
World Journal of Mechanics, 2013, 3, 82-87 
doi:10.4236/wjm.2013.31006 Published Online February 2013 (http://www.scirp.org/journal/wjm) 

Comparative Study of the Effect of the Parameters of 
Sizing Data on Results by the Meshless Methods (MLPG) 

Ahmed Moussaoui, Touria Bouziane 
Team Mechanics and Energy System Lab LAMP, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco 

Email: moussaoui.physique@gmail.com 
 

Received November 29, 2012; revised December 30, 2012; accepted January 10, 2013 

ABSTRACT 

The local Petrov-Galerkin methods (MLPG) have attracted much attention due to their great flexibility in dealing with 
numerical model in elasticity problems. It is derived from the local weak form (WF) of the equilibrium equations and 
by inducting the moving last square approach for trial and test functions in (WF) is discussed over local sub-domain. In 
this paper, we studied the effect of the configuration parameters of the size of the support or quadrature domain, and the 
effect of the size of the cells with nodes distribution number on the accuracy of the methods. It also presents a compari- 
son of the results for the Shear stress, the deflections and the error in energy. 
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1. Introduction 

Recently Meshless formulations are becoming popular 
due to their higher adaptivity and lower cost for pre- 
paring input data in the numerical analysis. A variety of 
meshless methods has been proposed so far (Belytschko 
et al., 1994; Atluri and Shen, 2002; Liu, 2003; Atluri, 
2004) [1-6]. Many of them are derived from a weak-form 
formulation on global domain [1] or a set of local sub- 
domains [4-7]. 

The meshless local Petrov-Galerkin (MLPG) method 
originated by Atluri and Zhu [1] uses the so-called local 
weak form of the Petrov-Galerkin formulation. MLPG 
has been fine-tuned, improved, and extended by Atluri’s 
group (Atluri et al., 1999) and other researchers over the 
years [8-10]. MLPG has been applied to solve elastostat- 
ics and elastodynamics problems of solids and plats [11].  

The method is a fundamental base for the derivation of 
many meshless formulations, since trial and test fun- 
ctions are chosen from different functional spaces. 

MLPG does not need a global mesh for either function 
approximation or integration. The procedure is quite si- 
milar to numerical methods based on the strong-form for- 
mulation, such as the finite difference method (FDM). 
However, because in the MLPG implementation, moving 
least squares (MLS) approximation is employed for con- 
structing shape functions, special treatments are needed 
to enforce the essential boundary conditions [4,7]. 

The aims of this paper are to study the effect on accu- 
racy and convergence of MLPG methods of different size 
parameters: s  and Q  associated to support and qua- 

drature domains respectively. The support domain is de- 
noted be equal to influence domain. For fixed values of: 

s  and Q , the effect of cells numbers c with nodes 
distribution number, on energy errors is also studied and 
some of our results are presented.  

n

In this work, the MLPG method will be developed for 
solving the problem of a thin elastic homogenous plate. 
The discretization and numerical implementation are pre- 
sented in Section 2 numerical example for 2D problem 
are given in Section 3. Then paper ends with discussions 
and conclusions. 

2. Basic Equations 

Let us consider a two-dimensional problem of solid me- 
chanics in domain   bounded by whose strong- 
form of governing equation and the essential boundary 
conditions are given by: 



   , 0ij j ix b x                  (1) 

ij j in t  on                  (2) t

iu ui  on                   (3) u

where in  , T , ,xx yy xy        is the stress vector 
and T ,x yb b b   

On the natural boundaries 
 the body force vector. 

t  is the prescribed trac- 
tion,  1 2n nn ,  denoted the vector of unit outward 
normal at a point. 

 1,u u2  the displacement components in the plan and 
 1 2,u u  on the essential boundaries. 

In the local Petrov-Galerkin approaches [3], one may 
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write a weak form over Q  a local quadrature domain 
(for node I), which may have an arbitrary shape, and 
contain the point Q



x  in question, (see Figure 1). The 
generalized local weak form of the differential Equations 
(1) and (3) is obtained by: 

    
 

, d

d 0

Q

Qu

ij j Ii

i i I

x b x W

u u W









 

   




         (4) 

where Q  is the local domain of quadrature for node I 
and Qu  is the part of the essential boundary that 
intersect with the quadrature domain Q . 




IW  is the 
weight or test function , K

IW C    [12]. The first 
term in Equation (4) is for the equilibrium (in locally 
weighted average sense) requirement at node I. The se- 
cond integral in Equation (4) is the curve integral to 
enforce the essential boundary conditions, because the 
MLS shape functions used in MLPG lack the Kronecker 
delta function property. 

  is the penalty factor, Here we use the same penalty 
factor for all the displacement constraint equations (es- 
sential boundary conditions) [1] 

Generally, in meshfree methods, the representation of 
field nodes in the domain will be associated to other 
repartitions of problem domain: influence domain for 
nodes interpolation, S  is the support domain for ac- 
curacy. For each node W  is the weight function do- 
main, and  is the quadrature domain for local inte- 
gration. 




Q

Using the divergence theorem [11] in Equation (4) we 
obtain:  

 

,d d

d d

Q Q

Q Qu

ij j I ij I j

i I i i I

n W W

bW u u W

 



 

 

  

   

 

  0

t

      (5) 

where  0Q Q Qu Q     
 

Ωs 

 

Figure 1. The local sub-domains around point  and 

boundaries. 
Qx

0Q : The internal boundary of the quadrature domain 

Qt : The part of the natural boundary that intersects 
with the quadrature domain 

Qu : The part of the essential boundary that intersects 
with the quadrature domain 

When the quadrature domain Q  is located entirely 
within the global domain on Qt  and Qu  no bound- 
ary conditions are specified then . 



 


0Q Q

Unlike the Galerkin method, the Petrov-Galerkin me- 
thod chooses the trial and test functions from different 
spaces. The weight function 



IW

 is purposely selected in 

such a way that it vanishes on . We can then change 
the expression of Equation (5): 

0Q

, d d

d d d

Q Qu Qu

Qt Qu Q

ij I j i I ij j I

i I i I i I

W u W n

tW u W bW

  



  

  

dW  

     

  

  


   (6) 

Witch is the local Petrov-Galerkin weak form. Here  

we require  0
iu C Q   [3,11] and the simplified Pet-  

rov-Galerkin form is:  

, d
Q Q

ij I j i IW bW
 

d               (7) 

Precedent equations are used to establish the discrete 
equations for all the nodes whose quadrature domain 
falls entirely within the problem domain (Equation (7)) 
and to establish the discrete equations for all the bound- 
ary nodes or the nodes whose quadrature domain inter- 
sects with the problem boundary “Equation (6)”. 

To approximate the distribution of the function  in 

S

u
  the support domain over a number of nodes 0n . 
We shall have the approxima    f u  [13nt o ]

I

hu x   

   
0

1

:
n

h
S I

I

x u x x u


               (8) 

where I denote the set of the nodes in the support domain 

S  of point Qx . 

I  the MLS shape function for node I that is created 
using nodes in the support domain S  of point Q x . The 
discrete system in Equation (6) is given in matrix form: 

d d

d d

Q Qu Qu

Qt Qu Q

T
I I

I I

V u W tW

tW u W W b

 



  

  

d

d

I

I

   

     

  

  
     (9) 

where 
,

,

, ,

0

0
I x

I I y

I y I x

W

V W

W W

 


 
 
 


  is a matrix that collects the  

derivatives of the weight functions in Equation (6), and  
0

0
I

I

W
W

W


 
 


  is the matrix of weight function. The  

stress vector defined by: 
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h
dC CL u                (10) 

where  is the symmetric elasticity tensor of the mate- 
rial 

C

 

2 2

2 2

1 1 0

1 1 0

0 0 2 1

E E

C E E

E

  
  



  


   
  




 

Substituting the differential operator  

0

0d

x

L y

y x

  
   
     

 , 

and Equation (8) into Equation (10) we obtain: 

0

1

n

I I
I

C B u


                   (11) 

where 
,

,

, ,

0

0
I x

I I y

I y I x

B

 
 

 
   

 n 



 and by using   
1

2

2 1

0

0n

n

L

n n

 
 
 


the tractions of a point x can be written as: 
T
nt L                      (12) 

Substituting Equations (8), (11) and (12) into Equation 
(6), we obtain the discrete systems of linear equations for 
the node I.  

0

1

d d

d

d d

Q Qu

Q

Qt Qu Q

n
T

I I I I
I

T
I n I I

I I

V CB W

W L CB u

tW u W W b





 




  

    

 
    

  



   dI 

     (13) 

That can assembled in matrix form: 

0

1

n

I I
I

IK u f


                    (14) 

where nodal stiffness matrix  

d d

d

Q Qu

Q

T
I I I I I

T
I n I

K V CB W

W L CB


 



 

 

 



 
       (15) 

And nodal force vector with contributions from body 
forces applied in the problem domain, tractions applied 
on the natural boundary, as well as the penalty force 
terms. 

d d
Qt Qu Q

I I I If tW u W W b
  

       d    (16) 

Two independent linear equations can be obtained for 
each node in the entire problem domain and assembled 
all these  equations to obtain the final global sys- 

tem equations: 

2 n

2 2 2 1 2 1n n n nK U F                (17) 

To solve the precedent system, the standard Gauss 
quadrature formula is applied with 16 Gauss points [3,14] 
for evaluation of boundary and domain integrals in Equa- 
tions (15) and (16) 

3. Numerical Example 

In this section, numerical results are presented for Canti- 
lever rectangular plate in Figure 2. First we investigate 
the effects of the size of support or quadrature domains 
and we examine the numerically convergence of MLPG, 
then comparisons will be made with the analytic solution 
[15] 

The problem data: 
The height of the beam  and the length of 

the beam: 
12 mD 

48 m;L   
The thickness of the plat:  and Loading (integra- 

tion of the distributed traction):  
unit

P 310 N;
Young’s modulus: 7 2N m3 10 E  and Poisson’s 

ratio: 0.3.   
The standard Gaussian quadrature formula is applied 

with 16 Gauss points, and for MLS approximation linear 
polynomial basis functions are applied, the cubic spline 
function is used as the test function for the local Petrov- 
 

 

Figure 2. Cantilever plate subjected to distributed traction 
at the free end. 

 

 

Figure 3. 55 regular field nodes on the problem domain and 
boundaries. 
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Galerkin weak-form. In our numerical calculations we 
consider many regular distributions of nodes: 55 or 175. 
To calculate the error energy a background cells is re- 
quired, then we have varying the number of cell. To ob- 
tain the distribution of the deflection and stress through the 
plates, size of quadrature domain and support domain are 
varied. Nodal configuration for a cantilever plate with 55 
nodes (Figure 3) (nodal distance ) and 
the sizes of Q  is defined by: Q

4.8,  3cx cyd d 
Q cIr d 

r
 where cI  

is the nodal spacing near node I and Q  is the size of the 
local quadrature domain for node I. The sizes of quadra- 
ture domains will be, there fore determined by Qx

d

  and 

Qy  which are dimensionless coefficients in x and y di- 
rections, respectively. For simplicity 

Qx Qy Q    is used. The dimension of the support 
domain is determined by s s cd d  and s  is the di- 
mensionless size of support domain. 

4. Discussions 

Figure 4 Shows the variation of the effective transverse 
shear stress xy  at different points on vertical of the plate 
by varying x  for 3s   and 1.5Q  . It can be seen 
the shear stress distributions on the cross-section at in 
other sections ( 4, 2, 3 4x L x L  L x   and x L ). 
it’s shown that the shape is identical to that obtained by 
theoretical analysis ( section x L ). 

The accuracy is clear for the greater value of field 
nodes distribution. It is also shown in this figure, on the 
cross-section the meshless MLPG agree well with those 
from analytical solution (dashed lines). 

Figure 5 displays the variation of the energy error as a 
function of the size of the local support domain, for fixed 
value of Q , a background cells is needed, we take 

1.5Q  . We note on the figure the effect distribution 
field nodes number on the result, we take n = 55 and 175 
number of cell is  and 144 respectively. 40cn 
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Figure 4. Shear stress  xy  distribution as a function of y 

for different values of x ( , ,  x L x L x L4 2 3

In the case 1.5Q   For the value of field nodes num- 
ber 55n   (number of cell is ) the result gives 
a greater domain when the value of 

40cn 
:1.85 5s s    

can be selected and the method is yet convergent.  
For n = 175  1.5Q 

3s

 the domain when accuracy is 
good in 1.8    our results are comparable to those 
obtained by other authors [3,5,6]. 

But in case 2Q  , we have considered n = 175 the 
domain of convergence is found to be greater 
1.85 3.65.s   

Figure 6 displays the variation of the energy error as a 
function of the size of the local quadrature domain, for 
fixed value of s  a background cells used, we take 

3s   and we choose two values of n = 55 and 175 
number of cell is 40cn   and 144 respectively. 

For the selected values n the domain when the value of 

Q  can be selected and the method is yet convergent is 
 3 .Q 1.5  

In Figure 7 the deflection results are plotted as func- 
tion of x and fixed value of 1.5Q   where y = 0 and by 
varying the size of the support domain  2;2.5;3;3.5s  . 

 the function presents a classical shape 
 

It can be seen that

 

Figure 5. Influence of the S on energy error for diffe t 

. 

ren

distribution nodes numbers
 

 

4  and 

) ( 175 regular field nodes). x L

Figure 6. Influence of the Q on energy-error for two is- 

rs.

 d

tribution field nodes numbe  

Copyright © 2013 SciRes.                                                                                 WJM 



A. MOUSSAOUI, T. BOUZIANE 86 

for all values of s  and reaches the analytical solution. 
 

fle
The effect of  field distribution number on the de-the
ction values is presented in Figure 8. For different 

values of s and Q  A Comparison is made with the 
analytical r ults o eflection (solid line plotted in the 
Figure 8). 

For Q

es f d

2   
en giv

the greater values of nodes numbers n = 
175 ev es precision for the greater values of 

3.65s   (dashed curve). No curve is available for n = 

Fo
55. 

r the less values of s —we have found in Figure 5 
1.85s  —two curves  plotted for n = 55 and n = 

It a

are
175. 

lso presented the variation of the defection in the
ca

 
se 3.65, 2s Q    for n = 55 the curve coincides 

with t al results. hat of the analytic

5. Conclusion 

In conclusion, the size of the local quadrature and sup- 
port domain affect the accuracy and performance of the 
MLPG methods and it also show a great influence of the 
choice of field nodes distribution number. The conver- 
 

 

 

Figure 7. Deflections at the central axis at y = 0 of the plate 
for different values of  , . , , .S S 2 2 5 3 3 5  . 

 

 

Figure 8. Deflections as a function of x at y = 0, for 
, 55 175tn  and different value of S Qand  . 

accuracy of MLPG me stigence and thod can ll be better 
by using a number of appropriate nodes in a large do- 
main when the support sizing coefficient S  can be 
chosen and Q  is fixed. In our numerical ex ples the 
MLPG gives a very close value in comparison with the 
analytical results. 

am
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