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Abstract 

A metric, describing the field due to bodies in stationary rotation about their axes and compatible with a stationary 
electromagnetic field, has been studied in present paper. Using Lie symmetry reduction approach we have herein examined, 
under continuous groups of transformations, the invariance of field equations due to rotation in General Relativity, that are 
expressed in terms of coupled system of partial differential equations. We have exploited the symmetries of these equations to 
derive some ans ̈a tz leading to the reduction of variables, where the analytic solutions are easier to obtain by considering the 
optimal system of conjugacy inequivalent subgroups. Furthermore, some solutions are considered by using numerical methods 
due to complexity of reduced ordinary differential equations. 
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1. Introduction 

General Relativity describes phenomena on all 
scales in the Universe, from compact objects such as 
black holes, neutron stars, and supernovae to large- 
scale structure formations such as those involved in 

creating the distribution of clusters of galaxies. For 
many years, physicists, astrophysicists and mathemati- 
cians have striven to develop techniques for unlock- 
ing the secrets contained in Einstein’s theory of grav- 
ity. More recently, solutions of Einstein field equa- 
tions have added their expertise to the endeavor. Those 
who study these objects face a daunting challenge 
that the equations are among the most complicated 
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in mathematical physics. Together, they form a set 
of coupled, nonlinear, hyperbolic-elliptic partial dif- 
ferential equations that contain many thousands of 
terms. 

The gravitational field due to a rotating body was 
first attempted by Thirring who used Einstein field 

equations in the linear approximation and showed that 
a rotating thin spherical shell produces near its cen- 
tre forces analogous to the Coriolis and centrifugal 
forces of classical machines. Later on this work has 
been revised by Pirani [23] who supplemented the en- 
ergy tensor of incoherent material by a term represent- 
ing the elastic interaction between the particles of the 
shell. Bach considered the field due to a slowly ro- 
tating sphere by successive approximations taking the 
Schwarzschild solution as his zeroth approximation. 
Special cases of stationary fields has been considered 
ction and hosting by Elsevier B.V. This is an open access article 
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by Lanczos [16] and applied its results to cosmologi-
cal problems. 

Lewis [17] found the field due to a rotating infinite
cylinder and thus obtained two different methods of
successive approximations for constructing solutions
of a more general type which behave in an assigned
manner at infinity and on a surface of revolution en-
closing the rotating matter to which the field is due.
Clark tried to solve the empty gravitational field equa-
tions, using succussive approximations, with forms of
g μν appropriate to the gravitational field of s rotating
body. This introduction provides a sample of the idea
that these equations have been a subject of extensive
and intensive study both by mathematicians and physi-
cists. For the detail study of exact solutions of Ein-
stein field equations, the reader may refer to Stephani
et al. [24] . Recent years have been devoted to studying
the field equations of General Relativity for their so-
lutions [1–3,5–7,9,11,12,14,19,20] , these solutions are
important in the sense that they represent the physical
models in analytic manner. 

In the present paper, we have considered a metric
[17] which is supposed to describe the field due to
bodies in stationary rotation. Further in this case we
furnished a consistent set of partial differential equa-
tions for determining g μν in empty space time. It is
shown that by using the selective form of g μν , the
problem of solving four equations in three unknowns
has been reduced to a system of two partial differential
equations in two unknowns and then Lie group anal-
ysis is applied to generate the various symmetries of
this coupled system of partial differential equations,
which are then used to identify the associated ba-
sic vector fields of the optimal system for systematic
study of the group invariant solutions admitted by the
system. 

2. Nature of field equations 

The following metric described the field due to bod-
ies in stationary rotation about their axes: 

ds 2 = − exp (2λ)(d ρ2 + d z 2 ) − Cd φ2 + Dd t 2 

+ 2E d φd t, (2.1)

where λ, C , D and E are functions of ρ and z only. 
Following Lewis [17] , we have made use of canon-

ical coordinates in the sense of Weyl. The choice of
these coordinates is possible only in matter-free space
as it can be easily be verified by a procedure similar
to that of Synge. Consequently in domains occupied
by matter the canonical coordinates cannot be used.
In canonical coordinates we have 

D + E 

2 = ρ2 , (2.2)

and therefore the expressions for Einstein tensor are
given by 

G 11 = −G 22 = −λ1 

ρ
− C 1 D 1 + E 

2 
1 − C 2 D 2 − E 

2 
2 

4ρ2 
, 

G 33 = 

exp (−2λ) 

2 

(
−2C(λ11 + λ22 ) + C 11 + C 22 − C 1 

ρ

+ 

3 C 

2ρ2 
(C 1 D 1 + E 

2 
1 + C 2 D 2 + E 

2 
2 ) 

)
, 

G 44 = 

exp (−2λ) 

2 

(
2D(λ11 + λ22 ) − D 11 − D 22 + 

D 1 

ρ

− 3 D 

2ρ2 
(C 1 D 1 + E 

2 
1 + C 2 D 2 + E 

2 
2 ) 

)
, 

G 34 = 

exp (−2λ) 

2 

(
−2E (λ11 + λ22 ) − E 11 − E 22 + 

E 1 

ρ

− 3 E 

2ρ2 
(C 1 D 1 + E 

2 
1 + C 2 D 2 + E 

2 
2 ) 

)
, 

G 12 = −λ2 

ρ
− C 1 D 2 + 2E 1 E 2 + C 2 D 1 

4ρ2 
, (2.3)

where lower suffixes 1 and 2 after the unknown func-
tions imply partial differentiation with respect to ρ and
z respectively. 

Now we have considered the determination equa-
tion 

| G μν − sg μν | = 0. (2.4)

We found that two of the eigenvalues of G μν with
respect to g μν are given by 

s i = ± exp (−2λ) 
(
G 

2 
22 + G 

2 
12 

) 1 
2 , i = 1 , 2, (2.5)

and the other two are given by following equation 

s 2 + Rs − 1 

ρ2 

(
G 33 G 44 − G 

2 
34 

) = 0, (2.6)

where R is curvature scalar. It is clear from
Eqs. (2.5) and (2.6) that, in general, two eigenvalues
of G μν are equal and opposite while other two are dif-
ferent. Therefore the metric (2.1) in canonical coordi-
nates cannot represent a perfect fluid distribution. But
if we do not consider the canonical coordinates then
all the eigenvalues of Einstein tensor are different in
general. Thus in this case metric (2.1) can be utilized
to describe the space-time in the domains occupied by
matter. 

In case of an electromagnetic field, we have R = 0,

therefore (2.6) gives 

S j = ± 1 

ρ

√ 

(G 33 G 44 − G 

2 
34 ) , j = 3 , 4. (2.7)
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Thus in this case the other two eigenvalues are equal 
and opposite. Infact the eigenvalues are k , −k , m , −m , 

where 

k = exp (−2λ) 

√ 

(G 

2 
22 + G 

2 
12 ) , 

m = 

1 

ρ

√ 

(G 33 G 44 − G 

2 
34 ) , (2.8) 

and if we further consider k = m, the eigenvalues be- 
come k , k , −k , −k , which characterize an electromag- 
netic field. 

2.1. The field equations for empty spacetime 

The field equations, in terms of the coupled system 

of partial differential equations, for empty spacetime, 
corresponding to (2.1) , are given by 

λ11 + λ22 − λ1 

ρ
= 

C 1 D 1 + E 

2 
1 

2ρ2 
, (2.9) 

λ11 + λ22 + 

λ1 

ρ
= 

C 2 D 2 + E 

2 
2 

2ρ2 
, (2.10) 

λ2 = − 1 

4ρ
( C 1 D 2 + C 2 D 1 + 2E 1 E 2 ) , (2.11) 

 11 + C 22 − C 1 

ρ
+ 

C 

ρ2 

(
C 1 D 1 + C 2 D 2 + E 

2 
1 + E 

2 
2 

) = 0, 

(2.12) 

D 11 + D 22 − D 1 

ρ
+ 

D 

ρ2 

(
C 1 D 1 + C 2 D 2 + E 

2 
1 + E 

2 
2 

) = 0,

(2.13) 

E 11 + E 22 − E 1 

ρ
+ 

E 

ρ2 

(
C 1 D 1 + C 2 D 2 + E 

2 
1 + E 

2 
2 

) = 0. 

(2.14) 

From Eqs. (2.9) and (2.10) , the condition of integrabil- 
ity can be easily verified for the above system of par- 
tial differential equations. Also from (2.9) and (2.10) , 
we got 

λ11 + λ22 = 

(
C 1 D 1 + C 2 D 2 + E 

2 
1 + E 

2 
2 

)
ρ2 

, (2.15) 

λ1 = 

(−C 1 D 1 + C 2 D 2 − E 

2 
1 + E 

2 
2 

)
4ρ

. (2.16) 

Also (2.15) is consistent with (2.11) and (2.16) . 
Thus the problem of solving Eqs. (2.2) , (2.9) to 
(2.14) reduces to determining C , D and E from (2.2), 
(2.12), (2.13) and (2.14) and then λ will be given by 

(2.11) and (2.16) . 
We made the substitutions as follows: 

C = ρ exp (−μ) cos θ, D = ρ exp (μ) cos θ, 

E = ρ sin θ, (2.17) 

where μ and θ are functions of ρ and z . Consequently, 
(2.12), (2.13) and (2.14) is reduced to 

cos θ
(
μ11 + μ22 + 

μ1 

ρ
− 2 tan θ (μ1 θ1 + μ2 θ2 ) 

)
+ sin θ

(
θ11 + θ22 + 

θ1 
ρ

− 2 sin θ cos θ (μ2 
1 + μ2 

2 ) 
)

= 0

(2.18) 

cos θ
(
μ11 + μ22 + 

μ1 

ρ
− 2 tan θ (μ1 θ1 + μ2 θ2 ) 

)
− sin θ (θ11 + θ22 + 

θ1 
ρ

− 2 sin θ cos θ (μ2 
1 + μ2 

2 )) = 0,

(2.19) 

θ11 + θ22 + 

θ1 

ρ
− sin θ cos θ (μ2 

1 + μ2 
2 ) = 0. (2.20) 

From (2.18) and (2.19) we got, in view of (2.20) , the 
single equation: 

μ11 + μ22 + 

μ1 

ρ
− tan θ ( μ1 θ1 + μ2 θ2 ) = 0, (2.21) 

and (2.11) and (2.16) result into following equations: 

λ1 = − 1 

4ρ
− ρ

4 

(
θ2 

1 + θ2 
2 − cos 2 θ (μ2 

1 − μ2 
2 ) 

)
, (2.22) 

λ2 = 

ρ

2 

(
cos 2 θμ1 μ2 − θ1 θ2 

)
. (2.23) 

Thus, the problem of solving four equations in three 
unknowns has been reduced to the system of partial 
differential equations consisting of two Eqs. (2.20) and 

(2.21) in two unknowns θ and μ. Also we can deter- 
mine C , D and E by using the expressions of C , D
and E in (2.17) and then λ can be determined from 

(2.22) and (2.23) . 

3. Solutions of field equations 

It is well known that the Lie symmetries, originally 

advocated by the Norwegian mathematician Sophus 
Lie in the beginning of the 19th century, are widely 

applied to investigate nonlinear differential equations 
for constructing their exact and explicit solutions. Con- 
sidering the tangent structural equations under one or 
several parameter transformation groups is the basic 
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idea of the Lie symmetry analysis. It has been shown
that the Lie symmetry analysis has been effectively
used to look for exact and explicit solutions to both or-
dinary differential equations (ODEs) and partial differ-
ential equations (PDEs). There are a lot of papers and
many excellent books [4,6,8,10,12,13,15,18,21,22] de-
voted to such applications. 

In the present section, we have performed Lie group
classification of Eqs. (2.20) and (2.21) . That is, we
have furnished all the possible forms of Lie point sym-
metries, admitted by Eqs. (2.20) and (2.21) , and then
constructed symmetry reductions and group-invariant
solutions using the optimal system of subalgebras of
the Lie algebras of the equations. 

The classical Lie method [4] has been applied
to Eqs. (2.20) and (2.21) by considering the one-
parameter Lie group of infinitesimal transformations
in ρ, z , θ , μ, ξ 1 ( ρ, z ), ξ 2 ( ρ, z ), η1 ( ρ, z ) and η2 ( ρ, z ). This
transformation leaves invariant the following set: 

S 	 ≡ { θ (ρ, z) , μ(ρ, z) : 	1 (θ, μ) = 0, 

	2 (θ, μ) = 0} , (3.1)

of solutions of Eqs. (2.20) and (2.21) , where 

	1 = θ11 + θ22 + 

θ1 

ρ
− sin θ cos θ (μ2 

1 + μ2 
2 ) , 

	2 = μ11 + μ22 + 

μ1 

ρ
− tan θ (μ1 θ1 + μ2 θ2 ) . (3.2)

The associated Lie algebra of infinitesimal symmetries
is the set of vector fields of the form 


 ≡ ξ 1 ∂ 

∂ρ
+ ξ 2 ∂ 

∂z 
+ η1 ∂ 

∂θ
+ η2 ∂ 

∂μ
. (3.3)

The set S 	 is invariant under the one-parameter trans-
formations provided that P r (2) (
) | 	=0 = 0, where
Pr (2) ( 
) is the second prolongation of the vec-
tor field 
, which is explicitly given in terms of
ξ 1 , ξ 2 , η1 and η2 . After determining the infinitesimals
of Eqs. (2.20) and (2.21) , the similarity variables are
derived by solving invariant surface conditions 

�1 ≡ ξ 1 θρ + ξ 2 μz − η1 = 0, 

�2 ≡ ξ 1 θρ + ξ 2 μz − η2 = 0. (3.4)

The symmetries under which Eqs. (2.20) and
(2.21) are invariant can be spanned by the following
three linearly independent infinitesimal generators: 


1 = ρ
∂ 

∂ρ
+ z 

∂ 

∂z 
, 
2 = 

∂ 

∂z 
, 
3 = 

∂ 

∂θ
. (3.5)

It is easy to verify that 
1 , 
2 and 
3 are closed un-
der the Lie bracket. So we can see that the generator
of invariant group 
 of Eqs. (2.20) and (2.21) con-
struct three-dimensional Lie algebra, which is spanned
by the basis 
1 , 
2 and 
3 . Thus, we have the cor-
responding one-parameter group of symmetries of
Eqs. (2.20) and (2.21) : 

G 1 : (ρ, z, θ, μ) → ( exp (ε) ρ, exp (ε) z, θ, μ) , 

G 2 : (ρ, z, θ, μ) → (ρ, exp (ε) z, θ, μ) , 

G 3 : (ρ, z, θ, μ) → (ρ, z, exp (ε) θ, μ) . (3.6)

We can see that G 1 is a space translation, G 2 is a time
translation and G 3 is a scaling transformation. We have
used the subalgebraic structure of symmetries (3.5) to
construct an optimal system [22] of one dimensional
subgroups. The optimal system yields only the follow-
ing symmetry combinations: 

(i) 
1 + β
3 , (ii) 
2 + α
3 , (iii) 
3 , (3.7)

where α and β are arbitrary constants. 

3.1. Symmetry reductions 

In this subsection, we have derived symmetry re-
ductions of Eqs. (2.20) and (2.21) associated with the
vector fields in the optimal system (3.5) by using sim-
ilarity variables and further attempted to furnish exact
solutions. 

(i) 
1 + β
3 

Corresponding to this vector field, the form of
the similarity variable and similarity solution are as
follows: ζ = 

ρ

z , θ (ρ, z) = F (ζ ) , μ(ρ, z) = β log z +
G (ζ ) . 

Substituting the expressions of the similarity vari-
able and the similarity solution into Eqs. (2.20) and
(2.21) yields the following system of reduced ODE: 

ζ 3 F 

′′ + F 

′ + ζ + 2F 

′ ζ 2 − ζβ2 sin F cos F 

− 2 sin F cos F ζ 2 βG 

′ − sin F cos F ζ 3 G 

′′ 2 

− sin F cos F ζG 

′ 2 = 0, ζG 

′′ + G 

′ + βζ

− G 

′′ ζ 2 − 2ζ 2 G 

′ − 2ζF 

′ G 

′ tan F 

+ 2ζ 2 βF 

′ tan F − 2ζ 3 F 

′ G 

′ tan F = 0. (3.8)

In this case because of the complexity of the reduced
system (3.8) , the following two particular cases have
been worked out. 

Case (I): By considering F (ζ ) = 0, we found that
metric (2.1) is reduced to static axially symmetric
metric of Weyl in canonical co-ordinates and system
(3.8) becomes 

ζG 

′′ + G 

′ + βζ − ζ 2 G 

′′ − 2ζ 2 G 

′ = 0. (3.9)
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Fig. 1. Coriolis and centrifugal force solution (3.11) , produced by 
rotating spherical shell in General Relativity to field (2.20) and 
(2.21) with β = 1 , c 1 = 1 and c 2 = 1 . 
Solving (3.9) , we obtained the solutions as follows: 

G (ζ ) = 

β

4 

ln (−2ζ ) − β

4 

ln (−2ζ + 2) + 

β

2 

ln (ζ − 1) 

+ c 1 Ei (1 , 2ζ ) − c 1 exp (−2) Ei (1 , 2ζ − 2) 

+ c 2 , (3.10) 

where c 1 and c 2 are arbitrary constants and E i is ex- 
ponential integral. Now, we have obtained the solution 

of Eqs. (2.20) and (2.21) for static axially symmetric 
metric and further by back substitution to original vari- 
ables, the exact solution of Eqs. (2.20) and (2.21) is 
given by: 

μ(ρ, z) = 

β

4 
ln 

(−2ρ

z 

)
− β

4 
ln 

(−2ρ

z 
+ 2 

)
+ 

β

2 
ln 

(
ρ

z 
− 1 

)

+ c 1 

(
Ei 

(
1 , 

2ρ

z 

))
− c 1 

(
exp (−2) Ei 

(
1 , 

2ρ

z 
− 2 

))
+ c 2 . (3.11) 

Case (II): By putting G (ζ ) = 0, metric (2.1) is re- 
duced to 

ds 2 = − exp (2λ)(d ρ2 + d z 2 ) − ρ cos θ ( d φ2 − d t 2 ) 

+ 2ρ sin θd φd t, (3.12) 

and then solving Eq. (3.8) and reverting back to the 
original variables. Thus we got the following exact 
solution of Eqs. (2.20) and (2.21) : 

θ (ρ, z) = c 3 + 

⎛ 

⎜ ⎜ ⎝ 

− arctan 

⎛ 

⎜ ⎜ ⎝ 

1 √ (
1 + 

ρ2 

z 2 

)
⎞ 

⎟ ⎟ ⎠ 

+ 

( 

(4 + ( 
ρ

z ) 
2 ) 

3 

√ (
1 + 

ρ2 

z 2 

)) ) 

c 4 , (3.13) 

where c 3 and c 4 are arbitrary constants. 

(ii) 
2 + α
3 

For this vector field, the form of the similarity vari- 
able and similarity solution are as follows: ζ = ρ, 

θ (ρ, z) = F (ζ ) , μ(ρ, z) = G (ζ ) + γ z. On using these 
in Eqs. (2.20) and (2.21) , the system of reduced 

ODEs: 

ζF 

′′ + F 

′ − ζ sin F cos F (α2 + G 

′ 2 ) = 0, 

ζG 

′′ + G 

′ − 2ζ tan F G = 0, (3.14) 

where prime ( ′ ) denotes the differentiation with respect 
to the variable ζ . 

Now under this vector field, we are unable to ob- 

tain the nontrivial exact solutions. So we have used 
a well-developed numerical technique to solve the re- 
duced problem. For this purpose, we have obtained the 
following four first-order equations: 

dy 1 
dz 

= y 2 , 

dy 2 
dz 

= 

−y 2 + α2 z sin y 1 cos y 1 + zα2 y 2 4 sin y 1 cos y 1 
z 

, 

dy 2 
dz 

= y 3 , 
dy 4 
dz 

= 

−y 4 + 2y 2 y 4 z tan y 1 
z 

, (3.15) 

with 

y 1 (45) = 1 . 2, y 2 (45) = 0, y 3 (45) = 0, 

y 5 (45) = 0. 1 . (3.16) 

The numerical solutions to the initial value problem 

(IVP) (3.15) and (3.16) are depicted below. 
In Fig. 3 , numerical solutions of field equations 

(2.20) and (2.21) are obtained with respect to the re- 
duced IVP (3.15) and (3.16) . Now the profile of y 1 and 

y 2 shows that the solution is periodic and the profile 
of y 3 and y 4 shows that the solution is unbounded and 

damped oscillatory respectively. 

(iii) 
3 

Corresponding to this vector field, no such invariant 
solution exists. 

4. Discussion and concluding remarks 

In the present investigation, we have successfully 

implemented Lie symmetry reduction to obtain the Lie 
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Fig. 2. Coriolis and centrifugal force solution (3.13) , produced by 
rotating spherical shell in General Relativity to field (2.20) and 
(2.21) with c 3 = 1 and c 4 = 1 . 
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Fig. 3. Numerical solutions to field (2.20) and (2.21) with respect to the
z = 45 at h = 0. 01 . 
symmetries admitted by field equations extracted from
a metric which is supposed to describe the fields due
to bodies in stationary rotation about their axes. The
infinitesimal generators in the optimal system of sub
algebras of the full Lie algebra of the coupled system
of nonlinear partial differential equations of second or-
der of field equations are considered. We completely
solved the determining equations for the infinitesimal
generators of Lie groups. Further, the group classifi-
cation from the point of view of the optimal system
of non-conjugate sub-algebras of the symmetry alge-
bra of the nonlinear system has been performed under
the adjoint action of the symmetry group. The various
fields in the optimal system have been then exploited
to get the reductions of PDEs into ODEs. Due to the
complexity of reduced ODEs, it is impossible to obtain
the nontrivial exact solutions, so under the vector field
(i) �1 + β�2 , particular exact solutions are obtained
for the field equations (2.20) and (2.21) . Graphical
representation of solutions (3.11) and (3.13) to field
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 reduced IVP (3.15) and (3.16) when α2 = −5 , with initial value 
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equations (2.20) and (2.21) described the centre forces, 
similar to the Coriolis and centrifugal forces of classi- 
cal machines, produced by the rotating spherical shell 
in General Relativity as shown in Figs. 1 and 2 . Now 

under the vector field (ii) �2 + α�3 , it is again im- 
possible to obtain the nontrivial exact solutions with 

respect to the reduced ODEs (3.14) . So, under this 
vector field, IVP is posed for numerical solution. As 
a result, a numerical solution is found which is peri- 
odic, unbounded and damped oscillatory as shown in 

Fig. 3 . 
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