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ABSTRACT 

We study the problem of frequency and power allocation and scheduling at a time-slotted cognitive ad-hoc wireless 
network, where cognitive nodes share a number of frequency bands and frequency reuse is allowed. In such a network 
the throughput maximization problem generally results in a mixed zero-one nonlinear non-convex problem. Interest-
ingly, in the low-SINR regime, the power allocation policy that maximizes the total throughput follows an “on/off” 
strategy with maximum power usage in the “on” state. In this paper we show that the on/off strategy in the low-SINR 
regime is also optimal with respect to throughput when scheduling users over time and frequency subject to minimum 
SINR requirements. We show that these additional constraints will not change the optimum strategy, but may affect the 
set of “on” or “off” transmitters. Also we present an approach that transforms the mixed zero-one nonlinear problem to 
an equivalent mixed zero-one linear problem at the expense of extra variables. 
 
Keywords: Ad-Hoc Networks; Cognitive Networks; Optimization; Mixed Zero-One Linear Problem; Zero-One 

Nonlinear Problem 

1. Introduction 

We study optimal resource allocation techniques when a 
number of cognitive radios and primary users share the 
same spectral white spaces. Cognitive radios have the 
ability to sense the radio spectrum environment and to 
switch to the available frequency bands so that they do 
not interfere with the high priority primary users. The 
question of how the sensed resources should best be al-
located is a fundamental question which has received a 
fair amount of attention in closely related ad-hoc and 
cognitive network communities. Depending on the type 
and the design objectives of the network, the optimal 
solution can be defined as an allocation that maximizes 
the total throughput in the network [1], or the one that 
minimizes the power consumption [2,3] while satisfying 
some quality of service requirements. 

The problem of transmission scheduling and assigning 
power and frequency in a centralized fashion in order to 
maximize the throughput in a wireless ad hoc network 
where frequency reuse is allowed is a non-linear non- 
convex problem. To overcome the complexity of the pro- 
blem distributed algorithms [1,3-5] and approximation 
methods [1,4,6-10] have been introduced. To further sim- 
plify the problem the authors of [11] have focused on 
maximizing the number of transmissions as a measure of 
the throughput, and the authors of [5] considered mi- 

nimizing the interference instead of maximizing the 
throughput. In the above references communicating nodes 
and/or their occupied frequency bands are known in ad-
vance. The problem considered in this paper assumes that 
communicating nodes and their occupied frequency bands 
are not given and must be determined such that the total 
throughput of the network is maximized. We also strive 
on determining the optimal power allocation for a maxi-
mum throughput transmission. 

In this paper we focus on centralized throughput 
maximization in the low-SINR regimes. In [12] we in-
vestigated a similar problem in the high-SINR regime 
and proposed an approach based on the concept of Geo-
metric Programming. In the low-SINR regime, we prove 
that the on/off strategy maximizes the throughput under 
the additional constraint on the minimum SINR required 
for a successful transmission. 

The contribution of this paper lies in suggesting a 
mathematical method for finding optimum solutions to 
the throughput maximization problem in an ad-hoc net-
work where power, frequency and scheduling are to be 
determined by a central controller. This problem is ap-
proached more rigorously than in the past, where the 
solutions were either approximate or based on relaxing 
one of the scheduling, power allocation or frequency 
allocation requirements. 
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In what follows we start by describing our assumptions 
and problem formulation. In Section 3 we prove that the 
optimal solution to our throughput maximization prob-
lem allocates either zero or maximum power to each 
transmitter. We also prove that the throughput maximiza-
tion in low-SINR regime which is a mixed zero-one 
nonlinear optimization problem has an equivalent non- 
linear optimization problem with real variables. We also 
show how our mixed zero-one non-linear problem can be 
transformed to an equivalent mixed zero-one linear pro- 
blem. Finally, we conclude the paper in Section 4. 

2. Assumptions and Problem Formulation 

We consider a centralized cognitive network operating in 
the low-SINR regime composed of  nodes and  
available frequencies, over which the communicating 
pairs seek to transfer data. The objective is to determine 
the optimal time scheduling, and frequency and power 
allocation such that the total throughput is maximized. 
We assume that Every node has access to every fre-
quency band and a central scheduler determines which 
frequencies can be occupied by each cognitive pair. We 
also assume that frequency reuse is allowed under the 
condition that SINR is sufficiently large to guarantee a 
successful transmission. Figure 1 shows a possible fre-
quency allocation for a network of cognitive users which 
have access to at most 5 frequency bands. The allocation 
of frequency bands is subject to a number of constraints 

dictated by the abilities of the transmitter and receiver 
technologies, as well as the physical layer protocol gov-
erning the network. We assume the following model for 
communication: Network is composed of  cognitive 
nodes and  available frequency bands to be used by 
cognitive users. The objective is to identify the best se-
lection of cognitive transmitter-receiver pairs, allocate 
frequency bands to them, and define their optimal power 
consumptions such that the overall throughput is maxi-
mized. Frequency reuse is allowed in the network as long 
as the SINR is greater than a given threshold 

N K

N
K

 , where 
  is fixed. Each node cannot transmit and receive on 
the same frequency band. Every transmitter (receiver) 
can send to (receive from) at most one receiver (trans-
mitter) at the same frequency the power consumption per 
frequency per node at each time-slot cannot exceed max . 
The received signal at each frequency band at node  is 
subject to additive white Gaussian noise (AWGN) of 
power 

P
j

jn . 
Based on these assumptions the joint scheduling, fre-

quency and power allocation problem is formulated as 
Problem 1. All logarithms are in base 2, and equations 
with unspecified indices such as (3) for example, is meant 
to represent a set of equations which hold for all un- 
specified indices (such as  and  
in (3)). The variables are defined in Table 1.  

= 1,j N



= 1,k K

Maximize log 1ijk ijk
ijk

T SINR        (1) 

 

 

Figure 1. Visualization of a possible frequency allocation during one time-slot for an ad-hoc network of cognitive users with 
at most 5 available frequency bands. The arrows show a connection between a transmitter and a receiver on a specific 
frequency band. The narrow lines indicate a partial mesh wireless network, where a node can communicate with other nodes 
within its accessibility range, given the resources are available. For a node i we say a given nodes j is accessible, if  > 0ijkk

 . 
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Table 1. Algorithms variables and parameters. 

Parameter/Varibale Description 

N Number of nodes in the network 

K Number of available frequencies 

ijk  Transmission gain from node i to node j on frequency k 

ijkT  
Binary variable,  if node i is transmitting to node jon frequency ,  

 otherwise. 

= 1ijkT k

= 0ijkT

ikP  Amount of assigned power to transmitter i on frequency  k

ijkSINR  Signal to Interference plus Noise Ratio at receiver j for 
the signal transmitted from node i on frequency k. 

jn  Gaussian noise at receiver j 

  Threshold on SINR required for a successful transmission 

ijkA  Real variable defined as 
  1

ijk

mjk m km i

T

T


  

 

imjkB  Real variable defined as  ijk m kA T 
 

imjkTT  Binary variable defined as  ijk mjkT T

 

subject to ,ijk ijkSINR T                (2) 

1 , 1,ijk ijk
j i

T T                      (3) 

1,ijk ikT T  


                      (4) 

max ,ikP P                           (5) 

 0,1 , ,ijk ikT P R   

where ijk  is a binary variable which indicates whether 
or not node i  is transmitting to node  over fre- 
quency band  and ik  is a real variable which de-
notes the amount of allocated power to node  on 
frequency . If node  is not transmitting to any node 
on frequency , then . ijk  is the signal to 
interference plus noise ratio defined as  

T
j

k

k

P

i

ikP

i
k

= 0 SINR

= ijk ik
ijk

mjk mk m k jm i

P
SINR

P T n





  

, 

where ijk  defines transmission gain from node  to 
node  on frequency . Equation (2) corresponds to 
assumption 3. Equations (3) and (4) correspond to as-
sumptions 4 and 5 for scheduling constraints. Equation (5) 
corresponds to assumption 6 which sets an upper bound 
on the power allocated to each transmitter. 

i
j k

3. Scheduling and Power Control in 
Low-SINR Regime 

In contrast to our prior work [12], where Problem 1 was 

approached in the high-SINR regime, we aim to simplify 
the non-convex non-linear optimization problem in the 
low-SINR regime. This regime is particularly relevant in 
networks where the number of frequency bands is large 
and frequency reuse is common. The throughput maxi-
mization problem in this case is simplified by approxi-
mating the Shannon capacity with its first order Taylor 
series around zero SINR. That is, we approximate the 
objective function  log 1ijk ijkijk

T SINR  at low-SINR  
with ijkijk

T SINRijk , keeping the remaining constraints  

on ijk  and ik  the same. We determine the optimum 
solution to this approximation to the desired problem in a 
number of steps:  

T P

1) In Section 3.1 we first determine a solution for the 
relaxation to the problem subject only to constraints on 
the variable domains 0 1ijkT   and , max0 ikP P 

 , 1, :=i j N I    and . 1,k   K K, :=
2) Next, in Section 3.2 we determine the solution for P 

matrix when the minimum SINR constraints  
>ijk ijkSINR T  are added, . , ,i j I k K 

3) In Section 3.3 we incorporate all the scheduling 
constraints in (3) and (4) and show that  will be 
binary using a suitable penalty function. 

ijkT

4) Finally, in Section 3.4 we introduce new variables 
which transform the non-linear optimization problem to a 
linear one.  

The main conclusions to be drawn are that the optimal 
signaling strategy follows an on/off strategy, and that the 
optimization may be turned into an easily solvable linear 
program at the expense of increasing the number of 
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variables from  to . The core insight 
follows from the work of Ebrahimi et al. [10], where the 
authors proved that in a similar problem without fre-
quency allocation, if the transmission power is con-
strained by , the power allocation strategy which 
maximizes , assigns either a power of 0 or max  
to each transmitter. This is called the on/off strategy. 
Using a similar approach we prove that the on/off 
strategy also maximizes the objective function of the 
form ijkijk

 subject to additional frequency and 
SINR constraints. 

 2O N

SINR

ijkINR

 3O N 

maxP



T S

P



3.1. Relaxed, Unconstrained Throughput 
Maximization 

We begin by removing most of the constraints from 
Problem 1 and relaxing the domains of . ijk

Theorem 1. Consider the following optimization pro- 
blem:  

T

Maximize ijk ijk
ijk

T SINR  

subject to 0 1ijkT   

max0 ikP P   

1) The optimum solution to this problem allocates 
either 0 or  power to every node. max

2) The optimum solution results in binary values for 
the  variables. 

P

ijk

Proof. A proof by contradiction was provided for the 
first part of the theorem by Ebrahimi et al. [10]. Using a 
similar argument we provide the proof for the second  

T

part. It can be seen that 1 = ijk ijkijk
H T SINR  is convex 

with respect to each ijkT  since 2 2 0H T  1 ijk  (see 
Appendix). Thus, the maximum of 1H  will happen at 
the boundaries of the variable domains. To see this, 
assume that the optimum solution corresponds to a set 

* with at least one non-binary element; T  *= 0ijk ijkT T  ,1 . 
Since 1H  is convex with respect to ijkT , then by 
keeping the rest of the variables constant and moving 

ijk  to the boundaries (0 or 1) one can find a larger 
amount for 1

T
H  and hence the set  with non-binary 

element cannot be the optimum solution. Therefore, 
 must hold for all . 

*T

0,1ijkT , ,i j k

3.2. Throughput Maximization with SINR 
Constraints 

The only constraint in the problem addressed in pre- 
vious section are on the domains of the ik  and ijkT  
variables. When the SINRs are required to exceed a 
minimal value it is not clear if/how the optimal power 
allocation changes. Now we prove that adding the SINR 
constraint may change the set of “on” or “off” transmit-
ters, but the on/off power allocation is still optimal. The 

proof is a direct result of the Generalized Lagrange Mul-
tiplier (GLM) Technique proposed by Everette [13]. Us-
ing GLM technique it can be shown that for a specific 
class of constrained problems, one can generate a lagran-
gian function of the problem such that the solution to the 
maximization of the lagrangian is a solution to the 
constrained problem. We state the needed result of [13] 
for clarity. 

P

Proposition 1. Consider a constrained optimization 
problem of the form: 

 
 

Maximize

subject to k k

H x

C x c
           (6) 

If the objective function  H x  of a constrained op-
timization problem given by Equation (6) is concave 
with respect to the constraint functions  kC , then it can 
be guaranteed that there is a set of non-negative lagrange 
multipliers 1 2, , , k  

K

  for the lagrangian of this pro-  

blem,    =1 k kk
H x C x , such that the solution to  

the constrained optimization in Equation (6) and the 
solution to its lagrangian are identical [13]. 

We use this proposition directly in our throughput 
maximization to show that the on/off power strategy still 
holds when a constraint on each active link’s SINR is 
enforced. Since we only define the optimum solution for 

 matrix, we assume that the  matrix is given and 
hence SINR is only a function of . Define Problem 4:  
P T

P

 Maximize ijk ijk
ijk

T SINR P  

 subject to >ijk ijkSINR P T  

max0 ikP P   

We apply this Proposition to Problem 4 in the fol- 
lowing theorem. 

Theorem 2. The optimum solution to Problem 4 al- 
locates either 0 or  power to each transmitter in the 
network.  

maxP

Proof. To apply Proposition 1 we must show that H is 
concave with respect to C, where C = [ ]. In this  ijkC
problem  = ijk ijkijk

H T SINR P  and  =ijk ijkINRC S P .  

Define  max: 0 ikS P P P �
P

 the set of possible solu- 
tions for . Suppose that we map every feasible matrix 
P S  into a point in the space of H and C. Since 

ijk ijkijk
=H T C  is a hyperplane in the H and C space, 

then it is both convex and concave. Note that based on 
our assumption ijk s are constants and define the slope 
of the hyperplane in the H and C space. Similar to the 
proof of Theorem 1 it can be shown that the Lagrangian 
corresponding to Problem 4,  

T

ijk ijk ijk ijkijk ijk
T SINR SINR  , 

is convex with respect to every . Therefore, for any ikP
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non-negative set of  ijk , the solution to the uncon- 
strained Lagrangian problem follows an on/off strategy 
(i.e., max ). By Proposition 1, the optimal 
solution to the unconstrained problem is equal to that of 
the the constrained problem, hence the solution to Pro- 
blem 4 follows an on/off strategy. 

0,ikP P

1 T

T





1

3.3. Adding Scheduling Constraints to the 
Optimization Problem 

The last set of constraints that must be added to the 
problem are the scheduling constraints which are 

ijki
, ijkj

, and 


. These 
additional constraints violate the optimum zero-one 
solution for the  matrix. However, we can easily limit 
the solution to zero-one by adding a penalty function (i.e., 

T 1ijk ikT T  

1ijk ijkijk
M T T   to the objective function, where M  

is a very large constant. This penalty function will take a 
very large value if any of the ijkT s has a non-binary 
value. Therefore the solution is directed towards a zero- 
one solution. Based on this discussion we state the last 
theorem of this section as follows: 

Theorem 3. The solution to the nonlinear real-valued 
optimization problem defined as Problem 5:  

 1ijk ijk ijk
ijk

R M T T  Maximize
ijk

Ma

ijkT SIN

ijk

ximize

ijkT 

 

subject to Equations (2)-(5) 

T R  

is a zero-one solution which is also the optimum solution 
to this zero-one optimization problem defined as Pro- 
blem 6: 

ijk ijk
ijk

T SINR  

subject to Equations (2)-(5) 

 0,1  

Proof. For large enough M  the optimum solution to 
Problem 5 is a zero-one solution, since the penalty func-
tion added to the objective function limits the solution to 
only zero and one values. On the other hand the solution 
is a maximizer for Problem 6 as it maximizes the first 
term in Problem 5 for binary values of ijk . Note that 
Equations (2)-(5) includes all scheduling constraints as 
well as the 

T

ijk ijkSINR T

 0,1

maxP

.  
Discussion. With Theorems 2 and 3 we proved that 

the solution to Problem 6 with zero-one variables (i.e., 

ijk ), is the same as the solution to Problem 5 
with real variables. This significantly reduces the com-
plexity of our problem from a mixed integer non-linear 
problem to a regular non-linear problem. With Theorem 
2 we proved that the optimum solution to Problem 6 
results in 0 or  solutions for s. This finding 

helps us introduce an approach for linearizing Problem 6 
in Section 3.4. 

T 

ikP

3.4. Transforming the Throughput 
Maximization to a Mixed Zero-One Linear 
Problem 

The throughput maximization problem is a non-linear 
problem. However, in low-SINR regime when the trans-
mitters follow an on/off power allocation strategy (based 
on Theorem 2), the problem can be transformed to a lin-
ear problem with the cost of additional variables. In the 
maximization problem both the objective function and 
the SINR constraint are non-linear. But both can be 
linearized using a variation of Balas method [14]. With the 
assumption of binary values for ijk s and also 0 or max  
values for ik , the objective function  is 
transformed to:  

T P

ijkRP ijkijk
T SIN

max

max

.ijk ijk

ijk
mjk m k j

m i

P T

P T n






   
 


  



        (7) 

Note that if  then max  and so 
 holds. Also if ijk , regardless of the 

value of   holds. A similar argument  

= 1ijkT

max= ijkT P

=ikP P
= 0

= P

max=ijk ik ijkT P T P

ikP ijk

T

P T
ikT P

can be used to explain  in the  maxmk m k m kT  

denominator. Equation (7) is a non-linear function of 
binary variables . Without loss of generality we 
assume that  and . Also define variables  

ijkT
= 1maxP = 1jn

  1
ijk

ijk

mjk m km i

T
A

T


. Therefore the objective  
  

�

function is transformed to ijk ijkijk
A , with an additional 

constraint defining ijkA . After crossing multiplication 
we obtain: 

=mjk m k ijk ijk ijk
m i

T A A T


   
 

  


.        (8) 

Even though ijkA  is not a binary variable, since it is 
smaller than 1, we still can use the Balas approach to 
linearize its multiplication with a binary variable. Note 
that m kT 

 can only take values 0 or 1 due to our 
scheduling constraints. Let’s define  imjk ijk m kB A T �


. 

Then Equation (8) is transformed to a linear constraint 
and using Balas method we only need to add a number of 
linear inequalities to the problem:  

0,

,

,

1.

imjk

imjk ijk

imjk m k

imjk m k ijk

B

B A

B T

B T A







  











 

To transform the non-linear SINR constraint to a linear 
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one we consider the fact that if  then regardless 
of the value of , the constraint ijk ijk

= 0ijkT
SIikP NR T  is 

satisfied. Also if  then  and so we can 
replace ik  in the numerator of ijk  in this con- 
straint with max . We introduce additional variables 

imjk ijk mjk  to transform this constraint to a linear 
one. Therefore, the linear constrained optimization pro- 
blem to be solved is:  

= 1ijkT max=ikP P
SINRP

T T
P

TT �

Maximize ijk ijk
ijk

A  

subject to 

1,

= ,

1, 1,

0 ,

mjk
imjk ijk

m i ijk ijk

mjk imjk ijk ijk
m i

ijk ijk
i j

imjk ijk

TT T

B A T

T T

B A

 
 






 



 

 





 
 

 

1 ,

,

1 ,

, 0,1

,

m k ijk imjk m k

imjk ijk

mjk ijk imjk mjk

imjk ijk

imjk ijk

T A B T

TT T

T T TT T

TT T

B A R

   



   





  
 

 

This problem is a mixed zero-one linear problem with 
binary variables  and real variables . 
This problem can be solved using standard methods for 
solving mixed-integer linear problems. Note that we did 
not use any approximation to transform Problem 6 (non- 
linear non-convex problem) to a linear one, but the cost 
that we pay for this transformation is an increase in the 
number of variables from  to O N . This 
complexity compared to the number of possible solutions 
in an exhaustive search which is the only reliable solu-
tion to the non-linear problems of this type is very low. 
The complexity of a search method for Problem 6 is 

,imjk ijkTT T ,imjk ijkB A

 3 2O N

 2
2NO  which is much higher than the complexity of  

our linear problem, especially for large values of N. 

4. Conclusion 

In this paper we presented methods for obtaining optimal 
solutions for throughput maximization in centralized 
cognitive networks operating in the low-SINR regime. 
The optimal solutions define the set of optimum commu-
nicating pairs as well as the optimum power levels and 
frequency allocated to the transmitters. We showed that 
in the low-SINR regime the mixed zero-one non-linear 
problem can be solved with an equivalent non-linear op-
timization problem. Also we proved that the optimal 

solution allocates max0 P  powers to the transmitters. 
Using this result we transformed the mixed zero-one 
nonlinear problem to an equivalent mixed zero-one linear 
problem, which can be solved efficiently using the stan-
dard methods for solving mixed integer linear problems. 
The centralized optimum solution presented in this paper 
serves as a benchmarks for suggesting new distributed 
algorithms and evaluating approximation algorithms for 
both centralized and distributed methods. 
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Appendix 

Proof of 2 2
1 0ijkH T   . 

We have 1 = ijk ijkijk
H T SINR . Without loss of gene-  

rality we consider a given element of matrix T , say 
, and rewrite 12kT 1H  as: 

1 12 12
1 2

= .k k ijk ijk
i j k
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The first partial differentiation is obtained as: 
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Since 22 = 0k , the first term in the last equation is 
zero, and the second term is always positive. Therefore, 

2 2 0ijk1H T    always holds. 

The second partial differentiation is obtained as: 
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