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Abstract 

The aim of this work is to derive quadrature formulas for nuclear reactor kinetic equations in the form of Volterra integral equations of 
the second kind and reactimeter equations in the form of integral convolution, the kernel of which is a decay function of delayed neutron 
precursors (DNP) in the non-group form. The expediency of the transition to integral equation s is caused by the unification of the direct 
(calculation of power dynamics) and the reverse (calculation of current reactivity) tasks of reactor kinetics. As a result, the solution is 
reduced to the calculation of the delayed neutrons integral (DNI). This eliminates the source of computational-experimental discrepancies in 
estimations of reactivity, which is due to the difference in computational algorithms of direct and inverse problems. The paper describes a 
general scheme for converting different transport equation approximations to describe the contribution of delayed neutrons by means of an 
integral convolution without using dynamic equations of the DNP concentration. This conversion reduces the model dimension, simplifies the 
software implementation, eliminates the stiffness problem of differential kinetic equations and provides the stability of calculations. The model 
dimension is preserved in the case of several fissile nuclides. The integral form of the equations makes it possible to use the experimental 
decay function in quadrature formulas, which can be identified in the operating conditions of a nuclear reactor and stored pointwise in a 
nongroup form without decomposition into the sum of exponentials. This eliminates the need to solve the non-linear problem of identifying 
group parameters of delayed neutrons and increases the adequacy of modeling. A series of quadrature formulas for the calculation of the 
DNI are obtained and the corresponding algorithms of a digital reactimeter and numerical simulation of the reactor kinetics are described. 
Copyright © 2017, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute). Production and hosting by 
Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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In nuclear reactor physics much attention is paid to a com-
arison and correlation of calculated and experimental esti-
ations of reactivity [1–4] . Such a comparison characterizes

he accuracy and adequacy of neutron-physical calculations
n the design, operation, and maintenance of nuclear safety
f NPPs. However, as is known [5] , differential equations for
he description of the dynamics of delayed neutron precursors
DNP) are used in computational complexes, and the exper-
mental estimation of reactivity is based on various versions
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quations are used for calculations in the first case
6–8] and the simplest quadrature formulas in the second case
9] . The difference between mathematical models is one of
he reasons for the discrepancy between the calculated and
xperimental results. To eliminate this factor, it is advisable
o unify the computational models to ensure the identity of
he solution schemes of the direct (power output calculation)
nd inverse (current reactivity calculation) tasks of the nu-
lear reactor neutron dynamics. Since the reactivity can be
easured only by calculating the integral, the reactivity esti-
ation in the computational modeling complexes must also be

erformed on the basis of integral equations using quadratures
imilar to those used in a digital reactimeter. More precisely,
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the equations must be transformed to integral form, and the
subsequent discretization should be performed in the same
way in both the direct and inverse problems using both tra-
ditional quadratures and other known approaches to solving
integral equations [10,11] . 

The paper describes a general scheme for the rearrange-
ment of various approximations of the transport equation to
account for the contribution of delayed neutrons by means
of the convolution integral. The proposed unification reduces
the direct and inverse problems of kinetics to the calculation
of the delayed neutron integral (DNI). A series of quadrature
formulas for the calculation of the DNI are obtained and the
corresponding design schemes for the realization of a digital
reactimeter and numerical simulation of the kinetics of the re-
actor are described. The stability condition for computations
is found. 

Integro-differential and integral equations of neutron ki-
netics have long been used in modeling nuclear reactors [6–
8,12–26] . The unification of the direct and inverse problems
of nuclear reactor kinetics considered in this paper seems to
provide a number of improvements in addition to the tradi-
tional approaches, namely: 

• the model dimension decreases, only the observed quanti-
ties appear in the model; 
• it becomes possible to use directly, as the kernel of the

integral equation, the samples of the experimental DNP
decay function; 
• the transition to integral equations removes the problem

of the stiffness of differential equations of nuclear reactor
kinetics; 
• it becomes possible to obtain interval estimations of reac-

tivity on the basis of upper and lower integral sums [27] ; 
• the standard metrological analysis schemes [28] , based on

convolution equations, become applicable for an analysis
of reactimeter errors [29] . 

Unification of the direct and reverse problems of nuclear 
reactor dynamics 

The integral representation of the source of delayed neu-
trons in the non-stationary transport equation is well known
[17,30] and is written on the basis of the concept of the expo-
nential character of decay of delayed neutron precursors in the
following form (hereinafter all designations are standard): 

Q 

D (r, v, τ ) = 

∫ t 

0 
ϕ( r, v, τ ) 

J ∑ 

j=1 

χ j β j λ j e 
−λ j (t−τ ) dτ

+ 

J ∑ 

j=1 

λ j c j (r, 0) · e −λ j t . (1)

Integral Summands ( 1 ) are solutions of the dynamic equa-
tions of DNP concentrations in the corresponding groups: 

λ j c j (r, t ) = −∂ c j (r, t ) 
∂t 

+ 

∫ 

β j (υ
′ ) ν j (υ

′ ) 

×
 f j (r, v 

′ ) ϕ(r, v 

′ , t ) d v 

′ , (2)
o that, in fact, these equations can be excluded from the
omputational schemes of the nonstationary transport equation
ince there is no special interest in the dynamics of DNP
oncentrations. We shall describe the elimination procedure
or the non-stationary transport equation represented in the
eneral form: 

1 

υ

∂ϕ(r, v, t ) 

∂t 
= Rϕ(r, v, t ) −

∑ 

j 

χ j (υ) 
∂ c j (r, t ) 

∂t 
. (3)

Here, the change in DNP concentrations is taken into ac-
ount by the second term, and the operator R combines all
ther processes and is interpreted as a reactivity operator. This
quation is obtained by replacing the generation rate of de-
ayed neutrons λj c j , which appears in the traditional form
f the transport equation, by the expression for λj c j from
q. (2) . 

The initial concentrations of the precursors c j ( r ,0) are de-
ermined from Eq. ( 2 ) under the assumption of the reactor
tationary state, i.e., when ∂ c j / ∂ t = 0. Therefore, it is conve-
ient to introduce into Eq. ( 2 ) the variable s j ≡ ∂ c j / ∂ t , for
hich these equations take the form of the balance of accel-

rations of decay (generation) of the precursors: 

∂ s j (r, t ) 
∂t 

= −λ j s j (r, t ) + 

∫ 

β j (υ
′ ) ν j (υ

′ ) 

×
 f j (r, v 

′ ) ψ(r, v 

′ , t ) d v 

′ , 

here ( r , v , t ) ≡ ∂ ρ, v , t )/ ∂ t is the rate of change of the neutron
ux density. The initial condition here becomes zero, s j ( r ,0)

0, causing the following kind of solution: 

 j (r, t ) 

= 

∫ t 

0 
e −λ j (t−τ ) 

[∫ 

β j (υ
′ ) ν j (υ

′ ) 
 f j (r, v 

′ ) ψ(r, v 

′ , τ ) d v 

′ 
]

dτ. 

As a result, the problem of calculating the initial distri-
ution of delayed neutron precursors is eliminated and the
orresponding source of errors is eliminated. 

Substituting s j ≡ ∂ c j / ∂ t in Transfer Eq. (3) brings the latter
nto the form: 

1 

υ
ψ ( r, v , t ) = Rϕ ( r, v, t ) − I çí( r, t ) + Q (4)

ith the initial condition ( r , v , t ) = ( R ( r , v ,0) + Q ). The contribu-
ion of delayed neutrons in Transport Eq. (4) is represented
y the DNI: 

 3H 

( r, t ) = 

∫ t 

0 

∫ 

W 

(
r, v 

′ , t − τ
)
ψ 

(
r, v 

′ , τ
)
d v 

′ dτ, (5)

he kernel of which is: 

 (r, v 

′ , t − τ ) = 

∑ 

j 

χ j (υ) e −λ j (t−τ ) β j ( υ
′ ) ν j (υ

′ ) 
 f j (r, v 

′ ) . 

The described procedure for the change of variables is ap-
licable to the elimination of dynamic equations of DNP con-
entrations in any approximations of the transport equation.
n particular, it brings the system of differential point kinetic
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quations to a system of integral equations for the reactor
ower and power change rate: 

v(t ) 
n(t ) 

]
= 

[− ∫ t 
0 h(t − τ ) ( ·) dτ r(t ) ∫ t 

0 ( ·) dτ 0 

]
·
[

v(t ) 
n(t ) 

]
+ 

[
Q(t ) 
n(0) 

]
. (6) 

Here the reactivity is given in the �-scale: r = ρ/ � = 1/ �
1/ l . In this scale, reactivity has the meaning of the relative

ate of prompt-neutron-induced processes: r ( t ) ≡ v pn ( t )/ n ( t )
nd can be directly compared with the expressed by the re-
erse period ( t ) = v ( t )/ n ( t ) relative reactor power change rate
ith respect to all the processes. This, to a certain extent,

implifies the solution of the known problem of organizing
period or reactivity” control of the nuclear power unit [31] . 

The procedure for deriving the integral equation for the
ower change rate is similar to the transformations performed
y the traditional derivation of the reactimeter equation (re-
ersed solution of the kinetics equations). Here the reactimeter
quation is obtained from the first Eq. (6) obviously without
sually involved Laplace transforms [17,32] : 

(t ) = α(t ) + 

1 

n(t ) 

∫ t 

0 
h(t − τ ) dn(τ ) + Q(t ) /n(t ) . (7)

After integrating by parts, Eq. (7) takes on the form: 

(t ) = α(t ) + h(0) − 1 

n(t ) 

[
h(t ) n(0) + 

∫ t 

0 
n(t −τ ) dh(τ ) + Q(t ) 

]
,

(8) 

here h (0) = βeff / �; g ( τ ) = dh ( τ )/ d τ . For operational modes,
hen, as a rule, h (0) >> ( t ) + Q ( t )/ n ( t ) and the observation in-

erval [0, t ] exceeds the function decay time h ( t ), Eq. (8) takes
n the form: 

 ( t ) = 

β���

�
− 1 

n ( t ) 

∫ t 

0 
g ( t − τ ) n ( τ ) dτ. (9) 

In all cases, the procedures for solving both the direct
nd inverse problems of NR kinetics are unified since they
re reduced to the calculation of the delayed neutron in-
egral. In this case, Eqs. (8) and ( 9 ) are more preferable
or numerical realization since the decay time of the func-
ion g ( τ ) = dh ( τ )/ d τ , appearing in these equations, is approx-
mately three times less than the decay time of the function
 ( t ). On the other hand, it is more convenient to identify the
unction h ( t ) on the basis of Eq. (7) . 

iscreteization of delayed neutron integral 

The kernel of the DNI in Eqs. (5) and ( 6 ) is (up to a factor
/ � the decay function of delayed neutron precursors usually
epresented in exponential notation: 

(t ) = 

βeff 

�

J ∑ 

j=1 

α j exp (−λ j t ) . 

Instead of exponential notation of the kernel, any approx-
mation or pointwise tabular storage of the experimental de-
ay curve is permissible [33] . Such an approach increases the
p  
odel adequacy, simplifies the procedures for adapting the
eactimeter, but requires the calculation of the DNI according
o schemes in which the kernel is represented by a finite set
f samples of the experimental decay curve or its derivative. 

Let us consider the discrete DNI form as applied to Eqs.
8 ) and ( 9 ), assuming that the function g ( t ) is represented by
he L + 1 sample (i.e., g ( t ) = 0 for t > t L ): 

 k = 

L ∑ 

l=0 

c k ,k −l g k−l n l = 

L ∑ 

l= k−L 

c k ,k −l g k−l n l = 

L ∑ 

l=0 

c k,l g l n k−l . 

(10) 

The calculation of the convolution integral in Form ( 10 ) is
 classical problem of digital signal processing considered, in
articular, in [34–36] . However, the corresponding approaches
ere practically not used for calculating the DNI in the digi-

al reactimeter equation or solving the direct problem of NR
inetics. 

In the case of the conventionally used trapezoid formula,
he quadrature coefficients in ( 10 ) are c k ,0 = T k –1 /2; c k , l =
 T k –l + T k –l –1 )/2; l = 1, …, L –1; c k , L = T k –L /2, if the integra-
ion step T l = t l + 1 –t l is variable. It can be seen that the esti-
ation from the trapezoid formula is obtained by averaging

he estimations made according to the formulas of the left and
ight rectangles, which can be used for an interval estimation
f the solution, for example, in reactivity calculations [27] . 

Similar to the trapeziod formula, Simpson’s quadrature for-
ula describes simple averaging of three estimations obtained

y the method of left, right, and central rectangles: 

 1 = T l2 ( f l + f l+1 ) / 2, S 2 = T l2 f l+1 , 

 3 = T l2 ( f l+1 + f l+2 ) / 2, T l2 = t l+2 − t l , 

here S 2 is the integral estimation on the interval [ t l , t l + 2 ]
y the average rectangle method, and S 1 , S 3 are the pairwise
veraging of the estimation S 2 with the integral estimations
y the left and right rectangle methods. As for the calcula-
ion of Convolution ( 10 ) in the case of a variable integra-
ion step, Simpson’s formula on the l th interpolation interval
 l = 0,2,4,…, L –2) has the form: 

 l = 

T i−2 + T i−1 

6 

(
2 T i−2 − T i−1 

T i−2 
f i−2 + 

( T i−2 + T i−1 ) 
2 

T i−2 T i−1 
f i−1 

+ 

2 T i−1 − T i−2 

T i−1 
f i 

)
, 

i = k − l, f i = g k−i n i . 

To apply Simpson’s quadrature, the number of samples
 + 1 must be odd. To eliminate this difficulty, we shall use

he above interpretation of quadratures as averaging formulas
or elementary intervals. In the general case, this leads to the
ormula [37] 

 

l 
i = 

(
q 

l 
i 

)T 
W 

−1 
l f l , (11) 

hat evaluates the integral on the i th elementary interval
 t i , t i + 1 ], i = 0, …, k –1 from information related to the inter-
olation interval T l , l + J = [ t l , t l + 1 ,…, t l + J ], l = max(0, i + 1–J ),
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…, min( i , k –J ), enclosing a given elementary interval, i.e., by
the distribution of the nodes [ t l , t l + 1 ,…, t l + J ] and the integrand
value vector f l = ( f ( t l + m 

)) T , m = 0, …, J . The matrix W l and
the vector q 

l 
i are computed in the local coordinates x = t –t l of

the l th interpolation interval. The matrix entries w 

l 
jm 

= w j ( x i ),
x i = t i –t l are the values of the basis functions of the interpo-
lation formula: 

f (x) = 

n ∑ 

j=0 

a 

l 
j w j (x) , 

calculated in the indicated nodes, and the elements of the
vector q 

l 
i are the integrals of the basis functions over the i th

elementary interval: 

q 

l 
j = 

∫ x i+1 

x i 

w j (x) dx . 

Specific quadrature formulas are obtained from ( 11 ) by
averaging over this or that combination of L ( i ) interpolation
intervals covering the i th elementary interval: 

S i ≈
⎛ 

⎝ 

min (i,k−J ) ∑ 

l= max (0,i+1 −J ) 

( q 

l 
i ) 

T 
W l 

−1 f l 

⎞ 

⎠ /L(i) . 

For Simpson’s quadrature formula on the interval X l ,l +2 =
[ x l , x l+1 , x l+2 ] , the matrix 

W 

−1 
l = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 

−
(

1 

t l ,l +2 
+ 

1 

t l 

) (
1 

t l+1 
+ 

1 

t l 

) (
1 

t l ,l +2 
− 1 

t l+1 

)
1 

t l t l ,l +2 
− 1 

t l t l+1 

1 

t l+1 t l ,l +2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(12)

where indexation is used in the following sense: x = 

t +1 −
 ; x , = 

t �t . In this case, the i th elementary interval (except for
the initial and final ones) belongs only to two interpolation
intervals: ( i–1)th and i th, so that the average estimation of the
integral on the i th elementary interval is: 

S i = 

((
q 

i−1 
i 

)T 
W 

−1 
i−1 f i−1 + 

(
q 

i 
i 

)T 
W 

−1 
i f i 

)
/ 2; i = 1 , . . . , m − 2,

(13)

where the integral vectors of the basis functions are equal
to: 

q 

i 
i = x i 

[
1 ( x i / 2 ) 

(
x 2 i / 3 

)]T 
, 

q 

i−1 
i = x i−1 ,i+1 

[
1 

(
x i−1 ,i+1 / 2 

) (
x 2 i−1 ,i+1 / 3 

)]T 

− x i−1 ,i 
[
1 

(
x i−1 ,i / 2 

) (
x 2 i−1 ,i / 3 

)]T 
, 

and indexation is similar to that adopted in formula ( 12 ). 
With a constant integration step x i = T , the matrix of val-

ues of the basis functions at the nodes is the same for all
interpolation intervals: 

W 

−1 = diag 

[
1 ; 1 /T ; 1 / T 2 

] ·
⎡ 

⎣ 

1 0 0 

−3 / 2 2 −1 / 2 

1 / 2 −1 1 / 2 

⎤ 

⎦ , 
nd the integral vectors of the basis functions over the elemen-
ary intervals are q 

i 
i = T [1 ( T /2) ( T 

2 /3)] T and q 

i –1 
i = T [1 (3 T /2)

7 T 

2 /3)] T , respectively. As a result, Estimation ( 13 ) takes the
orm: S i = T (–f i –1 + 13 f i + 13 f i + 1 –f i + 2 )/24. Unlike the standard
impson’s integration scheme, the application of this formula
oes not require a certain multiplicity of the number of nodes.
f there are no grounds for choosing concrete values of the
ntegrand outside the complete integration interval [ t k –L , t k ],
hen, on the finite elementary interval [ t k –1 , t k ], we should ap-
ly an estimation over the left interpolation interval S k –1 = T (–
 k –2 + 8 f k –1 + 5 f k )/12 and, on the initial interval [ t k –L , t k –L + 1 ],
ver the right interpolation interval S 0 = T (5 f 0 + 8 f 1 – f 2 ). In
his case, applying Estimation ( 13 ) on the remaining elemen-
ary intervals [ t i , t i + 1 ]; i = k –L + 1, …, k –2, we obtain the
omplete quadrature formula for the interval [ t k –L , t k ]: 

 k−L,k = 

T 

24 

[
9 f k−L + 28 f k−L+1 + 23 f k−L+2 + 23 f k−2 

+ 28 f k−1 + 9 f k 
] + T 

k−3 ∑ 

i= k−L+3 

f i . 

Let us give concrete variants of digital realization of Re-
ctimeter Eq. (7) determined by the choice of quadrature for-
ulas. 

(1) The reactimeter equation in calculating the DNI by the
method of trapezoids: 

r k = αk 

(
1 + 

T 

2 

h 0 

)
+ 

T 

n k 

k−1 ∑ 

l=1 

h l v k−l − Q 

n k 
. 

(2) The reactimeter equation with moving integration ac-
cording to Simpson’s formula: 

r k = αk (1 + 

5 T 

12 

h 0 ) + 

T 

12 n k 
(13 h 1 v k−1 + 12 

k−3 ∑ 

l=2 

h l v k−l 

+ 11 h k −2 v 2 + 15 h k −1 v 1 + 4 h k v 0 ) − Q 

n k 
, k = 4, 5 , 6 , ... 

or for a fixed number of samples of the DNP decay
function: 

r k = 

(
1 + 

5 T 

12 

h 0 

)
αk + 

(
13 

12 

· T 

n k 

)
h 1 v k−1 

+ 

T 

n k 

L ∑ 

l=2 

h l v k−l − Q 

n k 
. 

(3) The reactimeter equation in the case of integration by
Newton’s method: 

r k = αk + 

3 T 

8 n k 

( 

h k−1 v 1 + 

28 

9 

h k−2 v 2 + 

23 

9 

h k−3 v 3 + 

k−4 ∑ 

l=3 

h l v k −l

+ 

23 

9 

h 2 v k−2 + 

28 

9 

h 1 v k−1 + h 0 v k 

) 

− Q 

n k 
, k = 1 , 2, ... 
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For a fixed number of the decay function samples, the
quation takes on the form: 

 k = 

(
1 + 

3 T 

8 

h 0 

)
αk + 

(
7 

6 

· T 

n k 

)
h 1 v k−1 

+ 

(
23 

24 

· T 

n k 

)
h 2 v k−2 + 

3 T 

8 n k 

L ∑ 

l=3 

h l v k−l − Q 

n k 
. 

uadrature formulas for integral kinetic equations 

Discrete analogues of Eq. ( 6 ) have the form: 

 k = −
k ∑ 

l=0 

( a k,l h k−l ) v l + r k n k + Q k , n k = n 0 + 

k ∑ 

l=0 

b k,l · v l , 

(14) 

roviding the following general computational scheme: 

 1 ≡ n 0 , w k = n 0 + 

k−1 ∑ 

i=0 

b k,l v l , 

 k = d k ( Q k −
k−1 ∑ 

l=1 

a k,l h k,l v l + r k w k ) , n k 

= w k + b k,k v k , k = 1 , 2, 3 , ... (15) 

here the coefficient d k = (1 + a k , k h 0 – r k b k , k ) –1 . Hencefor-
ard, it is assumed that the calculation is carried out for

he case of a start from the reactor stationary state, so
 0 = r 0 n 0 + Q 0 . This initial condition makes it possible to de-
cribe, in the framework of one computational scheme, any
cenario of a change in power or reactivity [12,33] . In ap-
lied problems, both the reactor power and period p = n / v are
f interest, so calculation by Algorithm ( 15 ) seems to be the
ost natural. Further detailing is determined by the selection

f specific quadratures. 
For suppressing the accumulation of errors, the coefficient

 k should be less than unity. This is always the case in a
ubcritical reactor. In a supercritical reactor, the condition for
he value of the reactivity introduced should be satisfied: r k <
 a k , k / b k , k ) �h 0 . This relationship indicates that it is advisable to
se its own type of quadrature formula for each of Eq. (14) .
hus, if b k , k = 0, then r k < ∞ , i.e., the restriction on the re-
ctivity introduced is not available when the open quadrature
ormula is used to calculate the power. This scheme takes
lace when, for example, the left-hand rectangle formula is
sed to calculate the power and the right-hand rectangle func-
ion is used to calculate the rate: 

 k = ( 1 + T k−1 h 0 ) 
−1 , nk = n k−1 + T k−1 v k−1 , 

 k = d k ( Q k + r k n k −
k−1 ∑ 

l=1 

T l−1 h k−l v l ) , k = 1 , 2, . . . 

Applying Simpson’s formula and averaging over two inter-
olation intervals, which in this case may belong to an ele-
entary interval, we obtain the following quadrature formula
o calculate the power: 

 k = n 0 + 

T 

12 

( 

4 v 0 + 15 v 1 + 11 v 2 + 12 

k −2 ∑ 

l = 3 

v l + 13 v k −1 + 5 v k 

) 

, 

k ≥ 4. 

If the delayed neutron integral is calculated using the anal-
gous formula, General Algorithm ( 15 ) is concretized as fol-
ows: 

 k = n 0 + 

T 

12 

( 

15 v 1 + 11 v 2 + 12 

k−2 ∑ 

l=3 

v l + 13 v k−1 

) 

, 

d k = ( 1 + 5 T ( h 0 − r k ) / 12 ) −1 , 

v k = d k 

( 

Q k − T 

12 

( 

15 h k, 1 v 1 + 11 h k, 2 v 2 

+ 12 

k−2 ∑ 

l=3 

h k,l v l + 13 h k ,k −1 v k−1 

) 

+ r k w k 

) 

, 

n k = w k + 

5 T 

12 

v k , k = 4, 5 , 6 , ... 

ith the error-suppressing condition: r k < h 0 . 
If the DNI is calculated by the trapezoidal formula, we

btain the following computational scheme: 

 k = n 0 + 

T 

12 

( 

15 v 1 + 11 v 2 + 12 

k−2 ∑ 

l=3 

v l + 13 v k−1 

) 

, 

v k = 

Q k − T 
2 

k −1 ∑ 

l = 1 
h k,l v l + r k w k 

( 1 + T (6 h 0 −5 r k ) / 12 ) 
, n k = w k + 

5 T 

12 

v k , k = 4, 5 , 6 , ... 

ith an error-suppressing condition r k < 1.2 h 0 weaker than in
he previous scheme. This again confirms the reasonability of
sing non-coincident types of quadrature formulas in Eq. ( 6 ).

onclusions 

) A model of nuclear reactor kinetics is proposed in the form
of a system of Volterra integral equations of the second
kind for the power and power change rate, which unifies
the direct and inverse problems of kinetics by reducing
them to the calculation of the delayed neutron integral. 

) A series of quadrature formulas for the DNI is obtained
in the case of non-group representation of the DNP decay
function and the corresponding digital reactimeter equa-
tions are presented. 

) A description is given of the general computational scheme
for the proposed model. The algorithm is concretized for
the cases of using a number of popular quadrature formu-
las. 

) For step-by-step application of quadrature formulas requir-
ing a certain multiplicity of the number of interpolation
nodes, a moving integration algorithm is proposed. The
corresponding quadrature formulas are obtained with re-
spect to the DNI calculation. 
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5) Conditions for suppressing errors in integration are indi-
cated. 

The implementation of the proposed algorithms can be ex-
emplified by the results presented in [27,29,33] . However, all
possible combinations of quadrature types used to discretize
the model equations as well as different averaging options
in moving integration schemes lead to numerous variants of
numerical implementation, which requires a further analysis
and comparison by accuracy and number of operations. It is
necessary to perform such a comparison with other known
algorithms for modeling nuclear reactor kinetics. 
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