0.9966 
0.9968 

0.3511 0.6732 0.4380 0.6394 
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5. Conclusions 

parat-
ulated 

ignal was described using LDV data 
ngine and using a prescribed power 

ethods. Correlation coeffici
ca

ocity signals and 5 s
si

ork better 
th

lues w lic variations

Performances of several methods were tested in se
ing the mean and the turbulent fluctuations of a sim
signal. Simulated s
obtained in an IC e
spectrum. The results were presented using 1 second 
signal duration. Additional runs were made to see the 
effects of the signal duration and the fluctuating velocity 
standard deviation in the performance of the methods. 
Ensemble averaging technique is observed as a method 
that is not suitable for unsteady flow estimation since it 
can result in an artificial fluctuation velocity due to the 
cyclic variations that might be present in the mean veloc-
ity signal. High-pass filtering technique requires selec-
tion of a cut-off frequency for the signal; simulated sig-
nal characteristics could not be obtained after testing 
multiple cut-off frequencies. Presentation of the velocity 
or the turbulence in a coordinate system using the crank 
angle as the abscissa seems to be inappropriate in de-
scribing the unsteady flow since it hinders much of the 
details in the signals. 

The correlation coefficients calculated using the origi-
nal and the calculated mean and fluctuating velocities 
show that the WD/PCA and the POD methods perform 
better than the other m ents 

lculated by every method increase with increasing sig-
nal duration, predictions by the POD and the WD/PCA 
methods become closer to each other with better predic-
tions by the WD/PCA technique. 

The signal duration required to accurately separate the 
velocity components were investigated by varying the 
simulated signal duration. Correlation coefficient values 
calculated close to 1 using mean vel  

gnal duration indicate that mean velocity calculated 
using POD and WD/PCA methods match the simulated 
mean velocity signals. For this signal duration, using the 
fluctuating velocity signals and the POD and the WD/ 
PCA methods result in correlation coefficients of about 
0.95. Normalized standard deviations determined by dif-
ferent methods indicate that ~5 seconds of data is suffi-
cient to estimate the standard deviation of the original 
signal using WD/PCA and the POD methods.  

The effect of the fluctuating velocity magnitude was 
tested by varying the standard deviation value of the 
fluctuating velocity signal. For a 1 second data, results 
indicate that the WD/PCA and POD methods w

an the other techniques. The POD method seems to 
work better with a 5 s signal duration for signals with 1/2, 
1/4 and 4  in predicting a signal variation closer to the 
simulated signal than the other methods. 

Based on the correlation coefficient calculations made 

sarily imply that the method is applicable to all unsteady 
flows but r a limited internal combustion engine flows. 

including sign tion an agnitude t /PCA 
ethod seems the suit thod in s g the 
ean and th uating y compo he 

ignal studied lusions d here d s-
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