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Abstract

In this thesis, I investigate the application of various statistical methods towards

analysing GPS tracking data collected using GPS collars placed on large mammals

in Kruger National Park, South Africa. Animal movement tracking is a rapidly

advancing area of ecological research and large amount of data is being collected,

with short sampling intervals between successive locations. A statistical challenge

is to determine appropriate methods that capture most properties of the data

is lacking despite the obvious importance of such information to understanding

animal movement. The aim of this study was to investigate appropriate alter-

native models and compare them with the existing approaches in the literature

for analysing GPS tracking data and establish appropriate statistical approaches

for interpreting large scale mega-herbivore movements patterns. The focus was

on which methods are the most appropriate for the linear metrics (step length

and movement speed) and circular metrics (turn angles) for these animals and

the comparison of the movement patterns across herds with covariate. A four

parameter family of stable distributions was found to better describe the animal

movement linear metrics as it captured both skewness and heavy tail properties of

the data. The stable model performed favourably better than normal, Student’s t

and skewed Student’s t models in an ARMA-GARCH modelling set-up. The flex-

ibility of the stable distribution was further demonstrated in a regression model

and compared with the heavy tailed t regression model. We also explore the ap-

plication circular linear regression model in analysing animal turn angle data with

covariate. A regression model assuming Von Mises distributed turn angles was

shown to fit the data well and further areas of model development highlighted.
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A couple of methods for testing the uniformity hypothesis of turn angles are pre-

sented. Finally, we model the linear metrics assuming the error terms are stable

distributed and the turn angles assuming the error terms are von Mises distributed

are recommended for analysing animal movement data with covariate.
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CHAPTER 1

Introduction

1.1 General introduction

The large scale movement of mega-herbivore is difficult to monitor in situ. There-

fore, little is known about the biological motives for the movement and behaviour

of these animals. The location of migration corridors and residency areas in re-

lation to habitat characteristics inform about the environmental preference of a

species. Thus, access to this type of knowledge would increase the biological un-

derstanding of life in the wild and provide valuable insights into possible climate

change responses of elephant and other mega-herbivores.

The population of numerous commercially targeted mega-herbivores are declin-

ing. Differences in abundance and size composition of predators indicate that a

likely reason for the decline is hunting for Ivory (cite). It is therefore important

for scientists and conservation commissions to understand the movement and be-

haviour of these species to determine the actions required to obtain sustainable

levels for tourist attraction and ecosystem balance. The prime example is the

African elephant (Loxodonta africana ), which is heavily targeted by poachers for

ivory.

1



2

Statistical methods for analyzing animal tracking data is one of the major chal-

lenges facing movement ecology today. Understanding the behaviour and move-

ment patterns of foraging animals is a challenging endeavour due to the complex

environment in which the search for food items takes place and lack of statisti-

cal framework for analysing the data[91]. Correspondingly, broad are the topics

in movement and foraging ecology that require to be analysed. Advances in GPS

technology are providing opportunities to document sequential movement patterns

and habitat use in response to changing environmental conditions [131]. The GPS

satellite link has enabled large amounts of data to be collected automatically with-

out the effort required from and associated with conventional GPS radio-tracking

devices. Geographic locations of the animal shows the regions in the landscape

which are favoured, the habitat features and food or other resources sought by the

animals bearing the collars [27].

Several metrics can be derived from the GPS- telemetry data to characterise animal

movement [18, 53, 62]. These metrics includes the linear metric (step length,

change in y and x axis, mean square displacement, net square displacement, etc.)

and circular metric (turn angles, path tortuosity, sinuosity index etc). Given

time, effort and monetary expenses devoted to obtaining such data from individual

animals in the wild, it is important to analyze the data with valid statistical

methods. This is particularly so because conclusions concerning animal movement

may have management implications [99]. For example the analysis of GPS tracking

data can reveal the distribution and space use pattern of species [23],foraging

search strategies of several animal species [132, 133], and navigation strategies

[35], that can facilitate applications into conservation ecology [27, 99].

Appropriate statistical assumptions that adequately capture the properties of the

data are therefore necessary. In the following chapters, we will analyze real ele-

phant movement data to answer more specific questions about the heavy tails and

skewness properties in animal tracking data, the interaction between elephants

and their environment and how can we model the foraging behaviour. Elephants

are known to be destructive foragers [45]. Several factors are known to drive

there movement. Among them distance to water points, vegetation cover types,
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rain fall, temperature and seasons [27, 28]. Statistical models that incorporate

such factors have important important biological implications in understanding

the animal movement pattern and behaviour. Getz and Saltz [45] classifies the

drivers of animal movements as either internal or external factors. These factors

are also known as fundamental movement elements(FMEs). To identify appropri-

ate statistical models for analyzing GPS-telemetry data, a biological question that

needs to be addressed by the data is required. Specifically, “what can we learn

from the data about elephant movement and where can we apply the it in wildlife

management? have been used as the guiding questions through out this thesis.

Differences in abundance and the decline in elephant population has been at-

tributed to increased poaching activities occasioned by high demand for ivory in

the world markets [22]. One of the mechanisms of protecting these endangered

species is monitoring the movement trajectory using the GPS tracking devices.

Data generated by such devices can offer valuable conservation insights on the

movement patterns of elephants. To make decisions based on GPS tracking data,

relevant statistical tools for analyzing such data are required.

Another major problem in tracking data that is recorded over time is autocorre-

lation. Temporal autocorrelation, is an important understudied biological signal

that can be critical to predictive modelling of population distribution [26]. Models

in movement ecology that capture this property are lacking, as the linear metrics

are heavy tailed and skewed. Most studies have recommended sub-sampling the

data to remove autocorrelation. However, sub-sampling of the data leads to loss of

information that may contain important biological signals [22]. We note some of

the models used in financial time series to model heavy tailed and skewed data can

be applied in movement ecology. In this study we have investigated the ARMA-

GARCH models with Student’s t, skewed Student’s t or stable Paretian distribu-

tion error terms.These models are critical modelling the elephant movement data

as the skewness and heavy tail properties are captured.

The analysis of circular metrics is lagging behind in ecology due to computational

challenges and lack of tracking data rich with covariate. Circular regression models
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can provide an important link between animal movement through the turn angle

as a response variable and the landscape features such as rivers, water points,

roads and fences [42, 124]. These models are important in assessing the effects

of landscape features on animal movement. This thesis seeks to move statistical

analysis of animal movement forward with the aim of evaluating the current statis-

tical methods and proposing practical ones to obtain biologically and ecologically

relevant information from the tracking data.

1.2 GPS Tracking data and metrics of animal

movement

Recorded trajectories are often analyzed by considering the collection of fixes as

a series of random events (e.g.,displacements, turns) whose spatial and temporal

distributions are assumed to possess certain statistical regularities. A useful con-

ceptual model for animal locations is the home range model [32, 120]. Worton

[140] and Solow [120] reviewed some issues arising in home range analysis and em-

phasized the significance of home ranges in animal movement. A common model

for the home range of an individual animal is that the sequence of the locations

through time follows a bivariate normal distribution in the plane [32, 120]. Un-

der this model, the locations of the animal to be restricted to an elliptical home

range, with the locations concentrated in the center. While the limitations of

this model are well recognized, in many cases it is useful approximation under

which inferences can be made about the parameters of the home range. Bivariate

normal distribution is an important tool through which several metrics of animal

movement can be derived and investigated.

In analyzing the sequence of locations, it is usually assumed that the observations

are serially independent [123]. Essentially, this requires that the time between

successive observations is large relative to the ranging characteristics of the animal.

However, it is not easy to record all the information of the animal between two time

points using the GPS telemetry as the animal may move around and return to the



5

same place it was before. The choice of temporal resolution is therefore important

in understanding animal behavioral processes. Theoretical modeling of random

searches and other encounter processes relies on the fact that the rate of biological

encounters is determined by the statistical properties of the movement when all

other things remain constant, such as target density, learning, and information

availability.

1.2.1 Derivation of movement metrics

The most basic information that can be collected on the movement path of an

individual is a sequence of positions (xi, yi) at time t, i = 0, 1, 2, . . . , n. Such

information can be used in deriving biologically meaningful information about

animal movement such as estimating the error of the GPS device and predicting

the animal position at time t. The orientation of the vector joining (xi−1, yi−1)

and (xi, yi) is given by

θi =



tan−1((yi+1 − yi)/(xi+1 − xi)) ; xi+1 − xi > 0,

tan−1((yi+1 − yi)/(xi+1 − xi)) + π ;xi+1 − xi < 0,

π/2 ;xi+1 − xi = 0 and yi+1 − yi > 0,

−π/2 ;xi+1 − xi = 0 and yi+1 − yi < 0,

undefined ; xi+1 − xi = 0 and yi+1 − yi = 0.

(1.1)

and its resultant length is

` = r ∗ (a cos (sin (y1) ∗ sin (y2) + cos (y1) ∗ cos (y2) ∗ cos (x1 − x2))) (1.2)

where

` step length measured in meters,

x1, y1 = latitude and longitude at time 1,

y2, x2 = latitude and longitude at time 2
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and r is the radius of the earth.

Then the movement of an individual can be represented by a sequence of turn

angles and step lengths given its current position and its subsequent positions

denoted by coordinates (xi, yi), i = 1, · · · , n computed using ArcView or ArcGis

tools.

1.2.2 Drivers of animal movement patterns

In this section, we discussion the factors that drive elephant movement. The move-

ment of animals depends on a variety of factors,among the food, reproduction

water and home range. A nice introduction to the a variety of ecological factors

and matching theories relating to animal movement can be found in [27, 45, 98].

The ability of an animal to forage and the resulting movement patterns depend on

a large number of biological drivers. While some of them are related to environ-

ment, others are given by the internal constraints, such as its navigational ability,

its energy need and storage capacity [45]. Nearly all animals live in a highly

complex and heterogeneous environment. One common cause of environmental

heterogeneity is non-uniform food resource distribution, [6, 24, 45, 98, 99, 114].

This is of concern to ecologists when optimal foraging strategies are investigated.

Even seemingly monotonous environments such as the wildlife game parks have

spatially heterogeneous food resources, in this case structured shrubs [98]. Ex-

ternal spatially varying parameters, e.g., food availability, temperature or surface

water distribution, affect the movement of foraging animals [131]. To relate the

linear and circular metrics with these factors, two statistical approaches are of

interest.
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1.2.3 Probability distributions and their importance in an-

imal movement

Theoretical and empirical ecology have developed over the past two decades in-

cluding the classical foraging theory, behavioural theory and movement ecology

paradigms, rested upon the assumption that step lengths of animal movement

followed the power law distribution. However, it has long been known that step

lengths of animal movement are heavy tailed and skewed a characteristic that can-

not be addressed by the conventional symmetrical distributions. The heavy tailed

or leptokurtic character of the distribution of step lengths has been repeatedly

observed and demonstrated in several species [5, 34–37] of animals. Leptokurtotic

behaviour is quantitatively measured by the kurtosis in excess of 3, a value ob-

tained for the normal distribution. Though the power law distribution has been

shown to fit the data, it misses important properties of the data such as skewness

and scale because the third and forth moments do not exists under the restric-

tion 1 < α < 3 [19]. However, from numerous empirical studies , the power law

assumption cannot be justified for several species [34–37].

Step lengths, which is the distance between two animal movement locations, is

assumed to be a proxy measure of animal movement behaviour and pattern. It

measures the cumulative outcomes of a vast number of pieces of information and

individual decisions arriving almost continuously in time regarding animal move-

ment [63]. As such, Viswanathan et al. [132], fitted a power law distribution to

describe animal movement. The power law is a simpler variant of the stable dis-

tributions which only models the tails. The strongest statistical argument for it is

based on the generalized central limit theorem, which states that the sum of a large

number of i.i.d variables from a finite variance covariance distribution will tend to

be stable distributed. However, as mentioned, animal movement step lengths are

heavy tailed and skewed.

In response to Viswanathan et al. [132, 133] and subsequent studies, Kawai [63]

proposed the use of a flexible four parametric family of stable distribution to model
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the animal movement linear metrics. In many empirical studies such as finance,

economics and energy, the non-Gaussian stable Paretian distribution of Mandel-

brot [76] of which the power law distribution is special case have been found to be

the most appropriate models for heavy tailed and skewed data. The probability

of extreme events in ecology are so great such that many statistical techniques,

which depend on asymptotic theory of finite variance for their validity, are not

applicable [63]. Stable distributions are supported by the generalized central limit

theorem, which states that stable laws are the only possible limit distributions

for property normalized and centered sums of independent identically distributed

random variables [94]. Application of stable distribution theory in ecology has

biological significance. We note that it is difficult to determine analytically when

and where a step of a foraging animal ends [63]. By the additivity property of

the stable distribution, it is possible to accomodate such a worry in a modelling

framework. The tails of step lengths contain important biological signals which

can help understand animal pattern and behaviour. Such biological signals if left

out in statistical assumptions, may lead to wrong conclusions of animal movement

patterns and may have serious ecological implications [98].

Stable distributions have been mentioned in movement ecology by Bartumeus [5],

though they have never been applied fully in the analysis of real animal movement

data. One advantages of stable distribution in movement ecology is that they allow

for continuous transition from diffusive (brownian) random walks when α = 2,

through supper diffusion when 0 < α < 2, to ballistic ( line) motion which occurs

in the limit α→ 0 which is associated with destructive foraging common in large

mammals such as elephants. Defining search efficiency as the distance travelled,

Viswanathan et al. [133], showed that Lévy walks (1 < µ ≤ 3) are more efficient

than non-Lévy walks (µ > 3) and the optimal Lévy exponent is approximately 2

where µ is the power law exponent James et al. [58]. Diffusive (i.e., Brownian)

movement which is attained when α = 2 in stable Paretian distribution involves

much backtracking, which can be advantageous in keeping the forager in a food

patch, but can also entail repeatedly searching an empty space, when not in a patch

[6, 132]. Ballistic movement (µ→ 1), which is attained when the stable parameter
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α = 0, avoids repeatedly searching the same space but is less suited to exploiting

the patchy nature of the food environment [106]. Another reason advanced by

[63] for the application of stable distribution is that the additivity property allows

the coarse temporal resolution of recording animal tracking data to treat two or

more consecutive steps as a single step without changing the distribution of the

step lengths. Such a property is important when modelling movement data as it is

difficult to define and hard to determine analytically when a step ends [8, 26, 34].

We note that the tails of animal movement data may contain important biological

signals of animal movement that may be lost if the data is subjected to treatment.

one thing that we discussed is the importance of the biological information in the

tail, and that it is not often used. This new approach will indicate that there are

important biological signals (information) at the tails that should be looked at in

more detail in future studies.

Studies exploring alternative probability distributions are found in [34–37, 80].

These studies have compared the power law distribution assumption with the

exponential, lognormal, weibull and gamma distributions. However, potential al-

ternative distributions such as the student’s t, skewed student’s t, Laplace and the

stable distributions remains an explored. Such models have potential for moving

the movement ecology modelling forward. We note that the skewed student’s has

the capability of handling the skewness and the heavy tail properties of animal

movement linear metrics. In chapter 2, we give further details of the power law

distribution and the stable distribution. In chapter 3 we compare the stable law

regression with the heavy tailed t regression model.

1.2.4 Modelling autocorrelated heavy tailed data of animal

movement

Despite several studies demonstrating that animal movement step length time se-

ries data are autocorrelated, heavy tailed and skewed, models for analyzing such

data remains largely unexplored. Autocorrelation has been viewed as a major
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problem in many telemetry studies because sequential observations are not inde-

pendent in time and space and violate the assumptions for statistical inference

[15, 22, 23, 26]. There is a lot to learn about the structure of ecological and

behavioural data from the autocorrelation patterns of animal movement. These

includes periodicity and patchiness in spatial data, characterized by autocorrelo-

gram, semivariogram or spectrum [15].

To make valid biological interpretation and conclusions, the heavy tailed and

skewed nature of the data must be taken into account. One such distribution

that captures the properties of the tracking data is the four parameter stable dis-

tribution [65]. However, previous time series models of animal movement have

relied on the Gaussian distribution assumption [52] and fitted the autoregressive

models of order one (AR(1)). This model does not capture the heavy tails and

skewness properties of the animal linear metrics (step length). Models based on

stable distribution, student’s t and skewed student’s t distribution have been pro-

posed in the financial literature as best alternative[21, 87]. The application of time

series models has been hampered by lack of computational tools in the mainstream

statistical softwares. However, with the ever improving technology and computa-

tional capacity, statistical methods that measure the level of autocorrelation in the

data may be particularly useful for comparing patterns of animal behaviour and

range use among individuals so long as the same sampling interval is used [15].

Dai et al. [23] investigated short-day time duration of African elephant movement

in Pangola game reserve and reported autocorrelation at lags of 10 and 15 minutes

and no autocorrelation at 20minutes interval.

1.2.5 Regression Models for heavy tailed linear metrics of

animal movement with covariates

Exploring a techniques that investigates the relation between the linear metric step

length with the environmental covariates of the data is a step towards diversify-

ing the understanding of animal movement [91]. The most commonly used linear
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regression models suffer from lack of robustness against departure from distribu-

tional assumptions as other statistical models based on the Gaussian distribution

and may be too restrictive to provide an accurate representation of the structure

of the data. To overcome this deficiency, a stable distribution assumption was

proposed by [143]. The non-normal stable distributions all have heavier tails than

the Normal distribution and allow skewness. Heavy tails and skewness implies

that extreme observations are given a greater probability of occurring and are

thus given less weighting in maximum likelihood estimation so that fitted lines

are not biased towards these extreme observations [83, 138]. It is therefore a nat-

ural extension of normal regression models to assume stable distributions as the

distribution of the error terms.

Stable distributions have found wide applications in other areas of research such

as modelling financial, biological and geological problems [127]. The assumption

that step lengths of animal movement follow a stable Paretian distribution has far

reaching implications for both foraging and statistical theory [63]. For example,

the problem of Lévy search patterns has been addressed in [34–37], robustness

to the sampling frequency rate is studied in [65] and for a specific discussion of

movement ecology issues see, [63]. However, in all these studies, the link between

step lengths and the environmental covariates remains unexplored.

Kawai [63] and Kawai and Petrovskii [65] showed that lack of closed form density

for stable distribution for all but a few special cases, stable distribution has received

limited attention in movement ecology. Moreover, the direct numerical integra-

tion techniques are non-trivial and burdensome from a computational perspective.

As a consequence, maximum likelihood estimation algorithms based on such ap-

proximations are difficult to implement especially for huge data encountered in

movement ecology [63]. However, with increasing computational power and effi-

cient algorithms, maximum likelihood estimation and other alternative techniques

have been implemented by Nolan and Ojeda[95]. Due to the above mentioned

drawbacks, stable distributions have not been exploited as a tool for modelling

animal movement data. Other alternative models for heavy tailed data assume

either a student’s t, skewed student’s t and skewed normal distribution errors of
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a regression model. We note that despite the computational challenges and lack

of rich data with covariates, the regression model with t distributed error terms

is more computationally feasible that the stable law regression model. However,

based on model selection tools, the stable law regression provides the best fit to

the elephant movement data.

Fonseca et al. [44] demonstrates that the regression model with Student’s t errors

also suffers from monotone likelihood. This is because the likelihood function is

ill-behaved for v close to zero and may be ill-behaved when v →∞. Lange et al.

[72] generalized the traditional regression model with normal distributed errors to

more robust regression models with t distributed errors. It is well known that the

t distribution provides a convenient description for regression analysis when the

residual term has a density with heavy tails. From Kotz and Nadarajah [67], the

classical linear model can be modelled as follows.

We have identified several key areas to be pursued in future studies. Some of

them are straightforward, such as increasing the number of covariates and allowing

stable distribution parameters to be a function of the covariates. Diagnostic testing

and model checking tools is another area which needs to be developed in future

studies to check the adequacy of the fitted models. Further implementations of the

stable regression and allied alternative models such as skewed normal and skewed t

regression will provide researchers with a robust statistical framework for analysing

environmental factors driving the movement patterns. An implementation of the

student’s t and skewed student’s regression model is implemented in the ’heavy’ R

statistical package. Building such a model that captures the skewness and heavy

tails is a necessary step in being able to elucidate the links between the pattern

and the environment of free-ranging Mega-herbivores.

1.2.6 Modelling Circular responses with linear covariates

Unlike the linear statistics, circular or angular data which is measured in de-

grees or radians. Angular data arise in many scientific disciplines, for instance, in
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oceanography (wave directions), meteorology (wind direction) and biology (study

of animal movement)[7]. Handling such data creates difficulties due to the restric-

tion of support to the unit circle, [0, 2π), and to the sensitivity of descriptive and

inferential results to the starting point on the circle. Hence, the analysis of angular

data is more challenging than the linear data. The circular nature of such data

prevents the use of commonly used statistical techniques, as these would provide

wrong or misleading results. A substantial literature on circular data exists with

studies by [4, 7, 17, 43, 59, 78, 142], but broadly, it is confined to descriptive statis-

tics and limited to inference for simple univariate models. Application of circular

statistics is limited to descriptive analysis.

There are a number of probability distributions designed for use with angular

data. These include circular normal distributions, wrapped normal distribution,

wrapped Cauchy distribution, and various bimodal distribution [7, 50, 51]. Be-

cause of the difficulties inherent in the use of normal distributions, these (circular)

distribution should be used when theoretical distributions are invoked to charac-

terize angular data or to simulate movement paths. Circular normal distributions

have been found to provide good statistical fits to insect turning angles and clonal

plant branching angles [16]. Despite the fact that circular statistics is still in a

very active stage of development, several monographs and textbook lay a standard

foundation of the methods have been published [7, 43, 59, 142]. In two dimensions,

this means that we allow the animal to move in any direction θ on the unit circle,

where −π < θ ≤ π correspond to the same direction. Such models generate data

and statistics on the movement direction of the animal. So, the resulting summary

statistics depend strongly on the point where the circle is cut.

Cain [17] reviewed the statistical methods for analyzing angular ecological data

and found that standard statistical methods were not appropriate for analysis of

circular data. Fisher et al. [43] provide a general introduction and methodology for

dealing with statistics of circular and spherical data respectively, while [7] studies

biological problems using circular statistics, and [78] provides a large amount of

theoretical background and models for use with directional data. Many studies in

movement ecology rely on circular distributions to develop complex models. For
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instant [7, 119, 124] fitted von Mises random variables to turn angle data and

come up with non-linear model of relating animal movement to object orientation.

Previous studies consider turn angles to be a by-products of complex behavioural

processes related to orientation strategies of animals [9, 14, 90, 126]. For instance,

elephants use direct movement strategy when needing to get to a destination more

quickly (e.g. towards mates), rather than significantly increasing their speed [27].

Statistical analysis of angular distributions can help determine whether or not an

orientation component exists [8, 9], estimate quantitatively such components [20]

and characterize the orientation component as local or global [9].

One of the approaches for parameter estimation is the Maximum likelihood esti-

mation approach. The iterated re-weighted least square algorithm of Green [49] is

used in a maximum likelihood method to estimate the parameters of the circular

linear regression model. We note that though this approach is simple for linear

regression models, it is computationally challenging for huge data set. Other ap-

proaches suggested in the literature are the Fisher scoring algorithm [124] and

Newton-Raphson algorithm for circular regression models. We only look at the

IRLS algorithm in this study. Further discussion of this topic is in chapter 6.

1.2.7 Testing circular hypothesis of uniformity

There are several methods for testing the uniformity hypothesis of circular data.

Statistical methods emphasizing on accurate choice of assumptions play an im-

portant role in understanding animal movement data. A first step towards under-

standing animal movement orientation is the exploratory analysis such as display

of data on a rose diagram or linear histogram [43].

Four commonly used methods in testing circular uniformity of angular data are

explored in chapter 6 and applied to the elephant movement data. These methods

are: Rao’s spacing test, Kuiper’s test, Rayleigh’s test and Watson’s test. Among

the four, we note that Rao’s method is more pron3e to rejecting the null hypothesis

than the Kuiper’s test and the Rayleigh’s test in the event of a small sample size,
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unless the empirical distribution of the data is appreciably uniform in atleast some

of its sub- domains [109]. Put in otherwise, Rao’s test carries a similar Type 1

error than the other test statistic; however, it follows from the nature of statistical

data that the rejection of the null hypothesis cannot be absolutely certain.

1.3 Research Objectives

The general aim of this thesis was to investigate the various statistical methods

of analyzing animal movement data sets derived from the GPS telemetry studies

using applications example to elephant movement data and determine appropri-

ate statistical tools from among the many. The study also aimed to deal with

environmental drivers of animal movement and the effects of landscape features

on animal movement. The specific objectives are:

• To study the statistical probability models for describing heavy tailed and

skewed data sets with a particular focus on the stable distribution family.

• To investigate the potential of stable law assumption in a regression set-up

to analyze animal movement data sets with covariates.

• To investigate time series models for analyzing heavy tailed and skewed data

sets and compare them.

• To explore the circular linear regression models for analyzing animal move-

ment data sets with covariates.

• To test the uniformity hypothesis of animal movement data sets.

1.4 Thesis Outline

This thesis is organized as a collection of five papers which have been presented for

peer review in international journals. Each chapter has been written as a stand-

alone article that can be read separately from the rest of the thesis but draws
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separate conclusions that link to the overall research objectives. As a result a

number of replications and overlaps occur in some sections “Stable distribution”

and “application to real data” in different chapters. This problem is negligible

when one considers the critical peer review process and the fact that different

chapters can be read separately without loosing the overall aim of the thesis. In

chapter 2, 3 and 4, the stable distribution is central, while in chapter 5 and 6, the

circular statistic is the main focus.

Chapter 1: This chapter overviews some past and recent developments in the

theory of animal movement and outlines some points that have not been discussed

in the literature. The missing gaps in the statistical analysis are explained in this

chapter and constitute the main source of motivation in the writing of this thesis.

Chapters 2 This chapter focuses on the heavy tailed and skewed characteristic

of animal movement data sets. The power law distribution which is commonly

used in the literature is compared with the four parametric family of stable dis-

tributions. The method of moments, Kogon-Williams algorithm and maximum

likelihood methods of parameter estimation are reviewed. An application study

including the description of the data set used in the analysis is presented. The

results of the different methods are compared. Finally the chapter concludes with

a discussion of the results and future extensions in movement ecology.

Chapter 3: In this chapter, a statistical assumption based on the stable proba-

bility distribution described in chapter 2 is used in a regression model framework

and presented. An alternative regression model for heavy tailed data based on

student t distribution is also proposed and contrasted with the stable regression

model. The method of maximum likelihood is used in the parameter estimation.

An application study using data sets from five elephant herds is described and the

results presented. Finally the chapter ends with a discussion of the findings.

Chapter 4: This chapter breaks from the convectional Gaussian assumption and

presents a sets of statistical models for animal movement in a GARCH modelling

framework. The Normal, students t, skewed student’s t and the stable Paretian

ARMA-GARCH models are considered and evaluated. The chapter also presents
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an application and description of the five elephant movement data sets used in the

analysis. The statistical properties of the data and the empirical results of the are

given. Lastly the chapter ends with a discussion of the findings and recommenda-

tions for future development.

Chapter 5: This chapter deals with modelling circular data. An circular linear

regression model is presented. An application and description data set of animal

movement used in the analysis is presented. A simulation study to determine

the boundaries of the initial values of the model is also presented and discussed.

The results of elephant movement data is presented and discussed in the of ele-

phant ecology. Finally we highlight various limitations of modelling circular linear

relationships using ordinary linear and nonlinear regression models.

Chapter 6: In this chapter, we consider the uniformity hypothesis in the animal

movement turn angles data sets. A set of hypothesis tools is reviewed and used

in a four stage process to evaluate the uniformity hypothesis. An illustration data

set of elephant movement is described. The results of the analysis are presented

and their biological implications in ecology discussed.

Finally, this chapter gives a synthesis of the study. The findings are summarized

and conclusions are derived from the proceding chapters. For future research on

the modelling of animal movement, relevant recommendations are made. Special

focus is directed toward the operational use of the mixed models in explaining

herd to herd effects. A single reference list is provided at the end of the thesis.

1.5 Contribution of the present study

Two statistical methods were selected for application to animal movement data

obtained using the GPS-telemetry tracking collars. These methods were selected

in other research with data of similar statistical properties. Throughout the work

conducted in this study, the desired statistical outcome was to identify appropriate
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statistical methods for analyzing heavy tailed and skewed animal movement met-

rics and relates the metric’s to the environmental variables. The choice of model

can have biological implications on the interpretation of the output and subsequent

inferences of animal movement data. These may in turn affect decision made re-

garding conservation of the ecosystem. Each of the models investigated are based

on slightly different assumptions and vary in complexity. From the biological per-

spective, it is important to find statistical distributions and models which do not

only provide a theoretical fit to the data, but can also provide easily interpretable

results which are realistic in terms of biology of the species under investigation.

These output and inferences are then intended to be integrated with other ecologi-

cal studies which make use of the movement data to answer much wider ecological

questions.

The motivation for this study comes from the ability to collect movement data

that has been outpaced by the ability to statistically analyze such data. GPS-

telemetry data are expensive to collect and basic analysis based on conventional

methods are inadequate. The link between animal movement linear and circular

metrics with environmental covariates remains largely unexplored due to lack of

appropriate statistical approach. The output from these analysis are needed to

link more complex ecological studies of the animal tracking are opening up new

research areas of study into behavioural ecology of the tracked animals. The need

to better understand animal movement process and its relationship with the envi-

ronmental drivers is acknowledged particularly in the light of climate changes and

issues such as disease outbreak and biological invasions [45]. Statistical modelling

approaches need to be advanced and adapted in order to cater for these developing

areas of science. Kawai and Petrovskii [65] identified one challenge is that animal

movement is never scale free as asserted in several species [23, 34, 34, 35, 37, 117].

Bartumeus [5] noted that animal movement is heavy tailed and skewed, properties

which are not adequately covered using the power law distribution. This mod-

els used in the literature assume the heavy tailed and skewed time series data

of animal movement linear metrics is Gaussian distributed and fit the stationary
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time series models to investigate animal movement behaviour [52]. Such an as-

sumption is inappropriate for animal movement step lengths time series as they

have been shown to be heavy tailed and skewed. Another challenge highlighted

by Nathan [91] is to integrate the animal movement data and analysis within

statistical framework that includes environmental covariates, remote sensing and

GIS to enhance the analysis. All these four challenges require statistical analysis

and this study focuses on techniques and approaches of improving the analysis

of animal movement GPS-telemetry derived metrics to achieve the outcomes of

the four challenges. Stable law approach has been suggested as the likely method

to gain popularity as the sampling frequency of movement tracking increases and

the ability to collect landscape data improves with technological advances and

computational capacity.

This study can be considered a first kind of its own, since a number of studies

have been published using a wide variety of the techniques. Each of the methods

used in this study have not been used in movement studies in its current form.

However, a few studies have applied the circular linear models to movement data

with only one covariate. This study adopts the stable distribution and customizes

it inorder to make it more suitable for this specific application.



CHAPTER 2

Stable Distributions: Theory and Application to

Animal movement data

Abstract

Statistical distributions used in movement ecology applications attempt to cap-

ture the properties exhibited by the random variables describing the movement

behaviour of the animal in heterogeneous environment. In a standard parametric

approach, the underlying data are modelled using assumed probability distribu-

tions. The model parameters are fitted to the observed data using empirical or

maximum likelihood methods. The model is then used to make decisions on sam-

pled data for any potentially heavy tailed and skewed events. In practical appli-

cations, large data sets obtained from GIS telemetry studies of animal tracking

exhibit heavier tails than power law distributions and have non-zero skewness. The

tail behaviour of such a distribution offer valuable information for decision support

and conservation management tools used by wildlife ecologists. This paper intro-

duces the application of stable distributions to a data set of animal step lengths

acquired from a set of individual elephants tracked in Kruger National Park in

South Africa. Stable distributions are a family of probability distribution’s that

generalize the central limit theorem and can easily accommodate heavy tails and

skewness. The results show that stable distributions describe tail steps of real life

20
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animal movement data and can be used as an alerting tool in wildlife management.

Keywards: Heavy-tailed distribution; Stable distribution; Parameter estimation;

GPS-telemetry; animal movement.

2.1 Introduction

Statistical analysis of movement data is key to understanding animal foraging pat-

terns and movement behaviour. Understanding how animals move as an indicator

of their responses to the environmental conditions they experience, and is impor-

tant in deciding how we should manage our ecosystem, or how best to use the

natural resources of our environment more effectively. Technological advances in

GPS tracking devices are revealing new insights regarding animal movements on

the landscape [107, 130]. GPS tracking devices tagged to animals are becoming

smaller in size and larger in memory capacity yielding huge data [45, 130, 139].

Given the time, effort and monetary expenses devoted to obtaining data from indi-

viduals in the game park, it is reasonable to analyse the data with valid statistical

methods. This is so because conclusions concerning animal movement may have

management implications [27, 99]. Good conservation policies require accurate

statistical analysis and meaningful biological interpretation of animal movement

patterns and distribution [91].

The movement of an individual animal on a landscape can be represented by a

sequence of successive positions (ui, vi) collected at time ti where i = 1, 2, . . . , n is

the number of steps. These positions are characterized by short clustered steps and

long rare steps as animals alternates between foraging or resting and searching for

scarce food items or migration [45]. Such a path can be represented by a broken line

with nodes indicating the position of the animal [63] and the distance between two

points defined as the step length of the animal after an observation time interval

[45, 53, 62]. Many popular models of animal movement have been developed

under the assumption that step lengths are power law distributed. However, from

numerous empirical studies , the power law assumption cannot be justified for
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several species [34–37]. The step lengths of several species of animals are typically

heavy tailed and skewed [5]. In other words, the probability that extreme events

can happen is larger than the power law distribution can explain [5]. There may

be important biologically relevant information in these extreme movement events

which may influence managers’ conclusions.

In many empirical studies such as finance, economics and energy, the non-Gaussian

stable Paretian distribution of Mandelbrot [76] of which the power law distribution

is special case have been found to be the most appropriate models for heavy tailed

and skewed data sets. The probability of extreme events in finance are so great

such that many statistical techniques, which depend on asymptotic theory of finite

variance for their validity, are not applicable [38, 39]. Movement of animals is

the cumulative outcome of vast pieces of information and individual decisions

arriving almost continuously in time [45] which typically lead to skewed, peaked

and heavy tailed step lengths [63] hence it is natural distribution for modelling

such a data is the four parameter family of stable distributions [76]. The power law

distribution is by far the most well known and analytically tractable variant of the

stable distribution and for these and other practical reasons it has been routinely

postulated to govern the animal movement step lengths. However, animal step

lengths are usually more leptokurtic i.e., have much heavier tails. This leads to

considering the non-gaussian stable distribution S(α, β, γ, µ) first described by

Mandelbrot [76], where α is the index of stability which governs the movement

steps of the animal, β is the skewness parameter which governs the infrequent of

large rare steps, γ is a measure of scale as the movement step lengths are not scale

free, and µ is the measure of location.

Stable distributions have been mentioned in movement ecology by Bartumeus [5],

though they have never been applied fully in the analysis of real animal move-

ment data. One advantages of stable distribution in movement ecology is that

they allow for continuous transition from diffusive (brownian) random walks when

α = 2, through supper diffusion when 0 < α < 2, to ballistic (straight line) mo-

tion which occurs in the limit α→ 0 which is associated with destructive foraging

common in large mammals such as elephants. Defining search efficiency as the
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distance travelled, Viswanathan et al. [133], showed that Lévy walks (1 < µ ≤ 3)

are more efficient than non-Lévy walks (µ > 3) and the optimal Lévy exponent is

approximately 2 where µ is the power law exponent James et al. [58]. Diffusive

(i.e., Brownian) movement which is attained when α = 2 in stable Paretian dis-

tribution involves much backtracking, which can be advantageous in keeping the

forager in a food patch, but can also entail repeatedly searching an empty space,

when not in a patch [6, 132]. Ballistic movement (µ→ 1), which is attained when

the stable parameter α = 0, avoids repeatedly searching the same space but is

less suited to exploiting the patchy nature of the food environment [106]. Another

reason advanced by [63] for the application of stable distribution is that the addi-

tivity property allows the coarse temporal resolution of recording animal tracking

data to treat two or more consecutive steps as a single step without changing the

distribution of the step lengths. Such a property is important when modelling

movement data as it is difficult to define and hard to determine analytically when

a step ends [8, 26, 34]. In this paper, we focus on the basic properties and the

theory of stable distributions and show how they can be applied in movement

ecology.

The rest of this paper is organized as follows. In the next section, we give a brief

introduction to the α-stable distributions and the concepts related to stable dis-

tributions which will be necessary for the continuation of this paper. In section

2.4 we discuss methods of parameter estimation and statistical inference. In Sec-

tion 2.5 we present the analysis of elephant (Loxodonta Africana) movement data.

We fit and compare the power law distribution and α-stable distributions . The

power law distribution can be regarded as a restricted version of the Lévy stable

distribution and these restrictions can be tested by varying the values of α [63].

Finally, we discuss how our findings may help researchers working on individual

animal to reveal the pattern and identify the movement type. We note that the

tails of animal movement data may contain important biological signals of animal

movement that may be lost if the data is subjected to treatment. one thing that

we discussed is the importance of the biological information in the tail, and that

it is not often used. This new approach will indicate that there are important
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biological signals (information) at the tails that should be looked at in more detail

in future studies.

2.2 Stable distribution

Stable Paretian distributions are a class of probability laws with both interesting

theoretical and practical properties. They are appealing for ecological modelling

of movement data since they generalize the Gaussian distribution and allow heavy

tails and skewness, properties which are common in animal movement data. In

this section, we present basic definitions of stable distributions.

Definition 2.1. A random variable X is said to have a stable distribution if for

any n ≥ 2, there is a positive number cn and dn real number such that

X1 +X2 + . . .+Xn
d
= cnX + dn (2.1)

where X1, X2, . . . , Xn are independent identically distributed copies of X. The

symbol
d
= means equality in distribution. The stable law is strictly stable if dn = 0

for all n.

For ecological modelling, this key characteristic implies that for coarse temporal

resolution two or more steps can be combined without changing the distribution

of step lengths. This property is of biological importance since it is difficult to

determine analytically when the step begin and when the steps end [63].

The class of all laws that satisfy (2.1) is called stable and is described by four

parameters: α index of stability that determines the tail weights or distributions of

kurtosis with 0 < α ≤ 2, skewness parameter β which determines the distribution’s

skewness and is in the range −1 to 1, scale parameter γ and location parameter

µ which measures variability and mean as in the case of Gaussian distributions

respectively [93, 138].
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Following [93], let S(α, β, γ, µ) denote a stable distribution with tail exponent

α ∈ (0, 2], skewness β ∈ [−1, 1], scale γ > 0 and location parameter µ ∈ R, given

by the characteristic function

E [exp(itX)] =


exp

(
−(γ|t|)α

[
1 + iβ(sign t) tan πα

2
(|t|1−α − 1)

]
+ iµt

)
α 6= 1

exp
(
−γ|t|

[
1 + iβ(sign t) 2

π
ln |t|

]
+ iµt

)
α = 1

(2.2)

where i =
√
−1, sign (t) = −1, 0, or1 if t <,=, > 1, respectively. Parameters α and

β determines the shape of the distribution. If the index of stability α = 2, then the

stable distribution reduces to the normal distribution. That implies that, relative

to the normal distribution, a higher probability of large extreme rare steps exists in

animal movement when α < 2. The impact of α for values of α less than 2 on the

density of the distribution is twofold. First, it has an effect on the tail thickness of

the density. Second, it has an effect on the peakedness of the origin relative to the

normal distribution [138]. Jointly, these two effects are known as “leptokurtosis”

, the index of stability α can be interpreted as a measure of leptokurtosis. As

the value of α becomes smaller, the more leptokurtic the distribution. Thus, for

α < 2, stable distributions are more peaked around the center than the normal

and have fatter tails (see Figure 2.1 a). In fact, for α < 2 they are so heavy that

the variance is infinite; and for α ≤ 1, even the first moment does not exist [110].

For β = 0, the distribution is symmetric around the location parameter µ. If

β > 0, the distribution is skewed to the right and if β < 0, it is skewed to the left.

Larger values of β indicate greater skewness. A symmetric stable distributions

is a stable distribution with β = 0 and µ = 0 and the stable distribution is

symmetric around µ if µ = 0. In movement ecology, the distribution of animal

movement step lengths is never symmetric [5]. The scale parameter generalizes

the definition of standard deviation and can interpret it as volatility clustering

in animal movement. It allows any stable random variable X to be expressed as

X = γX0, where the distribution of X0 has a unit scale parameter and the same

α and β as X. Figure (2.1 a) shows the effect of α on the kurtosis when β = 0,
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µ = 0 and γ = 1. Figure (2.1 b) illustrates the effect of β on the skewness of the

density function for α = 1.2, µ = 0 and γ = 1.

There are three special cases of stable distributions: the distribution reduces to

a Gaussian distribution when α = 2 and β = 0, a Cauchy distribution when

α = 1, β = 0 and a Levy distribution when α = 0.5, β = 1. Figure (2.1 (a))

illustrates the α-stable distributions given by various parameter values.

Figure 2.1: Effects of α, β, γ and µ on the stable density function (mathlab
image)

Capturing rare events of animal movement step lengths, such as skewness and

heavy tails, requires the specification of appropriate distributions or models. Clearly,

the stable distribution with β > 0 and α < 2 is a natural candidate. Increasing

β → 1 results in skewness to the right and lower values of α lead to stronger

leptokurtosis. When α > 1, the location parameter measures the mean of the dis-

tribution. In empirical ecology α usually takes values in the interval (1, 2). This

implies the assumption that the step lengths modelled with stable Paretian distri-

bution exhibits finite mean but infinite variances. This is because when 1 < α < 2

the tails of the distribution taper off too slowly for the variance to be finite and
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only the mean exists. Empirical evidence suggests that animal movement step

lengths data sets are heavy tailed meaning that it does not have finite variance

[116].

2.3 Biological motivations for the stable distri-

bution

We provide only relatively short overview of the essential properties of stable dis-

tribution and there motivating application in movement ecology. Models that

characterize animal movement behaviour describe part or some of its character-

istics. Several of the previous studies in movement ecology have advanced the

theory that animal movement generates heavy tailed which is modelled using the

power law distribution. One aspect of the data ignored by ecologists is the skew-

ness. This parameter is difficult to obtain as the second moment of the stable

distribution and the power law distribution does not exist. However, a measure

of the skewness parameter of the stable distribution. The flexibility of the stable

distribution, can be is demonstrated by the varying the parameters α and β. We

note that when α = 2, we recover the normal distribution from the stable dis-

tribution and all moments exists. Such a property is advantageous in ecology as

Brownian motion is described by the Gaussian assumption [63]. The heavy tails

of the stable laws follow the power law decay is characterized by

1− F (x) = P (X > x) ∼ γαCα(1 + β)x−α (2.3)

f(x|α, β, γ, δ; 0) ∼ αγαCα(1 + β)x−(α+1)

where Cα = sin πα
2

Γ(α)/π. When β = 1, the left tail decays faster than any power

which can be taken to mean that the is making long rare steps or the animal is a

mode of searching scarce food resources. The right tail behaviour when β = −1 is

similar by the reflection property.
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The difference between the Gaussian and the non-Gaussian stable distribution as

x→∞ can seen by express the tail behaviour as

P (X > x) ∼ 1

2
√
πγx

exp

(
−x2

4γ2

)
(2.4)

which is different from the asymptotic behaviour of the tails of stable distribution

that follow a power law decay with exponent α stated as

P (X > x) ∼ cx−α, x→∞ (2.5)

One important consequence of power law decay of the tails is that only certain

moments exist. For a stable random variable X, the pth absolute moment is given

by

E|X|p =

∫ ∞
0

P (|X|p > x)dx (2.6)

exist if and only if p < α or α = 2, that is, when the integral given by (2.6) con-

verges [110]. If the tails are too heavy, the integral will diverge. Thus the second

moment of any non-Gaussian stable distribution is infinite [110]. One obvious con-

sequence in ecological applications is that, since stable distributions have infinite

variances, one cannot describe movement behaviour of animals in terms of variance

and correlation of step length dependence on one another. Alternative measures

namely covariation function, co-difference function and the dynamic function have

been proposed in the literature [108, 110] .

The third important property of stable laws is the stability or additivity prop-

erty, which allows us to use stable laws in movement ecology to analyse animal

movement data. Following (2.1), if X1 and X2 are independent and identically

distributed stable random variables, then for any given positive numbers a and b,

there exist a positive number c and real number d, such that

aX1 + bX2
d
= cX + d

For d = 0, we obtain the strictly stable distribution of X. This statistical property

is suitable for describing telemetry data of animal movement as the temporal
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resolution of collecting tracking data allows combining two or more steps without

changing the distribution of step lengths [63].

2.4 Parameter estimation

The lack of known closed-form density functions also complicates statistical infer-

ence for stable distributions [30]. For instance, maximum likelihood (ML) esti-

mates have to be based on numerical approximations or direct numerical integra-

tion formulas of [92]. Consequently, ML estimation is difficult to implement and

time consuming for large samples encountered in movement ecology. There are

two basic strategies to estimation of distribution parameters of heavy tailed and

skewed data. The first solely focuses on the estimation of the tail exponent and

the second on the estimation of the four parameters of the stable distribution. In

the second case we will focus on a three-stage approach that can be used to es-

timate the four parameters of animal movement GPS-derived telemetry data sets

in in a three stage process: i) the first stage, we will use the quantile method of

McCulloch to estimate the initial parameters of the stable distribution; ii) in the

second stage we use the estimates from stage 1 as initial values in stage two and

iii) the refined estimates of stage two as initial estimates of the final stage which

we discuss further below.

2.4.1 Asymptotic properties of the power law distribution

The asymptotic tail properties of the stable distributions have been applied in to

study the step lengths of several animal species in ecology [34–37, 58]. The limiting

tail behavior of the stable distribution are referred to as the Pareto random walk

[63, 65] due to the power law decay of the stability index α given by the probability

density of the form

p(x) =
αxαmin
xα+1

for all x ∈ (xmin,∞), (2.7)
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where α > 0 and xmin > 0 and the tail probability given by

P (|X1| > x) = (xmin/x)α, x ∈ (xmin,∞) (2.8)

where xmin indicates the minimum step length possible, while α is the tail exponent

(usually written with µ related to the stable distribution through α = µ − 1).

In applications to animal movement, this pareto jump is usually referred to as

a “power law distribution” (for instant of step size x), and the resultant random

walk is called a “Lévy flight” and the movement pattern “Lévy movement pattern”

[6, 132]. A serious drawback of pareto distribution is attributed to its infinite

variance [19] for some specified values of α.

The ML estimator of the tail index is obtain by maximizing the log-likelihood

equation

ln(α, xmin) = n lnα + nα lnxmin − (α + 1)
n∑
i=1

lnxi (2.9)

To find the estimator for α, we compute the corresponding partial derivative and

determine where it is zero:

∂ ln

∂α
=
n

α
+ n lnxmin −

n∑
i=1

lnxi (2.10)

Thus the maximum likelihood estimator for α is

α̂ =
1∑

i(lnxi − ln x̂min)
(2.11)

with standard error given by

σ =
√
n+ 1

(∑
i

ln(xi/xmin)

)−1

(2.12)

The maximum likelihood estimator is strongly consistent and asymptotically nor-

mal [19]. Asymptotic normality of the ML estimator is given by

√
nI(α0)(α̂− α0)

d→ N(0, α2/n)
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2.4.2 Quantile estimation methods

One of the earliest methods of estimating the stable distribution parameters is

the Quantile method of Fama and Roll [40]. This technique, estimates the tail

index α and γ when the β = 0 and µ = 0 are fixed to zero. McCulloch [81]

generalized Fama and Roll’s method and provided consistent estimators of all the

four stable parameters with the restriction that α ≥ 0.06. Let X ∼ S(α, β, γ, µ)

and denote the p-th quantile of this distribution by Xp. McCulloch’s estimator

used five quantiles to estimate α ∈ [0.6, 2] and β ∈ [−1, 1], and is given by

vα =
x0.95 − x0.05

x0.75 − x0.25

and vβ =
(x0.95 − x0.5)− (x0.5 − x0.05)

x0.95 − x0.5

(2.13)

so that S(α, β, µ, γ)(xp) = P [X < xp] = p, vα is a measure of the relative size

of the tails and the middle of the distribution and vβ is a measure of the spread

between the right tail and the left tail of the distribution. A large value of vα means

that the tails will be fatter and a small value means the tails will be thinner or

smaller. This relationship may be inverted and the parameters α and β may be

viewed as functions of vα and vβ

α = ψ1(vα, vβ) and vβ = ψ2(vα, vβ) (2.14)

Substituting vα and vβ by their sample values and applying linear interpolation

between values found in tables given in, McCulloch [81], yields estimators α̂ and

β̂. Scale and location parameters, γ and µ, can be estimated in a similar way.

However, due to the discontinuity of the characteristic function, for α = 1 and

β 6= 0 in representation (2.2), this procedure is much more complicated than the

Koutrouvelis algorithm [68] described below. Despite the complexities mentioned

above, this method is the fastest way to estimate the parameters of the stable

distribution, since it avoids optimization. However, theoretical properties remain

unclear and the extension to the case of linear combinations of stable random

variables is not possible.
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2.4.3 Koutrouvelis algorithm and Regression-type technique

A second method of estimating parameters of stable distribution we consider in

this study is the Koutrouvelis algorithm and regression type approach. Given a

sample x1, x2, . . . , xn of n i.i.d random variables, the characteristic function of the

stable distribution is defined by Φ̂(t) = 1
n

n∑
j=1

exp(itxj) [102]. All the moments of

Φ̂(t) are finite since |Φ̂(t)| is bounded to unity for any fixed t, it sample average

of i.i.d random variables exp(itx). Hence, by the law of large numbers, Φ̂(t) is a

consistent estimator of the cf φ(t).

Press [102] was the first to use the sample characteristic function in the context

of statistical inference for stable laws. He noted that one of the limitations of this

method is that the convergence to the population values depends on the choice of

the four estimation points, whose selection is rather problematic.

Koutrouvelis [68] extended the characteristic function method of Press [102] to

a more accurate regression type approach. This method, starts with an initial

estimate of the parameters and proceeds iteratively until convergence criterion is

satisfied. Each iteration consists of two weighted regression runs. The number

of points to be used in this regression method depends on the sample size and

starting values α. Typically no more than two or three iterations are needed

[71]. The speed of convergence however depends on the initial estimates and the

criterion used [69]. The regression method is based on the following observations

concerning the characteristic function φ(t). First from (2.2), we can easily derive

log(−log|φ(t)2|) = log(2γα) + αlog(t) (2.15)

The real and imaginary parts of φ(t) are for α 6= 1 given by

<{φ(t)} = exp(−|γt|α) cos [µt+ |γt|αβ sign t tan
πα

2
] (2.16)

={φ(t)} = exp(−|γt|α) sin [µt+ |γt|αβ sign t tan
πα

2
] (2.17)
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Apart from considerations of principal values, equations (2.16) -(2.17) lead to

arctan

(
={φ(t)}
={φ(t)}

)
= µt+ βγα tan

πα

2
sign (t)|t|α. (2.18)

Equation (2.15) depends only on α and γ and suggests that we can estimate the

two parameters by regressing y = log(−log|φ(t)2|) on w = log|t| in the model yk =

m+αwk+εk, where tk is an appropriate set of real numbers, m = log(2γα), and εk

denotes an error term. Koutrouvelis [68] proposed to use tk = πk
25

, k = 1, 2, . . . , K;

where K lies between 9 and 134 for different values of α and sample sizes.

Once α̂ and γ̂ have been obtained and α and γ have been fixed at these values,

estimates of β and µ can be obtained using (2.18). Next the regressions are

repeated with α̂, γ̂, β̂ and µ̂ as the initial parameters. The iterations continue

until a pre-specified convergence criterion is satisfied.

2.4.4 Maximum likelihood estimation

Let X = (x1, x2, . . . , xn) be a vector of n independent and identically distributed

(i.i.d) stable Paretian random variables, i.e., Xi ∼ S(α, β, γ, µ) and let x =

(x1, x2, . . . , xn) denote the corresponding vector of observations where the like-

lihood function is defined by

L(x|α, β, γ, µ) =
n∏
i=1

1

γ
S(α, γ, β,

xi − µ
γ

, 0).

Defining θ = (α, β, γ, µ)′ the ML estimate of θ is obtained by maximizing the

log-likelihood function

Lθ(x) =
∑

lnf(xi; θ) (2.19)

with respect to the unknown parameter vector θ. DuMouchel [29] investigates

the theoretical properties of the ML estimator for θ and shows its asymptotic

normality under certain regularity conditions.

√
n(θ̂ − θ0)

d→ N(0, I−1(θ0)), (2.20)
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where ”
d→” stands for convergence in distribution and I denotes the fisher infor-

mation matrix which can be approximated using the Hessian matrix arising in the

maximization [92] by direct numerical integration.

In our ML estimation algorithm, we maximize the log-likelihood function (2.19) nu-

merically. Rather than employing constrained optimization, we estimate a trans-

formed version of θ, say θ̂ = (α̂, β̂, γ̂, µ̂) such that θ = h(α̂). The transformation

can take the form

α =
2

1 + α̂2
, β =

2− β̂2

2 + β̂2
γ = γ̂2 (2.21)

In many applications, it is assumed that first moments of Xi exist. Then one may

restrict α ∈ (1, 2] by adopting the transformation α = 1 + 1/(1 + α̂2) [94]. With

the parameter transformations in place and defining the gradient ∆0h(θ) = ∂h(θ̂)

∂θ̂
,

(2.20) becomes
√
n(θ̂ − θ0)

d→ N(0,∆θ̂h(θ)I−1(θ̂0)h′(θ̂)). (2.22)

The maximum likelihood estimation has been implemented in two packages of

R statistical software: StableEstim package by Kharrat[66] and stable package

by Nolan [95] respectively. In this study we use the [95] stable package due to

computational speed and its variety of faster algorithms.

2.4.5 Assessing the Goodness of fit

Kolmogorov-Sminorv (KS) test is applied to test the goodness of the fitted of

the stable distribution [122]. This method is based on the empirical cumulative

distribution function (ECDF), it measures the supremum distance between the

cumulative distribution function of the theoretical distribution and the empirical

distribution function, over all the sample points. The general procedure consists of

defining a test statistic which is some function of the data measuring the distance

between the hypothesised distribution and the data, and then calculating the

probability of obtaining data which have a still larger value of this test statistic

than the value observed. The KS test is distribution free since its critical values

do not depend on the specific distribution being tested. The KS test is relatively
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insensitive to differences in the tails but more sensitive to points near the median

of the distribution[79]. The KS test statistic allows us to quantify the extent

to which a theoretical or estimated distribution of the step lengths distribution

describes the observed data [80]. A p-value is calculated as the proportion of the

artificial data showing a poorer fit than fitting the observed data [19]. When this

value is less than 0.1, the null hypothesis that the distribution fits the data can

be considered to be drawn from the fitted distribution, and if not, is rejected.

Following Clauset et al. [19], we choose 0.1 as the threshold p-value for validating

the statistical test taken on the data.

2.5 Real data application

Animals are often equipped with radio-tracking tags containing GPS receivers

which record the location of the animal at set intervals, and either store the data

for later retrieval, or transmit the data in real time via satellite or GSM networks.

Traditional monitoring approaches use an ad-hoc alerting thresholds to monitor

the variables for abnormal events such as poaching or human wildlife conflict. The

GPS radio tracking data-driven approach is a useful alternative to this, in which

we construct a probabilistic model to capture the structure of the data and aim to

identify and monitor the movement patterns and behaviour of animals. In the lat-

ter, inappropriate assumptions about the distribution of the random variables may

result in underestimation of the tail mass, as discussed earlier [34–37]. This will

lead to inaccurate classification of the sample data, and so careful consideration

should be given to such assumptions during model development. In this section,

we illustrate the application of stable family of distributions to animal movement

step lengths. Stable distribution are fitted to step lengths of six mature female

elephants tagged with GPS radio-collars following the strict ethical standards of

animal handling with specific approval from the University of KwaZulu-Natal An-

imal Ethics sub-committee (Ref. 009/10/Animal) and registered and approved

by SANParks project, in association with Kruger National Park and Scientific

Services (Ref: BIRPJ743 ). The study area is located at Kruger National Park
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(KNP) and associated private reserves along the western boundary (Sabie Sand,

Klaserie, Timbavati, Umbabat and Manyaleti), covering an area of approximately

equal to 21,281 km2, in the north-eastern Lowveld region of the South Africa. Our

study area covers the southern, central and western regions of KNP and includes

the associated private reserves, since elephant are able to move freely between

these areas as described in [11]. Step lengths(linear metrics) of animal movement

were derived using the tracking tool in ArcGis 10.0 and the resulting ArcView

shapefile was exported as a tab delimited text file for input to R (R Development

Core Team 2008) environment in which we perform the remaining analysis. Step

lengths of elephant movement were filtered to weed out erroneous fixes caused by

GPS error using an upper, biologically based threshold speed of 7 km/h [135].

2.6 Results of analysis and interpretation

Table 2.1 gives the summary statistics for the step lengths of the six elephant

herds. The maximum step length show the longest distance an elephant can cover

while migrating or foraging within a period of 30 minutes. The maximum step

length varied from herd to herd with AM255 having the largest value of 3.68km

and herd AM254 having the least value of 2.45km. The average step length for

the six herds ranged from 169 to 240 meters with herd AM99 having the highest

value (238.5 meters) and herd AM208 having the lowest average of 169.5 meters.

The step lengths appears to be asymmetric as reflected by the positive skewness

estimates: there are more observations in the right-hand tail than in the left-hand

tail. The skewness statistic varied from herd to herd and ranged from 24.09 to

2.69. Further, the histogram in Figure 2.2 confirms that the data of all the six

elephant herds are right skewed. The kurtosis statistic for the step lengths of the

six elephants herds is higher than that of a standard Gaussian distribution which

is 3, showing the fat tails patterns of these empirical distributions. Kurtosis varied

from herd to herd, which implies the biological significance of individual herd.
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Figure 2.2: Histograms of the step lengths of the six elephant herds collected
from Kruger National Park (2006-2009)

Figure 2.2 displays a histogram of the elephant movement step lengths. The plot

illustrates that, the step lengths of the six herds heavy tailed and skewed to the

right which suggests a leptokurtic distribution family. Table 2.2, gives the three

stage parameter estimates of stable distribution for step lengths of the six elephant

herds. In the analysis we assume that the time steps are equal and independent.

The parameter α in the Stable Paretian and the power law distributions is the

stability index which measures the heaviness of the tails. The parameter β in the

Stable Paretian distribution is the skewness parameter, while γ and µ are the scale

and location parameter respectively.

The estimates for the tail index α of the stable distribution nearly take almost

the same values regardless of which herd they come from, suggesting an intrinsic

characteristic of the data [23, 104]. The values of α ranged between 1 and 2 which

is consistent with previous studies that fitted the power law distribution to study
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the tail behaviour of animal movement step lengths. Note that α < 2 departing

from the Gaussian behaviour and capturing the heavy tail effects. We note that

tails of animal movement step lengths may contain important biological signals

which are necessary in understanding animal movement patterns and behaviour.

Comparing the tails index α of the stable distribution and the power law exponent

α we find that the power law tail estimate is less than the stable tail index which

implies that the power law exponent overestimates the tail behaviour if skewness

in the data is not accounted for during analysis. A reanalysis of data sets used in

the studies of [34–37] needs to be carried out to establish this claim.

Table 2.1: Descriptive analysis of six herds of Elephant movement step length
in Kruger National Park collected every 30minutes

stats Am99 AM108 AM239 AM253 AM254 AM255
Sample size(n) 16058 35272 41876 25388 39567 21097
Minimum 5.07 5.04 5.02 5.04 5.05 5.05
Maximum 3211 2616 2830 3429 2450 3675
Mean 238.50 213.19 184.09 189.11 169.52 180.42
Median 157.99 145.16 120.28 112.17 107.27 112.07
SE Mean 2.04 1.20 1.00 1.43 0.97 1.48
Stdev 258.45 225.52 205.10 227.37 192.67 214.51
Skewness 2.44 2.25 2.71 2.65 2.69 2.91
Kurtosis 9.28 7.39 11.80 10.33 11.43 13.81

The skewness parameter β for all the six herds is greater than 0 (β = 1) which

indicates that the step lengths are positively skewed. However, this may be a

problem in future model and is known as a boundary problem. In movement

ecology, a value of β = 0 would be interpreted to mean an animal is performing

a Brownian motion search foraging, while a value of β > 0 indicates the animals

make large infrequent rare steps especially when search for scarce food resources

like water and forage.

The parameter γ measures the amount of variation in animal movement step

lengths. The values of γ were positive and varied from herd to herd irrespective

of the method of estimation. The parameter µ is a measure of central tendency

was positive and differed from herd to herd.
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Table 2.2: Comparison of parameter estimates and goodness of fit for the
stable and power law distribution of elephant movement step lengths data sets
collected from Kruger National Park South Africa recorded every 30 minutes

from 2006 to 2009.

McCulloch quantiles method(stage 1)
AM99 AM108 AM239 AM253 AM254 AM255

α 1.62 1.69 1.61 1.42 1.60 1.48
β 1.00 1.00 1.00 1.00 1.00 1.00
γ 126.27 114.75 96.69 97.37 90.35 92.26
µ 150.64 138.32 114.23 106.38 101.32 104.82
KS.dist 0.14 0.15 0.14 0.13 0.15 0.13
p-value 0.10 0.13 0.10 0.102 0.13 0.102

Koutrovelis-Kogon-Williams algorithm(stage 2)
parameter AM99 AM108 AM239 AM253 AM254 AM255
α 1.52 1.56 1.49 1.37 1.48 1.40
β 1.00 1.00 1.00 1.00 1.00 1.00
γ 110.21 100.89 83.27 80.04 77.29 76.50
µ 112.67 105.04 85.85 75.04 75.04 75.54
KS.dist 0.16 0.16 0.16 0.16 0.17 0.15
p-value 0.15 0.15 0.15 0.155 0.14 0.14

Maximum likelihood estimation(final stage)
AM99 AM108 AM239 AM253 AM254 AM255

α 1.67 1.69 1.61 1.42 1.60 1.58
β 1.00 1.00 1.00 1.00 1.00 1.00
γ 99.98 91.78 73.32 64.39 67.22 68.05
µ 148.74 137.45 108.77 89.73 97.37 97.42
KS.dist 0.10 0.10 0.09 0.08 0.10 0.10
p-value 0.11 0.15 0.18 0.17 0.15 0.13

Paramter estimates and goodness of fit of the power law
distribution to six herds of elephant movement

AM99 AM108 Am239 AM253 Am254 AM255
α 1.31 1.32 1.33 1.34 1.34 1.34
xmin 5 5 5 5 5 5
N 16060 35272 41876 25388 39567 21097
KS.dist 0.31 0.3 0.29 0.27 0.28 0.28
p-value 0.102 0.13 0.19 0.12 0.145 0.143

Though the values of the α vary from herd to herd, they still retain the biological

meaning. From the interpretation of the four stable distribution parameters, we

note that complex models can be built based on the stable distribution assumption

to investigate the effects of environmental drivers on animal movement. The stable

generalized linear model of [71] can be extended to stable generalized mixed models

with herds as the random effects.
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Despite the desirable statistical properties and empirical evidence of the tail index

in ecological data [23, 34–37], the power law distribution has almost been used

exclusively to model step lengths of animal movement ignoring the skewness in

the data. However, in this paper, we have demonstrated the stable Paretian

distribution fits the step length better than the power law by capturing both the

skewness and the heavy tails properties of the data.

Figure 2.3: Stable distribution density function plots for elephant movement
step lengths

Figure 2.3 illustrates the stable density fit diagnostic tests for step length of six

elephant herds. The density plot illustrates that the stable distribution fits the
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Figure 2.4: Probability plots (pp) of stable distribution of six elephant herds
movement step data collected from KNP between 2006-2009 lengths

data well compared to the theoretical probabilities of the stable distribution. Fig-

ure 2.3 displays the P-P plot of the six elephant herd movement step lengths data.

The stable distribution P-P plot displays a perfect fit of the probabilities of the

data to the theoretical probabilities of the stable distribution. Based on the K-S

test statistic as indicated by the results in Table 2.1 and 2.2 we found that the sta-

ble Paretian distribution fitted the step lengths data better than the conventional

power law distribution. Therefore, elephants (africana loxadonta) are representa-

tive of the five large mammals and the stable Paretian distribution with α < 2

clearly outperform the power law distribution.
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2.7 Final remarks

Analysis and interpretation of animal movement data is one of the most contro-

versial issues in movement ecology [65]. The biological importance of rare events

such as long steps, and on the other hand, availability of large amounts of high-

resolution animal tracking data owing to recent developments in the methodology

and technology [11, 45, 56, 57], pose a considerable challenge for data analysis [91].

The commonly used statistical approaches do not always allow distinguishing un-

ambiguously between qualitatively different processes such as Brownian motion,

correlated random walk and the Lévy flight, and that has caused a heated debate

[36, 101, 105]. Moreover, its an open question as to what extent the animal move-

ment step lengths can be adequately described by the Lévy walk models as it is

intuitively clear the results may depend on the choice of appropriate probability

distribution that adequately captures the statistical properties of the data [120].

In this paper, we have demonstrated that, with the recent technology and efficient

computing power, stable distributions can adequately capture the properties of

large data of animal movement. Having applied various methods of parameter es-

timation, we compared the goodness of fit of the stable distribution, and the power

law distribution. We have shown that the family of stable distribution of which

the power law is a variant, is the most biologically tractable and flexible model for

animal movement data sets. The results of elephant herd movements have major

implications for most of the traditional statistical modelling approaches. One of

the main challenges in individual animal movement studies is to identify movement

pattern. The tails of animal step lengths may contain important biological signals

which characterise animal long term behaviour. Another issue in animal move-

ment studies is the argument that the movement is scale free which is unrealistic

as animal step lengths have scale [65]. It is this issue that we seek to address by

applying the four parameter stable distribution which is more robust. The scale

parameter of the stable distribution captures the scale in animal movement data.
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For instance, unlike the power law distribution which is controlled by the xmin,

the stable distribution is not. This leads to a counter-intuitive conclusion that, for

an individual elephant movement step length described by power law distribution

[23], we cannot separate the apparently different scales of small and large step

lengths and the result of the analysis of search patterns in dispersed food patches

essentially depends on animal movements at a small scale [98]. We refer to this

situation as a genuine Lévy flight. It is not scale-free, as it was suggested by earlier

studies [65, 80], but its specifics are that the small and large scales appear to be

equally important and cannot be separated.

We note that animal movement is never uninterrupted, usually it alternates be-

tween periods of fast and slow movement or rest [65, 80]. The desire to capture

as much information from the data as possible, can lead to inclusion of values of

xmin even when the animal is resting i.e., xmin = 0. In this case the power law dis-

tribution in previous studies has been shown to be sensitive to the choice of xmin.

However, in the case xmin = 0, a power law-type distribution is not valid. This

problem has been solved by using the stable distribution which does not require

the choice of the scale parameter xmin and hence the hypothesis of the Lévy flight

movement pattern is restored.

It is notable that due to herd to herd variation, future studies should consider a

mixed effects models with herds as the random effects. All values of the stability

index α were in the range of 1 to 2 which shows that elephants have evolved to use

the Lévy flight search strategy to optimize scarce food resources. These findings

supports an earlier study by Dai et al. [23] who reported Lévy flight foraging

patterns in elephants from Pongola Game Reserve in South Africa. The result

of this application opens perspectives for new approaches of the analysis of step

lengths of animal movement, particularly incorporating both skewness and heavy

tails to identify animal movement pattern and extract important biological signals

from the tails of the data. These and many more we leave them as a future research

possibility.



CHAPTER 3

Analysing the effects of landscape factors on

animal movement step lengths with stable law

regression models

Abstract

The potential advantage of stable distribution assumption in modelling ecologi-

cal disturbances of animal movement is the central theme of this paper. Studies

relating animal movement paths to structured landscape data are particularly

lacking despite the obvious importance of such information to understanding ani-

mal movement. Previous studies of elephant movement have shown that speed is

heavy tailed and skewed. In this paper we model the heavy tails using the student

t regression model, the skewness and the heavy tails with the stable law regression.

The new models add substantial flexibility and capabilities, including the ability

to incorporate multiple variables. We use a likelihood based approach that utilizes

the Fourier Transform technique to evaluate the densities and demonstrate the ap-

proach with movement data from five elephant herds (Africana Loxadonta). The

proposed methodology can be useful for GPS tracking data that is becoming more

common in monitoring of animal movement behaviour. We discuss our results in

44
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the context of the current knowledge of animal movement and in particular ele-

phant ecology highlighting potential applications of our approach to the study of

wide ranging animals.

Keywords: Stable law regression model; Elephant movement; habitat types; GPS

data; Student-t regression model.

3.1 Introduction

Regression analysis is one of the most popular methods in ecology and statistics;

where most variables of interest such animal movement step lengths are assumed

to be normally distributed. However, the normality assumption is not appropriate

for many ecological variables, especially animal movement linear metrics (speed,

step lengths, etc) variables and also, in some cases circular metrics (turn angles)

[5]. Animal movement linear metric are typically heavy tailed and excessively

highly peaked around zero. A stable distribution, whose shape is governed by

the stability index parameter α, represent one such alternative. Thus, such a

distribution is better suited to describing such variables; the normal distribution

is a special case of the stable distribution. To this end, the four parameter family

of stable distribution is more of a generalization of the central limit theorem than

an alternative.

The flexibility of stable distribution can be explored in a regression modelling

framework to overcome some of the deficiencies of linear regression models when

analysing heavy tailed and skewed data. The non-Gaussian stable distributions

have heavier tails than the Normal distribution and allow skewness [136]. Heavy

tails and skewness implies that extreme observations are given a greater probability

of occurring and are thus given less weighting in maximum likelihood estimation

so that fitted lines are not biased towards these extreme observations [71, 136].

Therefore, it is a reasonable extension to the regression models to assume a stable

distribution as the distribution of the error terms. Alternative models to the stable

law regression models are the Student’s t, skewed Student’s t and skewed normal
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regression models [136]. Fonseca et al. [44] demonstrates that the regression model

with Student’s t errors also suffers from monotone likelihood as it is ill-behaved

for v close to zero and may be ill-behaved when v → ∞. The use of the normal

distribution to model the errors of linear model is under increasing criticism for

its inability to model fat or heavier tailed distributions as well as being non-

robust. Lange et al. [72] generalized the traditional regression model with normal

distributed errors to more robust regression models with t distributed errors. It is

well known that the t distribution provides a convenient description for regression

analysis when the residual term has a density with heavy tails.

The stable distribution has found wide applications in financial problems, biology,

genetics, ecology and geology [127] with a few applications in movement ecology

[63]. The assumption that animal step lengths or speed follow a stable distribution

has far reaching consequences for both foraging ecology and statistical theory [63].

For example, the problem of Lévy flight search patterns is well studied [see 34–37],

robustness to the sampling frequency is studied in [65] and for a specific discussion

of movement ecology and statistical issues see, [63]. However, in all these studies,

the link between linear metrics and the environmental heterogeneity variables re-

mains unexplored. According to [27], different vegetation cover types have varying

impacts on elephant movement. Surface water availability, patch quality, rainfall

and distance to the water bodies is known to affect elephant movement. The ef-

fects of artificial water points and fences has been investigated [74]. In this study

we examine the effects of vegetation cover type in a stable regression model setup

in order to understand elephant movement.

Advances in statistical computation have made it possible to estimate the uncon-

ditional stable density as well as incorporate covariates [71]. However, estimates of

the stable distribution conditional on a set of explanatory variables in the context

of regression framework used by applied researchers poses an overwhelming compu-

tational problem [136]. One of the methods used for evaluating the stable density

(the direct numerical integration techniques) is non-trivial and burdensome from a

computational perspective [95]. As a consequence, maximum likelihood estimation

algorithms based on such approximations are difficult to implement especially for
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huge data sets encountered in movement ecology [63]. However, with increasing

computational power and efficient algorithms, maximum likelihood estimation and

other comparative techniques have been implemented by Nolan and Ojeda [95].

Due to the above mentioned drawbacks, stable distributions are not well explored

in movement ecology.

The aim of this paper is to introduce the stable regression model to better under-

stand the dependence of animal movement on vegetation cove types and relaxing

the reliance on the normal assumption which is commonly used. In section 3.2 we

introduce the stable distribution and its statistical properties. In section 3.2.1, the

stable regression model is developed by assuming the stable distribution assump-

tions. The student’s t regression model is provided and its properties discussed.

Finally, section 3.3 gives an applications to a real data set of five elephant herds,

including a comparison between the student t regression model and the stable

distribution error terms regression model fits.

3.2 Stable distribution

Stable distributions are a four parameter family of probability models, which was

first introduced by [73] in a study of normalized sums of independent and identi-

cally distributed (i.i .d) terms. A random variable X is said to be stable distributed

if for any positive integer n > 2, there exist constant an > 0 and bn ∈ R such that

X1+. . .+Xn
d
= anX+bn where X1, . . . , Xn are independent identically distributed

copies of X and “
d
=”-signifies equality in distribution. The coefficients an is nec-

essarily of the form an = n1/α for some α ∈ (0, 2] [41]. The parameter α is called

the index of stability (tail index) of the distribution and a random variable X

with index α is called α − stable. An α-stable distribution is described by four

parameters and will be denoted by s(α, β, γ, µ). Closed form expressions for the

probability density function of the α-stable distribution is known to exist only for

three special cases (cauchy, normal and Lévy distribution).
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The work of Mandelbrot[76] and Fama [38] elicited a lot of interest in using stable

distributions to model heavy tailed and skewed phenomena, but research has been

restricted to theoretical context due to computational complexities involved in

calculating the probability densities and the consequently what this has for the

maximum likelihood procedures. Notable contributions in this field of study are

found in DuMouchel [29, 30, 31], Zolotarev [143], [110], Janicki and Weron [60]

and more recently Nolan [92, 94], Nolan and Ojeda-Revah [95].

Although the probability density function of the stable distribution cannot be writ-

ten in closed form, the characteristic function, which can be specified in a closed

form for all stable distributions, allows the only opening for practical use of the dis-

tributions in real life problems [83]. The characteristic function can be expressed

in several different forms, each of which has advantages over others, for example

formula simplicity over computational consistency. However, the Zolotarev’s form

has the advantage of being continuous in all the four parameters, and behaves

more intuitively than in other forms [95]. Lambert and Lindsey [71] discuss com-

plexities in fitting their regression model caused by the sensitivity of the location

parameter to the skewness parameter. For numerical purposes, several authors

have recommended the use of Zolotarev’s parameterization as the most practical

in application to real life data sets [95].

The characteristic function of a stable random variable X is given by

Eexp(iuZ) =

exp
(
−γ|u|α

[
1 + iβ(signu) tan πα

2
(|u|−u−1 − 1)

]
+ iµu

)
α 6= 1

exp
(
−γ|u|

[
1 + iβ(signu) 2

π
log|u|

]
+ iµu

)
α = 1

(3.1)

The family of stable probability density can be calculated using the Fourier Trans-

form of the characteristic function, given by

S(x, α, β, γ, µ) =
1

2π

∫ ∞
−∞

eitxΦ(x;α, β, γ, µ)dt (3.2)

Statistical software to fit stable distribution and density functions are available in

Rmetrics for R [141], stable [95] or as standalone program STABLE [92]. These
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resources allow one to evaluate the consequences of replacing the normal assump-

tion with the more general stable distribution. Further advances in theory and

computation will aid the development of new models in the coming years and the

use of the stable distribution will become more common.

3.2.1 Stable Paretian regression model

In may practical applications in animal ecology, it is known that animal move-

ment rate can be affected by a number of covariates (explanatory variables) such

as the nearest distance to the water point, vegetation cover type, distance to

tourist roads, soil topology, seasons, amount of rainfall, temperature and many

others [27]. However animal movement data is characterized by skewed and heavy

tailed distributions. Thus a model that provides a good fit to movement data will

definitely yield more precise estimates of the quantities of interest. Based on the

stable distribution assumption, we propose a linear regression type model linking

the response yi and the explanatory variables X = (x1, x2, . . . xn) as

yi = β0 +
n∑
i=1

βijxi + εi, i = 1, . . . , n (3.3)

where β is a vector of the unknown parameters to be estimated and εi is the

random error term. The notion of stable regression models(SRMs) was developed

by [82] for symmetric stable distribution and discussed in detail by McHale and

Laycock [83]. In SRMs, the error terms ε1, ε2, . . . , εn are assumed to be independent

identically distributed stable random variables denoted by εi ∼ S(α, β, γ, µ).

Standard methods of approximating such integrals are of unknown accuracy in

real settings. Instead, [29] suggested the use of numerical inversion of the First

Fourier Transform (FFT) to obtain a closed density and hence the likelihood

for stable distributions. In a similar manner, numerical inversion of the First

Fourier Transform can be used to obtain the parameters of the stable Paretian

regression model. DuMouchel [29–31] showed that subject to certain conditions,

the maximum likelihood estimates of the parameters of an α-stable distribution
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have the usual asymptotic properties of a maximum likelihood estimator. They

are asymptotically normal, unbiased and have an asymptotic covariance matrix

n−1I(α, β, γ, µ)−1 where I(α, β, γ, µ) is the fisher information matrix. McCulloch

[82] examines the linear regression model in the context of α-stable distribution

paying particular attention to the symmetric case. Here the symmetry constraint

is not imposed. If we denote the stable density function by S(εi;α, β, γ, µ) then

we may rewrite the density of εi as

S(x;α, β, γ, µ) =
1

γ
S

(yi − k∑
j=1

xijβj

γ
, β, 1, 0

)
,

the likelihood as

L(εi;α, β, γ, µ) =
1

γ

n∏
i=1

S

(yi − k∑
j=1

xijβj

γ
, β, 1, 0

)

hence the log-likelihood function for the vector of parameters θ = (α, β, γ, µ, β0, β1, . . . , βp)

from model (3.3) has the form

l(εi, α, β, γ, µ, β0, β1, . . . , βp) = −n
n∑
i=1

log(γ) +
n∑
i=1

log

(
s

(yi − n∑
i=1

xijβj

γ
, β, 1, 0

))
(3.4)

The ML estimator θ̂ of the vector θ of unknown parameters can be calculated by

maximizing the log-likelihood (3.4) to obtain the solution to the equations

∂`

∂βm
=

n∑
i=1

−Φ(εi)xim = 0,m = 1, . . . , k

n∑
i=1

−Φ(ε̂i)

ε̂i
ε̂ixim = 0,m = 1, . . . , k

n∑
i=1

−Φ(ε̂i)

ε̂i
(yi −

n∑
i=1

xijβj)xim = 0,m = 1, . . . , k

n∑
i=1

−Φ(ε̂i)

ε̂i
yixim = −

n∑
i=1

−Φ(ε̂i)

ε̂i

n∑
i=1

xijβj,m = 1, . . . , k

(3.5)
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where εi = yixim −
n∑
i=1

x′iβ̂. If we let W be the diagonal matrix given by

W =



Φ(ε̂i)
ε̂i

0 . . . 0

0 Φ(ε̂i)
ε̂i

. . . 0
...

... . . .
...

0 0 . . . Φ(ε̂i)
ε̂i


then using the least squares notation, we may write the normal equations (3.5) as

X ′Wy = (X ′WX)β̂ (3.6)

and if X ′WX is not singular, the parameter estimates of β are given by

β = (XWX)−1X ′Wy (3.7)

Nolan and Ojeda [95] showed that the evaluation of the likelihood function is made

possible by using efficient non-linear optimizers. Maximum likelihood algorithm

used in this work are provided by Nolan and Ojeda-Revah [95] within the R package

stable 5.1 which can be obtained commercially from www.RobustAnalysis.com.

Initial values for α, β, γ, µ, β0, β1, . . . , βp can be taken from the fit of the stable

distribution model.

3.2.2 Regression model with t errors

We consider the univariate nonlinear regression model where the observations

y = (y1, . . . , yn)′ are independent, yi having a student t distribution with loca-

tion parameter µi, scale parameter σ and v degrees of freedom. The density of yi,

for each i = 1, . . . , n, is therefore given by

f(β, δ, v; y,X) =
Γ(v+1

2
)n

Γ(v
2
)n(πv)n/2δn

([
1 +

1

v

(
yi − x′iβ

δ

)2])−(v+1)/2

(3.8)

www.RobustAnalysis.com
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where σ > 0 and v > 1 are both unknown. We define a linear regression for y by

yi = β0 +
n∑
i=1

βijxi + εi, i = 1, . . . , n (3.9)

where ε = (ε1, . . . , εn)′ is the error vector where the components are independent

and identically distributed according to the student t distribution with location

zero and scale δ and degrees of freedom v [72]. X = (x1, . . . , xn)′ is the n × k

matrix of explanatory variables. The parameter space is given by θ = (β, δ, v).

The likelihood is given by

L(β, δ, v; y,X) =
Γ(v+1

2
)n

Γ(v
2
)n(πv)n/2δn

n∏
i=1

[
1 +

1

v
(
yi − x′iβ

δ

2

)

]−(v+1)/2

(3.10)

The parameter estimates θ are obtained by maximizing the log-likelihood equation

LogL = lnΓ(
v + 1

2
)n − lnΓ(

v

2
)
n

(πv)n/2δn − (v + 1)

2

n∑
i=1

log

[
1 +

1

v

(
yi − x′iβ

δ

)2]
(3.11)

The least squares estimator of β is

β = (X ′X)−1X ′Y

The variance-covariance matrix for β̂ is

var(β̂) = E[(β̂ − β)′(β̂ − β)] =
vσ2

v − 2
(X ′X)−1.

Lange et al. [72] noted that this is also the maximum likelihood estimate of β.

Singh [118] provided the following estimate of the degrees of freedom parameter

v̂ =
2(α̂− 3)

α̂− 3

where

α̂ =

1
n

n∑
i=1

(yi − x′iβ̂)4

1
n

n∑
i=1

(yi − x′iβ̂)

2
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The maximum likelihood estimator of σ2 is

σ2 =
1

n
(yi − xβ̂)′(yi − xβ̂)

as in the normal case. For v > 2, E(σ̂2) = (n−p)
n
σ2
u where σ2

u = vσ2/v − 2 is the

common variance of the elements of ε. Thus ε̂′ε̂/n− p is an unbiased estimator for

σ2
u while

σ2 =
v − 2

v(n− p)
ε̂′ε̂ (3.12)

is unbiased estimator for σ2. In the class of estimator qε̂′ε̂, with q being a positive

scalar, the minimal mean squared error estimator for σ2 is

σ2 =
v − 4

v(n− p+ 2)
ε̂′ε̂, (3.13)

while the minimal mean squared error estimator for σ2 in this class is (v −

4)ε̂′ε̂/(v − 2)(n− p+ 2). The variances of the unbiased and the minimal mean

squared error estimators of σ2 are

var(σ̂2) =
2σ4

(n− p)
n− p+ v − 2

v − 4
, (3.14)

Maximum likelihood algorithm used in this work are provided by [96] in R statis-

tical package ‘heavy’.

3.3 Application to elephant movement data

3.3.1 Data description

The telemetry data employed in this study was collected by the South African

National parks (SANPARKS). In May 2006, 18 African elephants were fitted with

GPS -argos telemetry collars (Telenics). Capturing and handling was done accord-

ing to the University of KwaZulu Natal animal care regulations. GPS locations

were recorded every 30 minutes during the first three years after collaring and
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transmitted to SANPARKS via an Argos satellite uplink every day when the ele-

phant was within network range [11]. Telemetry points collected within the first

24 hours after capturing and those with obvious errors were excluded from the

analysis. Overall, the telemetry data set was composed of more than 50,000 GPS

points, taken over a period of three years, across a 19, 485km2 area [11, 131].

3.3.2 Vegetation cover types

To determine the effects of various habitat types in the pattern of elephant move-

ment, we extracted the vegetation cover types data of before and after the break-

points. Land cover types and distances to different landscape features within a

spatial resolution of 30 m pixels were obtained from the Kruger National Park

Land cover database. This database is based on the Thematic mapper sensor

on Landsat Earth-resource satellites using data frames recorded between 2006 and

2009 (spectral analysis Inc.2009). Dummy variables of vegetation cover types were

created and fitted to a regression model assuming stable distributed error terms.

The land cover of Kruger national park (KNP) consist of twelve vegetation cover

types in Table 3.1.

3.3.3 Model formulation

The observations of the response variable y1, y2, . . . , yn represent the movement

rate of five elephant herds derived before and after breakpoint home ranges [see 11,

for further details ]. The covariate vector xi is the dummy variables representing

the vegetation cover type created from the habitat variable. Due to computational

complexity of the stable regression model and lack of rich data set with covariates

of elephant herds, we shall demonstrate the results of habitat cover types only in

this study. The dummy variables created from vegetation cover type are presented

in Table 3.1 Now we present the results by fitting the model

yi = β0 + β1x11 + β2x12 + . . .+ βpx23 (3.15)
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Table 3.1: Dummy Variables of vegetation cover type under investigation

yi Speed of the animal
x12 comb cover
x13 thicket cover
x14 Mixed Combretum/Terminalia sericea woodland
x15 Combretum/mopane woodland of Timbavati
x16 Acacia welwitschii thickets on Karoo sediments
x17 Kumana Sandveld
x18 Punda Maria Sandveld on Cave Sandstone
x19 Sclerocarya birrea subspecies caffra /Acacia nigrescens savanna
x20 Dwarf Acacia nigrescens savanna
x21 Bangu Rugged Veld
x22 Combretum / Acacia nigrescens Rugged Veld
x23 Lebombo South

where the dependent variable yi speed of elephants follows the stable law distri-

bution or the Student’s t distribution for i = 1 . . . , 200. The dependent variable

yi is the speed of elephant before and after breakpoint home ranges obtained as

described in [11] and [131]. The MLEs of the model parameters are calculated

using the procedure nlm in R statistical software. Iterative maximization of the

logarithm of the likelihood function of the stable law regression starts with some

initial values for the θ taken from the linear regression model.

3.4 Results of the analysis

Table 3.2 lists the MLEs of the parameters for the SRMs and HTRMs models

fitted to the current data. The SRMs model involves four extra parameters which

gives it more flexibility to fit the elephant movement data. Due to lack of rich data

set of animal movement with covariates we investigate only the effects of habitat

types as dummy variables. Most of the environmental variables considered here

were selected as drivers of movement rates before and after break point analysis

of home ranges [see 131]. The fitted SRM indicates that the dummy variables

X12, X13, X14 X18 and X23 are significant at 5% level of significance. The linear

regression intercept was, however, significantly less than 1 indicating the ability

of our models to predict the movement of the elephant at moderate speed.
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Since we have demonstrated that the residuals are non-Gaussian, we will now

compare the stable estimates with those obtained from the heavy tailed regression

model with student’s t distributed disturbances. The results of student’s t regres-

sion model in Table 3.2 indicates that the vegetation covers combo, thicket, mixed

combretum, punda maria sandveld and lebombo south significantly reduced the

movement rates of elephants while mopane woodland, acacia welwisitchii, Kumana

sandveld, Sclerocarya birrea subspecies, dwarf acacia savanna, Bangu rugged and

Combretum acacia rugged increased the movement rates though not significant.

The results of stable law regression model indicates that the vegetation covers

combo, thicket, mixed combretum, punda maria sandveld and lebombo south

significantly reduced the movement rates of elephants while mopane woodland,

acacia welwisitchii, Kumana sandveld, Sclerocarya birrea subspecies, dwarf acacia

savanna, Bangu rugged and Combretum acacia rugged increased the movement

rates though not significant. We note that the movement of elephants in the re-

source poor patches are positive and significant indicating that elephants increased

there movement speed when moving from search of food and water while in re-

source rich patches the move at a slower speed as they forage. The stability index

parameter estimated is 1.31 which is less than 2 with a standard error of 0.0511

indicating that the data is heavy tailed. Clearly we can reject the null hypothe-

sis that the random disturbance follows a Gaussian distribution (the hypothesis

α = 2) in favour of the alternative that the disturbance follows a non-Gaussian

stable distribution with infinite variance. Figure 3.1, further supports the findings

of the fitted model with residuals of the stable distribution plotted along the em-

pirical density of the data. The density plot shows that the empirical distribution

has heavier tails and a higher more concentrated peak compared to the Gaussian

distribution. These attributes convey the ecological importance of the tails with

appropriate statistical assumption. We used the Akaike information criterion

to compare the student’s t and the stable law regression models. The results of

Table 3.2 indicates that the student t regression model better fits the data than

the stable law regression model with an AIC of -170.46 and -162.78 respectively.

However, we note that the student t regression model only captures the heavy tails
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Table 3.2: Summary of Heavy tailed -t distribution and stable law regression
model

Heavy tailed model Stable law regression model

parameter Estimate Std.err p-value Estimate Std.err p-value

α 1.309 0.051 1.000
β 0.857 0.081 1.000
γ 0.091 0.003 1.000
intercept 0.376 0.025 1.000 0.34 0.011 0.000
X12 -0.089 0.054 0.000 -0.086 0.024 0.000
X13 -0.114 0.047 0.000 -0.144 0.02 0.000
X14 -0.068 0.034 0.000 -0.053 0.015 0.000
X15 -0.001 0.044 0.000 0.008 0.019 0.663
X16 0.067 0.037 0.9999 0.033 0.016 0.978
X17 0.228 0.058 1.000 0.165 0.026 1.000
X18 -0.047 0.045 0.0202 -0.08 0.02 0.000
X19 0.008 0.034 0.6772 0.008 0.015 0.5
X20 0.064 0.039 0.9999 0.043 0.017 0.994
X21 0.006 0.042 0.6103 -0.006 0.019 0.382
X22 0.021 0.041 0.8508 0.014 0.018 0.773
X23 -0.038 0.047 0.0559 -0.048 0.020 0.009

loglike 88.00481 84.16449
AIC -170.4644 -162.7838

Figure 3.1: Diagnostic analysis of elephant movement data
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and fails to account for the skewness in the data.

3.4.1 Biological implications and applications

The empirical analysis shows that the effect of vegetation cover types is to reduce

the movement rates of elephant in abundant food patches and increased the move-

ment rate in poor resource areas. This finding is consistent with the descriptive

analysis of [27] who hypothesized that the quality and availability of forage sup-

presses movement rates of elephants. The findings also support the argument by

[55] who found that resource rich vegetation cover reduced the movement rates of

animals in Serengeti Game reserve, Kenya.

The stable regression model estimated in this paper sheds more light on the earlier

results by identifying how the underlying ecological processes result to differential

habitat use. African elephants have large effects on vegetation cover and high

numbers can lead to extensive habitat modifications. Driven by the need to man-

age these impacts several models have been developed to better understand the

interaction between elephants and trees. Therefore this understanding can be used

for both management and habitat conservation [23]. Another implication of the

stable regression analysis is that the distribution of movement rates-even when

conditioning on the vegetation attributes has infinite variance. This means that

the point predictions are useless because they lack precision especially when the

stable parameters α and β are at the boundaries.

Confirming the foraging success and measuring the impact of environmental drivers

is one of the challenges facing ecologists today. Thus the finding of this paper pro-

vides a direct link of inferring the effects of vegetation cover types on elephant

movement speed. However, the stable Paretian model does not permit the condi-

tional distribution of movement rates to be quantified and it can be used to make

probability statements that may be useful in practice; for example optimal forag-

ing theory. A potentially important practical application of the stable analysis is

movement strategies analysis. A strategy that includes both the Lévy stable walks
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and the Lévy flights are thought to optimize foraging. Kawai and Petrovskii [65]

show in movement ecology applications that stable models- because they capture

both skewness and heavy tails in movement rates- perform considerably well than

models based on power law distribution or the empirical distribution. Further,

due to the analytical tractability of the stable distributions, it is possible to use

the stable models to construct optimal search strategies for animals within the

framework of movement ecology. In animal movement studies, where rare steps

in the upper tail of the distribution drive search optimality, it appears promising

to use the stable regression models developed above as an input into construct-

ing an optimal search strategies for animals that help understand the relationship

between elephant herds and their habitats.

3.5 Conclusion

We have described the theoretical justification for the use of stable law regression

models and Student’s t regression models in analysing animal movement data.

To be useful in practice, a statistical model of the speed of animal movement

should capture asymmetry, the heavy tails implied by the importance of extreme

events and allow the speed to be conditioned on a vector of explanatory variables.

Recent advances in the statistical theory of non-symmetric density functions and

their estimation make it feasible to estimate statistical models based on the stable

law and the student’s t distribution. It is also possible to estimate Student’s t

regression models using standard maximum likelihood techniques. The t regression

model has one demerit in that it does not capture the skewness property of the

data though based on the AIC values, it is superior to the stable law regression

model

Despite several studies detailing analogous statistical approaches, application of

such models to GPS tracking is limited due to computational difficulties [63] and

lack of adequate data rich in covariates in ecology. One limitation of the Stable

law regression model is the lack of convergence when the values of the parameters
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α and β are at the boundary. The Student’s t regression model is particularly

appealing in ecology where the data are characterized by heavy tails and where

we are interested in conditional distributions. Unlike Stable law regression model,

the Student’s t regression models does not account for skewness and is not in the

domain of attraction of sum of independent and identically distributed random

variables. However, a skewed Student’s t regression model is suggested in future

studies to assess the effects of covariates on heavy tailed and skewed data in

movement ecology. Advancement in technology and availability of computational

softwares have made the implementation of these models easier.

We have identified several key areas to be pursued. Some of these areas are

straightforward, such as increasing the number of explanatory variables, allow-

ing the parameters of stable distribution to vary with the explanatory variables

in a generalized linear model (GLM) framework. Diagnostic testing and model

checking tools need to be developed to check the adequacy of the fitted models.

Similarly, the random effects can be included in the model to explain herd variabil-

ity between herds. While each is an extension of the simple models demonstrated

they entail estimation of many more parameters.

Our empirical application demonstrates the importance of modeling explicitly the

asymmetries and heavy tails that characterize animal movement linear metrics

(step length or speed) if one is to make the accurate probability statements re-

quired to manage the environmental fluctuations. Typically, elephant movement

is not predictable as it is difficult to determine analytically when a step starts and

ends. However quantifying the distribution of the movement rate conditional on

specific-environmental variables is one way to describe the effects of the drivers

on the elephant movement. The stable regression models appears to be a useful

tool for quantifying this relationship and it may have an important and practical

application in assessing the value of artificial incentives in wildlife management

especially on private game ranches in South Africa.



CHAPTER 4

Approaches for analysing heavy tailed and

skewed animal movement: application to

elephant movement time series data

Abstract

Many time series models in movement ecology are often based on the assumption

that the random variables follow a Gaussian distribution. It is well known that

empirical data sets have infrequently occurring rare events and cannot be mod-

elled with the Gaussian distribution. Such data sets can be described by ARMA-

GARCH models with an appropriate underlying distribution that can cater for

skewed and heavy tailed distributions. In this study we compare four ARMA-

GARCH models as potential candidates for modelling heavy tailed and skewed

time series data of animal movement step lengths. Estimation difficulties have

however hindered the use of stable Paretian distributions among practitioners in

fields such as movement ecology. Four distributional hypothesis are tested: the

Gaussian, student’s t, skewed student’s t and the stable Paretian distributions and

fitted to time series step lengths of single female elephant herd. We found that

the stable Paretian distributed ARMA-GARCH model performs better than the

Gaussian and student’s t distribution ARMA-GARCH models.

61
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4.1 Introduction

Many ecological models of animal movement rely on the assumption that step

lengths follow a Normal distribution [52]. However, animal movement data often

depart from the Normality assumption, in that their marginal distributions are

heavy tailed and skewed. Animal location data are being collected at an increasing

high resolution (0.1-30 minutes sampling intervals of large mammals are now quite

common) over several seasons. For such data, first order autoregressive models that

assume normal distribution may miss important properties of the data. The use

of stable distributions in movement ecology has been mentioned in a few studies

via the works of Viswanathan et al. [132] and emphasized by Bartumeus [5]. Since

then, the power law a simpler variant of the stable distribution, has been used

to model the step lengths of animal movements [23, 34–37]. Such an approach

ignores the temporal correlation potentially leading to spuriously precise estimates

of parameters [see also 36, for a discussion of the statistical issues with Lévy

approaches]. Stable distributions in general have not gained much attention in

movement ecology due to lack of closed form density and computational difficulties

[63]. Biological signals modelled using these models can provide a useful approach

for statistically detecting and characterizing the temporal dependency in animal

movement data.

While different heavy tailed distributions such as the Weibull and Log-normal dis-

tribution can be used for modelling animal movement metrics, stable distributions

are preferred due to the generalized Central Limit Theorem [84]. According to

this theorem, the limiting distribution of a sum of i.i.d random variables is stable

[13, 92]. A notable feature of the stable distribution is the slow decay in the tails

so that large rare steps are captured naturally. All the stable distributed variables



63

have the useful property of additive invariance adding two or more independent re-

alisations yields another variable of this type. The normal distribution is a limiting

case of the generalised central limit theorem when α = 2 [143]. These and many

other properties makes stable distribution more tractable to the analysis of animal

movement data. Thus they have gained popularity in modelling heavy tailed data

[21, 143] in finance and economics and a few cases in animal movement [63, 64].

Animals typically move in a non-random manner with short clustered steps when

foraging or resting and long rare steps when migrating or in search of scarce food

resources like water resulting to heavy tailed and skewed step lengths. These data

sets are autocorrelated a property which most ecologists tend to eliminate though

de-trending or filtering [22]. However, [26] notes that such autocorrelation is an

intrinsic property of biological data thus eliminating it could reduce the relevance

of ecological studies. Traditional analysis often assume uncorrelated or weakly

correlated temporal structure in animal movement time series constructed using

sequential location data [26].

The conditional distribution of step length is assumed to be Normal in Autore-

gressive models. However, this model specification is not proper for many animal

movement time series because of the leptokurtic nature of the data [5]. Therefore,

distributions such as the student’s t, Log-normal and the Laplace have been sug-

gested [84]. Previous studies have shown that movement step length data set is

heavy tailed and skewed, but little has been done to evaluate time series models

that capture both the skewness and heavy tails properties. It is this gap that

this study seeks to contribute by proposing an ARMA-GARCH model with stable

Paretian distributed innovations to analyse animal movement data sets.

Recent methodological developments have improved the ability of statistical mod-

els to handle the biological complexity of animal movement data [91]. This paper

examines the statistical properties of the step lengths, using a set of symmetrical

and asymmetrical time series. These tools are applied to high-frequency telemetry

data within the framework of movement ecology.
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The remainder of this chapter is organized as follows. Section 4.2 describes the

models used in this chapter. In section 4.3 we explain the statistical properties

of animal movement step lengths data used in this paper and presents the initial

findings. We also discuss parameter estimation and compare the goodness-of-fit

of the fitted models. Section 4 summarizes the findings and gives the concluding

remarks.

4.2 Methods and Materials

4.2.1 Stable autoregressive models

In this section, we describe time series models that can be adopted to analyse

animal movement step length time series data in ecology. We also suggest an

extension to a new class of time series models based on the stable distribution

whose density has the capacity to capture both skewness and heavy tailed nature

of animal movement data.

Let yt be an ARMA(p,q)process of order p and q given mathematically by the

equation:

yt = a0 +

p∑
i=1

aiyt−i +

p∑
j=1

bjut−j + ut (4.1)

where ai and bj are the model parameters and i = 0, . . . , p, j = 0, . . . , q are the

orders of the autoregressive and moving average process respectively, ut is the error

term and yt is the step length of an individual animal at time t.

The generalized autoregressive heteroscedasticity (GARCH) models can be used

to model animal movement data by expressing the conditional variance as a linear

function of past information, allowing the conditional heteroscedasticity of step

lengths. Animals alternates between fast movement while migrating and slow

movement while foraging or resting which can be visualized as small clustered

steps with long rare steps whose outcome is heavy tailed and skewed data. The

assumption that the residual terms εt in equation (4.1) are i.i.d is not valid in
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ecological time series data. The width of the error terms is typically clustered and

depends on the time itself. This property in finance is called volatility cluster-

ing. Bollerslev [12] introduced a class of GARCH(r,s) models which models this

property . The biological clustering is denoted by γt and can be modelled by the

expression:

ut = γtεt

with the recursive relation

γ2
t = ω +

r∑
m=1

ψmu
2
t−i +

s∑
n=1

φnγ
2
t−j, ut|Ut−i ∼ N(0, γ2

t ) (4.2)

where ω > 0 is the constant coefficient of the variance equation, εt is a sequence

of i.i.d random variables with mean zero and variance 1, ψm > 0 and φn ≥ 0

are the ARCH and GARCH parameters respectively and
r∑

m=1

ψm +
s∑

n=1

φn < 1,

m = 1, . . . , r and n = 1, . . . , s are the lags of the ARCH and GARCH effects

and ut|Ut−1 is the history of the movement. Here it is understood that αi = 0

for m > r and bj = 0 for n > s. The latter constraint on αi + βj implies that

the conditional variance of ut is finite, whereas its conditional variance γ2
t evolves

overtime [87]. Thus, volatility clustering depends on its previous values and on

the squared residuals ε2t [12, 21].

While a GARCH model can describe volatility clustering also known as Lévy

flight in movement ecology, one needs a statistical model that can adequately

estimate the conditional mean of the animal tracking data. If the prediction of the

conditional mean is not reasonable, the construction of the conditional volatility

clustering is not possible [89]. We combine the equations (4.1) and (4.2) to form

an ARMA-GARCH(p,q,r,s) model defined by equation:

yt = a0 +

p∑
i=1

aiyt−i +

q∑
j=1

biut−1 + εtγt (4.3)

where γt is given by equation (4.2) and εt is assumed to have a mean zero and

variance 1. For εt, we assume various probability density functions to test different

types of ARMA-GARCH models. For example, the normal, the Student’s t, the
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skewed Student’s t and the asymmetric stable distributions can be used. In the

Gaussian case, εt ∼ N(0, 1), and in the student’s t case, εt ∼ t(v) where v is the

degrees of freedom and the scale parameter is equal to one. We denote the Gaussian

model as Normal-ARMA-GARCH, the student’s t model as t-ARMA-GARCH

and the skewed student’s t model as st-ARMA-GARCH model. We refer to these

models as the conventional ARMA-GARCH models. An important property that

makes ARMA-GARCH process attractive to models of animal movement ecology

data is that the its tail is heavier than that of a normal distribution which allow a

time varying volatility clustering of animal movement step lengths. The clustering

of animal movement step lengths is known as Lévy flight pattern in ecology [63]. It

is expected that the skewed student’s t ARMA-GARCH model which has slightly

heavier tails will be able to capture rare large steps better than the student’s t and

the normal ARMA-GARCH process. However, models that can better captures

both heavy tails and skewness are still of interest.

It has been argued in the literature [5, 23, 63] that a model that captures both the

heavy tails and skewness inherent in ecological data is the four parametric family

of stable distributions. However, the stable density for a random variable X does

not have a simple mathematical description, so it is instead represented using its

characteristic function given by

E[exp(itx)] =


exp

(
−(γ|t|)α

[
1 + iβ(sign t) tan πα

2
(|t|1−α − 1)

]
+ iµt

)
α 6= 1

exp
(
−γ|t|

[
1 + iβ(sign t) 2

π
ln|t|

]
+ iµt

)
α = 1

(4.4)

where α ∈ (1, 2] is the tail index of stability, β ∈ [−1, 1] is the skewness parameter,

γ > 0 is the scale parameter and µ > 0 is the location. The stable distribution

is symmetric about the location µ when β = 0 and the characteristic exponent

α determines the thickness of the tails [94]. When α = 2, the underlying stable

Paretian distribution is Normal distribution: N(0, 2), with finite moments of all

orders [143]. As α tends to 0 from 2, the tail of the stable distribution becomes

increasingly fatter than the Normal case and thus, the scale parameter γ is used

as the analog of the variance [21]. In this paper we note that the kth moments
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of the stable distribution exist if k < α and we assume that E|U | < α. In other

words, we restrict α to be in the interval (1, 2] through out.

Assuming that step lengths of animal movement follow a stable paretian distri-

bution, we define the volatility model of the stable ARMA-GARCH process yt

denoted by S − ARMA−GARCH and given by the equation

γt = ψ0 +
r∑
i=1

ψi|ut−i|+
s∑
j=1

φiγt−i. (4.5)

where ut = γ
1/α
t εt and εt is specified to have a stable density [88]. The S−ARMA−

GARCH(p, q, r, s) process defined by equations (4.1) and (4.5) with α ∈ (1, 2] has

a unique strictly stationary solution if αi > 0, i = 0, 1, . . . , r, βj > 0, j = 1, . . . , s

and the measure of volatility persistence, Vs = λ{α,β,γ,µ}
r∑
i=1

αi +
s∑
j=1

βj, satisfies

Vs ≤ 1[21, 88], where

λα,β,γ,µ = E[εt] =
2

π
Γ

(
1− 1

α
(1 + τ 2

α,β,γ,µ)1/2α cos

(
1

α
arctan τα,β,γ,µ

))
, (4.6)

and τα,β,γ,µ = β tan πα
2

. If Vs is strictly less than one, this implies a conditional

volatility equation where the impact of long rare steps dies out over time [88].

In practice, the estimated volatility persistence, Vs tends to be quite close to one

for highly volatile series which would offer a reasonable description of the animal

tracking data.

4.3 Statistical properties of step lengths time se-

ries

To illustrate the utility of the reviewed methods, we analyse a time series data

set of an individual female elephant herd (Africana loxadonta) collected via radio-

telemetry ([see, 11, 131, for details on data collection] for details on data collection)

from May 2006 to April 2009. Animal capture was undertaken using chemical

immobilisers by South African National parks staff, following approved ethical
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procedures (University of KwaZulu Natal, Ref.009/10/Animal). These elephants

inhabited Kruger national park isolated by paved roads and rivers in South Africa.

Africana loxadonta is an elephant species mostly found in Southern of Africa.

One of the objectives of the radio-telemetry study was to assess the effects of au-

tocorrelation in the presence of heavy tails and skewness in the step lengths of

elephant movement. Spatial coordinates of the elephant location were obtained

using global positioning system (GPS) receivers and differential correction tech-

niques were applied to improve their accuracy [11]. These animals were typically

located at 30 minutes intervals between May 2006 and April 2009 yielding 35272

observations for that herd. Step lengths (linear metrics) of animal movement were

derived using the tracking tool in ArcGis 10.0 and the resulting ArcView shapefile

was exported as a tab delimited text file for input to R (R Development Core

Team 2008) environment in which we perform the remaining analysis.

To summarize the statistical properties of step lengths, (i) we carry out a visual

inspection of the time series graphs. (ii) we compute the relevant descriptive

statistics. (iii) we carry out two unit root tests: the augmented Dickey-Fuller

(ADF) and the KPSS tests to decide whether the series is stationary. (iv) we

discuss the autocorrelation of step length and test the presence of non-linearities

in the data.

Figure 4.1 gives the time series plot of step lengths of herd AM108 and shows the

long run movement pattern of elephant spanning a period of 3 years. The plots

show relatively large number of high spikes in the step lengths which shows the

presence of clustering of steps and the possibility that the step length innovations

of the herd are non-Gaussian.

Table 4.1 summarizes the basic descriptive statistical properties of the data. The

mean step lengths is 213 meters and the median is 145 meters signifying the

presence of high skewness in the data. The step lengths of the elephant herd are

asymmetric as reflected by the positive skewness which implies the presence of

large rare steps in the tracking. The kurtosis is also positive and higher than that

of a standard Gaussian distribution which is 3, which implies the presence of heavy
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tails for empirical distributions. The Jarque-Bera tests of normality has a value

beyond the critical value at 5%, indicating that the normal distribution hypothesis

for the empirical step lengths xt, is rejected. We computed the ADF and the KPSS

tests as shown in Table 4.2 to determine the stationarity of elephant movement

step lengths data. We reject the the ADF unit root hypothesis at 5% level of

significance and the KPSS stationarity hypothesis at 10% level of significance, we

conclude that the elephant movement is non-stationary. For the purpose of this

study, and according to the descriptive statistic obtained for the herd AM108, there

is evidence for higher order lags but we have confined our to the autoregressive

models of order 1 Gurarie et al. [52]. The first order autocorrelation of the AR of

order 1 is positive which implies that the elephants have short memory and a small

of movement step lengths is predictable. Hence the Lévy flight foraging hypothesis

does not hold strictly as stipulated in the literature [5, 23, 36]. This behaviour

could be attributed to environmental heterogeneities such as uneven distribution

of food patches and water sources. In order to determine our mean equation, we

Table 4.1: Descriptive analysis of two female elephant movement step length
in Kruger National Park collected every 30 minutes

Stats Observations Minimum Maximum Mean Median

35272 5.039 2616 213 145

Stats Stdev Skewness Kurtosis Jarque-Bera p-value

226 2.25 7.39 164028.9 0.000

note that the lag value which has the minimum AIC value corresponding to the

ARMA terms was chosen to model the step lengths, thus supporting the choice of

our model.

Even though the series of step lengths seems to be correlated over time, the Ljung-

Box statistic for up to 20th order serial correlation is highly significant at any level

Table 4.2: KPSS tests and Augmented Dickey-Fuller

Test statistic lag p-value
KPSS 0.3567 43 0.096
ADF -31.378 32 0.010
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for the animal movement linear metrics, suggesting the presence of strong non-

linear dependence in the data. From the time series plot in Figure 4.1, volatility

clustering of steps are clearly visible suggesting the presence of conditional het-

eroscedasticity which suggests that non-linearities in the tracking data must enter

though the variance of the processes. Thus the non-linear dependencies can be

explained by the presence of conditional heteroscedasticity and one might repre-

sent this behaviour using a model in which successive conditional variances of step

lengths are positively autocorrelated. We note that such specification is consistent

with the optimal foraging hypothesis of animal movement.

The Lagrange multiplier (LM) is used to test formally the presence of conditional

heteroscedasticity and the evidence for ARCH effects. The LM test for a first

order linear effect is shown in Table 4.3 which implies that the herd AM108 exhibit

ARCH effects and the null hypothesis is rejected. In the next section we present

the results of the ARMA-GARCH models.

Table 4.3: Step Length autocorrelation

Test Statistic p-Value

Ljung-Box 98.02398 0.00
LM Arch 133.6647 0.00

Figure 4.1: Time series plots of the step lengths of Herd AM108 of GPS-
derived telemetry data collected from Kruger National Park South Africa (May

2006 -April 2009) (30minutes time intervals)
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Figure 4.2: Histogram plot of the step lengths of Herd AM108 GPS-derived
telemetry data collected from Kruger National Park South Africa (May 2006

-April 2009)

Figure 4.3: QQ plots of standardized residuals from an ARMA-
GARCH(1,1,1,1) to step lengths of elephant movement.
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4.4 Parameter estimates and interpretation

The maximum likelihood approach was used in estimating the parameters and

we assumed the error term, εt to be either Normal, Student’s t, skew Student’s t

or stable Paretian distributed and the γt satisfies ARMA-GARCH recursions 4.3

and 4.5, respectively. We follow the algorithm described by Mittnik et al. [86]

who approximates the stable Paretian density function through the Fast Fourier

Transform (FFT) of the characteristic function.

To compare the fitted models , we employ three likelihood based goodness of fit

criterion described by Mittnik and Paolella [87]. The first is the maximum log-

likelihood value obtained from ML estimation (MLE). This value allows us to

judge which model is more likely to have generated the data. The second method

is the bias-corrected Akaike [3] information criteria (AICC) and the third method

is the Schwarz Bayesian criteria (SBC, [112]):

AICC = −2 logL(θ̂) +
2n(k + 1)

n− k − 2
, SBC = −2 logL(θ̂) +

2ln(n)

n
, (4.7)

where logL(θ̂) is the maximum log-likelihood value, n is the number of observations

and k is the number of the model parameters. The model with a lowest value

for these information criteria is judged to be preferable [21]. Table 4.4 presents

the estimation results for the stable Paretian, normal, Student’s t and skewed

Student’s t distribution ARMA-GARCH(1,1,1,1) models for herd AM108. The

estimates of the intercept which is denoted by a0 is statistically significant for

all the models except for the stable ARMA-GARCH model. The autoregressive

parameter denoted by a1 is positive and statistically significant for all the four

models implying that there is a positive autocorrelation in the data. This indicates

that the AR(1) model is able to model the conditional mean of animal movement

linear metrics as suggested by [52].
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Table 4.4: Maximum likelihood estimates and goodness of fit statistics of Stable, normal, student’s t and skewed student’s t distribution
ARMA-GARCH(1,1,1,1) of elephant movement step lengths

Stable Paretian Normal Students’ t Skewed student t
Estimate std.error p-value Estimate Std.Error p-value Estimate Std.Error p-value Estimate Std.Error p-value

a0 2.411 2.419 0.319 34.514 9.4351 0.000 17.3791 4.2481 0.000 45.6341 7.5732 0.000
a1 0.636 0.038 0.000 0.765 0.0631 0.000 0.7589 0.0410 0.000 0.6651 0.0462 0.000
b1 -0.350 0.055 0.000 -0.382 0.1000 0.000 -0.3252 0.0630 0.000 -0.3753 0.0591 0.000
ω 1.000 1.748 0.567 7852.4 1761.51 0.000 5322.16 2656.35 0.045 8782.56 3844.38 0.022
ψ1 0.267 0.035 0.000 0.307 0.0824 0.000 1.0000 0.4291 0.020 0.3586 0.1382 0.009
φ1 0.534 0.052 0.000 0.318 0.1073 0.003 0.4418 0.0968 0.000 0.3335 0.1219 0.006
β 0.980 0.006 0.000 1.9218 0.1344 0.000
α 1.068 0.056 0.000 2.3935 0.2016 0.000 2.8265 0.4018 0.000
loglika 222701 233782 227900 223671
AICCb 445420 467577 455816 447360
SBCc 445402 467563 455800 447342

a ”LLH” refers to the maximum log-likelihood value
b ”AICC” is the bias-corrected Akaike Information Criterion
c ”SBC” is the Schwartz Bayesian Information Criterion
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Both ψ1 and φ1 are highly significant which implies that there is persistent volatility clustering in

the step length time series data of the herd. These results indicate that as the animals increase

their step lengths during the search for scarce food resources or migration, so does volatility.

Since the step length is the displacement between two positions covered by the animal within a

given period of time is assumed to be a proxy measure of animal movement pattern or unobserved

information flow. We conjecture that as the food resources becomes more scarce or decreases,

the volatility also increases. This clearly makes sense because the animal is in the search mode

state.

From the stable distribution parameterisation, the estimates of the shape parameter α is sta-

tistically significant at 5% and less than 2 which means that the step length time series of the

herd have heavy tailed patterns and thus rejecting a Gaussian hypothesis. The estimates of the

skewness parameters β are positive and significant which means that the step length time series

are skewed. These findings agree with the results of the descriptive analysis which indicates that

the data set is highly skewed and leptokurtic as shown in Table 4.1.

One important characteristic of these estimates relates to the connection between the skewness

and kurtosis of a normal distribution, the asymmetry and the tail index parameter of the stable

distribution [87]. Based on the sample skewness and kurtosis obtained in Table 4.1, we expect

a fit with the stable distribution will probably give stable skewness with the same sign and

with tail index less than 2. Indeed this happens in Table 4.4. However, there no quantitative

connection between the sample kurtosis and the population kurtosis as it is undefined under the

stable distribution [87]. The real difficulty in analysing the tracking data in ecology is that the

exact distribution of the underlying population is not known and sampling variations make this

problem even more complex [63].

Based on the log-likelihood, AICC and the SBC results of Table 4.1, we find that the ARMA-

GARCH(1,1,1,1) model with stable distributed innovations performed better than the normal

followed by the skewed Student’s t and Student’s t ARMA-GARCH models respectively. We also

note that the skewed Student’s t performed better that the Student’s t and the normal ARMA-

GARCH models respectively. This implies that the asymmetric models are better suited for

analysing heavy tailed and skewed data of animal movement like this one. This finding indicates

that asymmetric models perform better with heavy tailed and skewed data. The results further

confirm the advantage of using the stable distributions that can take into account the non-normal

nature of the time series data examined. However, we point out that despite the computational

challenges highlighted by [63], stable distribution through the index of stability and skewness

parameter can capture more properties of animal movement data and provide more biological

insights than the conventional normal models.



75

4.5 Conclusion

We investigated the empirical 30 minutes time series data of elephant movement step lengths col-

lected from Kruger national park using both asymmetric and symmetric distribution in ARMA-

GARCH models. We note that models that appropriately capture the heavy tails and skewness

properties of animal movement and other ecological applications remain largely unexplored. Sta-

ble Paretian distribution has rich properties that can appropriately capture the skewness and

heavy tailed nature of animal movement data better than the conventional normal distribution.

Using asymmetric models, we are able to extract biological insights from a rich statistically

challenging empirical GPS animal location data which could otherwise be lost if the data was

be subjected to treatment to remove the autocorrelation. These models provide an objective

way of modelling animal movement data sets without loss of biological information due to data

treatment as proposed by Cushman et al. [22]. By incorporating the Biological signals through

stability index and skewness parameter of the stable distribution, the model provides an approach

of statistically detecting and characterizing the temporal dependency in animal movement facil-

itating model development.

However, stable Paretian time series models are computationally challenging and no well devel-

oped softwares have been implemented. We note that the skewed student’s t distribution can be

a better alternative as it comes second in goodness of fit to the stable Paretian model. Models

of higher order lags can be of interest as a future research. We also note that our models can

be extended through the random coefficient autoregressive models to investigate the effects of

several herds. We leave this and other considerations for future investigation.



CHAPTER 5

Application of circular regression models to

animal movement data

Abstract

In a number of biological and physical sciences studies, a set of techniques have been developed

to analyse the relationship between the circular and linear data derived from the geographical

positioning system (GPS) telemetry to describe animal movement. Yet, many of the models

used by ecologists do not provide a link between the circular and linear variables. This chapter

demonstrates the application of the circular-linear regression in describing such a relationship.

We describe numerical methods of obtaining maximum likelihood model parameter estimates.

We discuss the technical limitations of the model through simulation and application to real ele-

phant movement data with covariates collected from Kruger national park, South Africa. These

results provide a new statistical paradigm for understanding the need to landscape features in

elephant and similar animal models and evolutionary forces driving unpredictable.

Keywords: Animal movement, circular statistics, von Mises, regression model, GPS tracking,

turn angles.
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5.1 Introduction

Advances in GPS tracking technology is revealing new insights regarding animal movements

[107, 130]. Tracking devices tagged on animals are becoming smaller in size yet larger in memory

capacity yielding huge datasets [45, 130]. GPS metrics(circular or linear) of animal movement

can be derived from the relocation data. A large body of literature exists on the analysis of linear

metrics (step length, speed and mean square displacement) [see references in, 35, 36] but little is

known about the circular metrics due to lack of computational software. Accurate and objective

interpretation of biological data on movement patterns of animals is needed because conclusions

may have management implications [98, 99]. For instance, the analysis of turn angles data

can reveal animal space use and the ecosystem drivers of movement [27], and efficient foraging

strategies [134] that can facilitate applications in conservation ecology [27, 98, 99].

Circular data can also be visualized as being distributed on the circumference of a unit circle in

the range of 0 to 2π [78]. Handling such data creates difficulties due to the restriction of support

to the unit circle, the sensitivity of descriptive and inferential statistics to the starting point on

the circle. There exists a substantial literature on circular data but broadly, it is confined to

descriptive statistics and limited to inference for simple univariate models [7]. For instance, [17]

reviewed the statistical methods for analysing angular ecological data and found that standard

statistical methods were not appropriate for circular data.

Many ecological models have relied on circular statistics to develop complex models. For instant

the authors in [119] and [124] fitted von Mises distribution to turn(move) angle data and come

up with a set of non-linear regression models relating animal movement to landscape features

orientation. Cain [16] found that von Mises distribution provides good statistical fit to insect

turn angles and clonal plant branching angles. According to behavioural and foraging theory,

magnitude of the turn angle and the step lengths depends on fundamental movement elements

[45] such as habitat type, distance to the river (water point), landscape structure, quality of food

patches etc. Elephants locate their home ranges in areas of high food density, water source and

low human disturbance [24] while [114] argued that the location of artificial water points can have

negative impact on the bio-diversity by putting pressure on habitats closure to them. Landscape

features are physical barriers such as rivers and roads which constrain animal movement by

preventing access to adjacent patches and impeding dispersal [131]. Redfern et al. [103] found

correlation between distance to water and elephant distribution across the poor and rich forage

habitat patches in KNP. To model the effects of landscape feature on animal turning behaviour

a tool that relates the circular and linear variables is needed.

We apply circular statistics, a specific area of methods for analysing data arising from animal

movement studies. The primary motivation of our approach arises from the rich data set of
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elephant turning angle and landscape features covariates data of an individual elephant collected

from Kruger National park using GIS telemetry tags. The turn angles of the animal are derived

from the location and the covariates extracted. Using a circular-linear regression model [42],

we model the turn angles of the elephant movement as a function of landscape and climatic

covariates. Using this model, we can determine the mean orientation of the elephant and identify

important predictors of animal orientation.

This chapter is organized as follows. First, in Section 5.2, we describe the von Mises distribution

and its properties. Section deals with the von Mises regression model, parameter estimation,

confidence intervals and model checking methods. In Section we discuss the limitations of the

model based on simulated data and real elephant movement data with covariates. In Section 5.6

we present the results of the fitted model and there description. Finally we end the chapter with

discuss and conclusion of the findings.

5.2 The Von Mises Distribution

One of the most important distributions for circular data is the von Mises distribution, repre-

sented by vm(µ, κ), whose probability density function (pdf) is given by

f(θ) =
1

2πI0(κ)
exp{κ cos (θ−µ)} (5.1)

where [2πI0(κ)] is the normalizing constant , I0(κ) is the modified Bessel function of the first

kind and order zero. The parameter µ represents the mean direction while κ is the concentration

parameter of the distribution [85]. These parameters must satisfy µ ∈ [−π, π) and κ ∈ [−∞,∞).

The general modified Bessel function of the first kind and order p is defined by

I◦(κ) =
1

2π

∫ 2π

0

exp[κ cos (φ− µ)]dφ

Note that vm(µ, κ) and vm(µ+π,−κ) have the same distribution. For this model, the values of

κ are set to be non-negative, and the ranges of θ and µ are [−π, π]. The von Mises distribution

is unimodal with two parameters µ and κ, and is symmetrical about mean direction θ = µ.

The larger the value of concentration parameter κ, the denser the clustering around the mean

direction µ. For κ = 0, the von Mises distribution tends to the uniform distribution. As κ→∞

it becomes concentrated at the point θ = µ◦.
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From a random sample θ1, θ2, . . . , θn, we can calculate C and S according to equation 5.1 so that

the maximum likelihood estimate of κ is given [25] by the solution from

A(κ) = (C2 + S2)1/2

where the function A(κ) = I1(κ)/I0(κ) is defined with I1(κ), the modified Bessel function of the

first kind (order 1; [85]). Meaning that we need

κ = A−1(C2 + S2)1/2

This is sufficiently unwieldy that tabular lookup was used historically and we are now advantaged

by software [46].

Unfortunately, the MLE here is also biased for finite sample [129]. Defining

R2 = [nI1(κ)/I0(κ)]2

Schou [111] and Batschelet [7] tabulated unbiased values of κ̂, which is the solution for A(κ) =

RA(Rκ)/n when R2 ≥ n. These authors recommends that κ̂ = 0 when R̂ < n. A very useful set

of approximations is given by [43] given by

κ̂ =


2(R/n) + (R/n)3 + 5(R/n)/6 for R < 0.53n,

−0.4 + 1.39(R/n) + 0.43(1−R/n) for 0.53n ≤ R < 0.85n,

1/((R/n)3 − 4(R/n) + 3(R/n)) for R ≥ 0.85n

which needs to be adjusted for small sample size and small R/n [43, 129]:

κ̂ =

max(κ̂− 2
nκ̂ ) for κ̂ < 2,

(n−1)3κ̂
n3+n for κ̂ ≥ 2

(5.2)

The MLE for the mean direction is the value µ̂ that satisfies the equation µ̂ = C/R, µ̂ = S/R,

with C, S and R defined as above. Upton [128] gives a likelihood ratio test statistic forH0 : µ = µ0

verses H0 : µ 6= µ0, provided that κ is not large, that rejects H0 if

R2 > X2 +
(2n2 −X2)

4n
Zα, X2 = [R cos (µ0 − µ̂)]2
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for an a significance level α. Upton [129] extends his hypothesis test to derive two confidence

intervals for µ:

µ̂± cos−1 [

(
4nR2−4nR2Zα

4nR2−R2Zα

)1/2

] for R ≤ 0.9n,

µ̂± cos−1 [

(
n2−(n2−R2)exp(Zα/n)

R2

)1/2

] for R > 0.9n.

Under the normal approximation, this reduces to the simpler form

µ± (Zα/(Rκ̂)1/2

Finally, note that the R package circular [1] provides many of these calculations using the von

Mises distribution.

5.3 Circular orientation model

In order to incorporate the effects of landscape features and environmental covariates in an-

imal movement, we assume that the angular displacement of the animal follows a von Mises

distribution with mean µi and concentration parameter κ given by the equation

f(yi;µi, κ) = [2πI◦(κ)]−1exp{κ cos (yi − µi)}, 0 ≤ y, 2π ≤ 2π, κi > 0 (5.3)

where Ip(.) is the modified Bessel function of the first kind and order p, p = 0, 1, . . .. The positive

parameter κ measures the concentration of the distribution: as κ→ 0, the Von Mises distribution

converges to uniform distribution around the circumference, whereas for κ→∞, the distribution

tends to the point distribution concentrated in mean direction.

For our purpose we assume the response yi has a von Mises distribution with mean µi and

the concentration parameter κ. We denote the vector of turn angles Yi = (y1, . . . , yn)′ which

corresponds to the mean orientation µi. We note that each yi is a circular random variable while

the corresponding vector of covariates Xi are not circular i.e., are continuous or categorical as

with standard regression approaches. Hence in order to study the relationship between Y ′s and

X ′s, we use a so-called circular-linear regression model [42, 48, 124]. This model assumes a

monotonic link function that maps the explanatory variables to a circle. Though a variety of

choices of link function can be used as discussed in Fisher and Lee [42] or Fisher et al. [43], a

generalized linear model (GLM) for the mean turn angle µi = E[YiXi] may be formulated as

follows:

µi = µ0 + 2arctan(β0 + β1x1 + . . .+ βkxk) (5.4)
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where µ0 is an offset mean parameter representing the origin. If Y ∗i = Yi − µ0 is taken as a

surrogate response, then the corresponding mean turn angle is µi = µi − µ0 = 2arctan(ηi) with

origin of 0◦. This implies that tan(µ∗i /2) = ηi = Xiβ.

We note that equation 5.4 can incorporate covariates measured at both individual and herd

levels. However, we focus solely on the individual level covariates as our model results in a single

mean orientation model. Individual level predictors in our model would output a vector of mean

turn angle for an individual, which though statistically correct, would not be easily interpretable

in our setting. This challenge is analogous to covariates in a cross sectional data. Our goal is to

find individual level characteristics that may be associated with animal turning pattern. We note

that some of the individual level covariates can be a summary statistics, i.e., average distance to

landscape features, environmental drivers throughout the mean orientations when the animal is

moving, seasons, rainfall [27] and distance to roads [124].

One of the crucial assumptions of the von Mises distribution is that the turn angle data of

the animal movement is unimodal [47]. We note that no conclusive proof in ecology regarding

whether unimodality is a valid statistical assumption, as any evidence of multi-modality is based

mostly on the evidence from very small samples of the data with no formal attempt to determine

analytically whether more than one mode can be detected relative to the amount of variability

in the data. SenGupta and Ugwuowo [113] derived recent advances in the analyses of directional

data in ecological and environmental sciences. Otieno and Anderson-Cook [97] found Measures

of preferred direction for environmental and ecological circular data. Tracey et al. [124] studied

the effects of landscape features on rattle snake move angles and found that distance to the

roads reduced the move angle of the rattle-snakes. One limitation of there model is that it

cannot accommodate more than one covariate. Tracey et al. [125] used neural network approach

and extended their single covariate model to a population model with several covariates in a

semi-parametric approach. However, their model is computationally challenging. Fisher and

Lee [42] studied the orientation of birds and discusses the challenges of the model.

5.3.1 Computing the mean parameter estimates

Our goal here is to estimate the regression coefficient β = (β0, . . . , βk)′ in equation 5.3 and derive

consistent variance estimates of the parameter estimates. Our data is composed of turn angles

of an individual elephants herd. The parameter estimates of µ, β and κ of equation 5.5 are

obtained by maximizing the log-likelihood:

logL = −NlogI◦(κ) + κ
N∑
i=1

cos (θ − µ− 2 arctan (xiβ)). (5.5)
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We have

∂L

∂µ
= κ

N∑
i=1

sin {θi − µ− g(βxi)}

= κ[cosµ
N∑
i=1

sin {θi − g(βxi)} − sinµ
N∑
i=1

cos {θi − g(βxi)}];

(5.6)

∂L

∂β
= κ

N∑
i=1

sin {θi − µ− g(βxi)}
2xi

1 + β2x2i

= 2κHu,

(5.7)

where ui = sin {θi − µ− g(βxi)}, H = diag(g′(x1β), . . . , g′(xnβ)), g′(βxi) = 2xi/(1 + βx2i ),

and

∂L

∂κ
= −N I ′◦(κ)

I◦(κ)
+

N∑
i=1

cos {θi − µ− g(βxi)}

= −NR+ C cosµ+ S sinµ.

(5.8)

From which the estimates are the solutions of the following equations:

X ′Hu = 0, (5.9)

where S =
n∑
i=1

sin (θi − g(xiβ))/n, C =
n∑
i=1

cos (θi − g(xiβ))/n, R = (S2 + C2)1/2 and A(κ) =

d
dκ logI0(κ) = I1(κ)

I0(κ)
.

We solve equation (5.9) using iteratively re-weighted least squares (IRLS) algorithm of Green and

Williams [49] to obtain the parameter estimates µ, β and κ. In order to obtain the starting values

of the IRLS algorithm, we assume the data are uncorrelated. We fit the von Mises distribution

to the data and obtain the maximum likelihood estimates of µ and κ as described by Fisher and

Lee [42]. We choose the MLE of κ as its starting value for our algorithm and the MLE of µ is not

used further. From equations (5.7), the values of β that maximizes the log-likelihood, assuming

independent observations, is equal to the value that maximizes the log-likelihood equation. So,

we begin with an initial value for β̂, then calculate S, C and R and hence µ̂ and κ̂ using (5.9).

These estimates are then used to solve (5.9) for an updated value β̂. This procedure is repeated

until convergence is achieved. The updating equations for β̂ in the IRLS algorithm is

X ′H2X(β̂+ − β̂) = X ′H2r, (5.10)

From the theory of maximum likelihood, the asymptotic variance covariance matrix for the β̂ is

given by
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var(β̂) =
1

κA(κ)

(
(X ′H2X)−1 +

(X ′H2X)−1X ′hh′X(X ′H2X)−1

N − h′X(X ′H2X)−1X ′h

)
, (5.11)

where h is a vector whose elements are the diagonal elements of H. The asymptotic variance of

κ̂ is equal to (nA′(κ))−1 and the asymptotic circular variance of µ0 is (n(n− p)κA(κ))−1 where

A′(κ) = ∂A(κ)
∂κ = 1− A(κ)

κ −A2(κ).

5.3.2 Tests and confidence intervals

Statistical inference on random variables comprises estimation and testing procedures that allow

to characterize the underlying distribution regardless of the variables nature and or/dimensions.

Tests and confidence intervals can be derived utilizing the standard normal distribution. The

confidence interval of β is derived as

β̂ ± zN−1,α/2
√

ˆ
varβ̂;

which is

β̂ ± zN−1,α/2

√
1

κA(κ)

(
(X ′H2X)−1 +

(X ′H2X)−1X ′hh′X(X ′H2X)−1

N − h′X(X ′H2X)−1X ′h

)

Similarly, a test of H0 : β ≤ 0 versus H0 : β > 0 would be to reject the H0 if

β̂/

√
1

κA(κ)

(
(X ′H2X)−1 +

(X ′H2X)−1X ′hh′X(X ′H2X)−1

N − h′X(X ′H2X)−1X ′h

)
> tN−1,α/2.

Tests and confidence intervals for α can be derived in the same manner. A confidence interval

for σ2 can be calculated as (
Nσ̂2

χ2
N−2,1−α/2

,
Nσ̂2

χ2
N−2,α/2

)
.

5.3.3 Model checking and diagnostics testing

Residuals are used to identify discrepancies between models and data. It is useful to establish

residuals as contributions made by individual observations on the goodness of fit measures. One

of the most useful in GLMs is the deviance D(y; µ̂) =
n∑
i=1

d2i where

di = ±
√

2(`i(yi; µ̃i, κ)− `i(yi; µ̂i, κ))1/2
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and `i(yi; .) is the contribution of yi for the total log-likelihood, µ̃i is the maximum likelihood

estimate of µi based only on yi, µ̃i is the maximum likelihood estimate of µi based on the whole

sample and the sign of di is the same as that of yi− µ̂i. In the case of the von Mises distribution,

VM(µi, κ), the deviance residual is defined by di = d(yi; µ̂i, κ) = ±
√
κ(1− cos (yi − µ̂i))1/2. By

using relations between the trigonometric functions we can rewrite di in a more convenient form,

d(yi; µ̂i, κ) = ±
√
κ cos

1

2
(yi − µ̂i)), (5.12)

that is useful in the development of the approximations.

5.4 Applications

In this section we first consider simulated examples to illustrate the proposed von Mises regression

model and highlight the limitations of the model. Application to data collected in elephant

tracking study is then presented.

5.4.1 An illustration using simulated data

To investigate the behaviour of the parameters of the fitted circular linear model, turn an-

gles of animal movement are simulated from a Von Mises distribution vm(µi, κ) with µi =

µ + arctan (xiβ) and x values from a uniform distribution on (0,50). Such model checking is

required since wrong choice of initial parameter values in model specification can lead to non-

identifiability and non-convergence of the model [48, 61]. Figure 5.1 shows the scatter plots of

the raw data(first row), the densities (second row) and the corresponding log-likelihood as a func-

tion of the estimated β coefficients where β̂ coefficients are estimated using the IRLS algorithm

(third row). The scatter plots in Figure 5.1 displays the possible patterns in the plot of (θ, x) and

the additional points (θ + π, x) in the cartesian coordinates. For the two strongly non-uniform

cases, we see the effect of rolling past zero point as the mode determines a well defined point

cloud. The density plots in second row of Figure 5.1 shows that these are not strongly modal

forms despite the patterns in the first row. The loglikelihood plot in the third row of Figure

5.1 demonstrates the difficulty in naively applying a mode finding algorithm, and this is why we

recommend always using multiple starting points to find the global maxima (dashed line).

The first column of Figure (5.1) shows that if the true β is close to or near zero, the log-likelihood

function not only has peaks near β̂ = 0, but also asymptotes out to ±∞ as β gets big in absolute

value. In such a case, the only practical estimate of the mode is the peak near zero, which is



85

0 1 2 3 4 5 6

0
20

0
40

0
60

0

x

D
eg

re
es

0 1 2 3 4 5 6

0
20

0
40

0
60

0

x

 

0 1 2 3 4 5 6

0
20

0
40

0
60

0

x

 

N

E

S

W +

µ = 0

β = 0

κ = e−1

N

E

S

W +

µ = 1

β = 2

κ = 2

N

E

S

W +

µ = 0

β = 4

κ = 2

−6 −2 0 2 4 6

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

R
 C

om
po

ne
nt

 o
f L

L

−6 −2 0 2 4 6

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

 

−6 −2 0 2 4 6

0.
50

0.
55

0.
60

0.
65

0.
70

 

Figure 5.1: Simulation summaries for the von Mises distribution

the solution produced by the probability density function of a von Mises distribution. Despite

this seemingly arbitrary choice, the parameter β̂(mod2π) is fully identified in the mathematical

sense, as opposed to the ecological sense. This difference in identification definitions is a direct

result of wrapping around the circle.

If the true value of |β| > 0, as illustrated in the second and third column of figure (5.1), the mean

resultant length (R) of the log-likelihood function is not globally concave and local maximum

exist quite close to the global maximum. This makes the maximization of the likelihood function

difficult. The inspection of R as a function of β usually produces good starting values for the

maximization of the likelihood. If computationally feasible, a grid of starting values can be used

in subsequent runs of the IRLS algorithm. However, due to lack of global log-concavity, a proper

exploration of the likelihood plot is always highly advisable when using the maximum likelihood

approach in the von Mises regression model [42, 46].
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5.4.2 Elephant movement data

In this section, we apply the discussed regression model to a real elephant movement data of

orientation with covariates. We analyse the data that depicts the reorientation of the Elephants

collected using GPS telemetry radio tracking in Kruger National Park (KNP). The data set

consists of 63,265 observations recorded at an interval of 30 minutes from April 17 2006 to May

2009. However, due to computational challenges we only use 4,000 observations in our analysis.

The turning angle (θ) is defined as the change in the direction of movement made by an individual

from one location to another. The turning angle is a right-hand turn that ranged from −π to

π. To illustrate the utility of the reviewed methods, we analysed movement data from foraging

African elephant in KNP. Spatial locations of the movement path of an individual foraging herd

of female African elephant (Loxadonta) were recorded using GPS radio-telemetry device during

2006-2009. The GPS locations provided data every 30 minutes during an entire day with an

accuracy of the locations within 50 meters. This information was sent via cellular phone (GSM)

network to a website from where the information was downloaded.

GPS tags provided by African wildlife tracking (http://www.awt.co.za) transmitted location

data through the GSM (cellular phone) network to a website, from where these records were

received. Collars bearing GPS tags were placed on female elephants representing the move-

ments of the breeding herds with which they were associated. Animal capture was undertaken

using chemical immobilisers by South African National parks staff, following standard ethical

procedures. An individual elephant representing a heard of eight elephants in the south-western

(Pretorious Kop) region of Kruger National Park received collars in may 2006. If the animal was

outside of the cell phone reception, the location data were stored and then downloaded once the

animal came into a reception area [11, 131]. Movement turn angles were calculated from GPS

locations recorded every 30 minutes apart using the methods given by [124].

In the South Africa, elephant live in protected habitats fenced by the government. An objective

of the radio-telemetry study was to assess the effects of landscape features on the movement of

the elephant. Location data and other associated information were collected by radio-tracking

the elephant [11]. Elephant herd locations were obtained by tagging a small transmitter on the

elephant’s body and then locating the transmitter by a receiver attached to a directional antenna.

Spatial coordinates for the elephant location were obtained using global positioning system(GPS)

receivers and differential correction techniques were applied to improve their accuracy. Data for

relocation intervals during which the animal did not move were excluded from this analysis [131].

The set of closed line segments, where the from-vertex of the first segment was identical to the

to-vertex of the last segment, form a polygon representing the habitat patch. The resulting

ArcView shapefile was exported as a tab delimited text file for input to R (R Development

Core Team 2008) environment in which we perform the remaining analysis. A R function clm

http://www.awt.co.za
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developed by extending the source code of the circular R package was used to generate the results

[2, 75]. Due to computational challenges and the desire to obtain biologically meaningful results

from the data, we used only the first 4000 observations in our analysis.

5.5 Results

In Figure 5.4, we show a wind rose diagram representing the elephant movement turn angles

data. Unlike linear data, failure to account for the cyclic nature of the circular data in graphics

deceives viewers because it appears there are explicit endpoints. For example, consider the

animal movement data. The turn angles derived from the GPS tracking data recorded half

hourly certainly affect how animals move. Figure 5.2 is a histogram of turn angles are unimodal

and bell-shaped distributed. Conversely, Figure 5.3 is a linear histogram of the elephant turn

angles, it accurately depicts the orientation pattern of elephant movement during foraging or

moving to a target.

Figure 5.2: Histogram of elephant turn angle data.

We model the relationship between the turn angles and the step lengths. To make the IRLS

algorithm converge to the global maxima, we carefully select the starting values based on visual

inspection of the likelihood plot in Figure 5.5 of the simulated data. Table 5.1 gives the output

from the circular regression model for these data, which is fit using our version of the [42]
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Figure 5.3: Rose diagram of elephant turn angle data.

Figure 5.4: Displays of wind rose diagram of elephant turn angle data.

algorithm described in section 5.3.1. To ensure that the IRLS algorithm converged to the global

maxima, the algorithm in section 3 was run from several different starting values since the

likelihood function is not guaranteed to be unimodal, making the model somewhat fragile as seen

in Figure 5.5. The fitted model provides a substantial improvement over the null (µ only) model

since the difference in deviance is (3669.977) is far into the tail of the chi-squared distribution

with 15 degrees of freedom. Applying the iterative process 5.10 to solve 5.9, we found the

Table 5.1: ML Estimates of directionality of turn angles of elephant movement

Parameters coef std.err |z| p value
Mean direction (µ) 2.182 0.3978 5.4839 0.0000
β 0.0101 0.0068 1.4835 0.01379
κ 0.1126 0.0448 2.5109 0.012042

maximum likelihood estimates µ0 = 2.182(se(µ0) = 0.3978), The step length parameter β̂ =
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0.0101(0.00068) is significantly positive which implies that the length of a step an animal makes

increases the magnitude of the turn angle. The concentration parameter of the elephant turn

angles is statistically significant κ̂ = 0.1126(0.0448) which implies that the turn angles are not

uniformly distributed. Table 5.2 presents the parameter estimates of the circular regression of

Table 5.2: ML Estimates of landscape features on the mean direction of turn
angles on Elephant movement(n = 4000)

Parameters coefficients Std.err z − value p-value
µ -2.6640 0.3010 8.8494 0.0000
Step Length 0.0101 0.0043 2.3456 0.0190
Distance to roads 0.0012 0.0005 2.5869 0.0097
Distance to water point -0.0004 0.0003 1.4263 0.1538
Distance to river -0.0004 0.0002 1.9097 0.0562
Temperature 0.0700 0.0827 0.8462 0.3974
Rainfall -0.0008 0.0046 0.1774 0.8592
κ 0.0744 0.3010 0.2470 0.8049

the animal movement and so as expected there is a significant and positive relationship between

the turning behaviour of elephants and the landscape features. The coefficient of step length is

positively and significantly associated with the turning angle of the animal(β = 0.0101, p < 0.05).

This implies that the more elephants move, the more they turn clockwise within a given interval

of time in search of food resources [27]. The distance to the river is negatively and significantly

associated with the turn angle the animal makes (β = −0.0012, p < 0.05). This finding supports

the earlier argument by Duffy et al. [27] who noted that elephants forage in habitats closer to

the river than habitats far away from the river. The distance to the water points is negatively

associated with the turn angle but not significant. The distance to the roads was positively and

significantly related with the elephant turning pattern (β = 0.0012, p < 0.05). This implies that

elephants adjust there turning angles when avoid approaching the roads, or crossing the roads,

thereby avoiding risks involved in moving through the human-dominated landscape elements.

The distance to the water points and distance to the road were also negatively associated with

the turn angles (β = −0.004, p < 0.05). This result indicates that elephants reduces there turn

angles as the as they approach the water points and move in a more directed manner. The mean

annual rainfall has negative effects on elephant movement orientation (β = −0.0008, p > 0.05)

which indicates that elephants turned less as rainfall increased. The temperature is positively

associated with turn angle but not significant (β = 0.070, p > 0.05). The result indicates that

the elephant did not alter the turn angle as the temperature increased. Figure 5.6 presents

von Mises Q-Q plot of the residuals. While some deviations from the theoretical distribution

become apparent, there is little evidence of a serious departure from a von Mises model. Figure

5.5 displays a scatter plot of the fitted verses the residual of the von Mises regression model. The

plot indicates the the fitted model provides a good fit to the data of elephant movement. The
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Figure 5.5: Diagnostic plot of the fitted von mises regression model of elephant
movement.

Figure 5.6: Probability plot of elephant movement turn angle model.

red line indicates that most of the data values are concentrated around 0◦ which is consistent

the the hypothesis that animals have target oriented.

5.6 Discussion

Our interest in this chapter was to apply the circular linear regression methodology to animal

movement data. In particular, we show that the models presented here can be an alternative

to modelling animal movement data with circular responses and linear or categorical covariate.
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Despite the substantial literature involving information from several species, there is no clear

application of circular statistical methods in ecology and especially on animal movement GPS

tracking data.

The application of circular statistical methods to optimal foraging theory across in situ systems

has been hindered by the inability to account for all critical variables. The regression models

provide a link between the circular metrics (turn angles) and the environmental drivers of animal

movement. This allows broader inspection of the influence of ecological fluctuations on movement

behaviour and the behavioural mechanisms adopted by species to cope with ecological constraints

they face. An important characteristic of animal movement pattern is the clustering of the visited

locations which can be modelled through the concentration parameter of the von Mises model

[42, 124, 125]. Further, complex models that capture the effects of landscape covariates on the

concentration parameter and the mean orientation are possible. However, a major challenge in

implementing such a model occasioned by lack statistical software and computational capacity.

In particular, the turning angle models enabled us to evaluate the effects of internal states of

the animal on movement orientation such as moving to water and foraging separately. The

findings of this study support the descriptive analysis of [27] who argued that animals turned

less further away from large permanent water bodies and more from semi-permanent water

bodies like seasonal rivers. Elephants used a direct movement strategy when needing to get a

destination more quickly (e.g. toward water or mates), rather than significantly increasing their

speed. Further, it supports the hypothesis that the elephant optimizes energy efficiency while

still varying their foraging approach and search intensity. Movement ecology will advance in

parallel to developments in circular statistics, and the development of circular statistic will be

promoted by the practical demands made from movement ecology.

Although estimating the parameters of the von Mises distribution was straightforward, in that

estimates of µ and κ were always obtained, the angular regression models did not always tend

to a sensible solution immediately. Thus, careful note of the contour of the likelihood surfaces

is required. However, these problems will in part be data-specific particularly (we postulate) if

the value of β is small. More recent methodological work on circular regression, and which also

refers to some early animal movement examples concerned with the study of landscape features

on animal movement orientation [124].



CHAPTER 6

Approaches for testing the circular uniformity

hypothesis in movement of large mega-herbivores

in Kruger National park South Africa

Abstract

Circular statistics is an area not used very much by ecologists to describe animal movement

patterns. Nevertheless, the connection between the evaluation of temporal recurring events and

the analysis of directional data have converged in several papers, and show circular statistics

to be an outstanding tool for understanding animal movement better. The aim of this chapter

is to evaluate the applications of circular statistical tests to check uniformity hypothesis in

animal movement and its potential interpretation within the general framework of movement

ecology. Four methods of circular statistics: Rayleigh’s, Watson’s, Rao’s spacing and Kuiper’s

test based on the mean resultant length are applied to examine the uniformity hypothesis of

GPS derived telemetry data of elephant movement collected from Kruger National Park(KNP)

South Africa. Overall, circular statistical uniformity tests methods represent a useful tool for

evaluation of directionality elephant movement with applications including (i) assessment of

animal foraging strategies; (ii) determination of orientation in response to landscape features

and (iii)determination of the relative strengths of landscape features present bin a complex

environment.

Keywords: Circular statistics, animal movement, turn angles, uniformity hypothesis.
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6.1 Introduction

The elaboration of appropriate conservation management and protection of endangered species

of vegetation cover should be based on accurate interpretation of data and knowledge of animal

movement on its habitat. One metric in movement ecology critical to this understanding is

animal turn angles. It is urged in the literature that animals turn more during the wet season

and less during the dry season. This variation is attributed to heterogeneous food resources

and landscape features [27]. The movement of animals in protected areas (PA) and distribution

of artificial water points has great impact on the vegetation and ecological dynamics of the

ecosystem in general.

Circular statistical test of uniformity provides an opportunity to ecologists for understanding

the turning patterns of the animals. In most studies, unimodal orientation may be the expected

outcome. In several situations where for instant species or population preferences have been

studied or when compass cues were set in experimental conflict, bimodal or multi-modal orienta-

tion may be expected [42, 124]. Simulation studies based on random walk and Lévy flight theory

of animal movement assume that turn angles are uniformly distributed [132]. As in the case

linear statistics, the main objective here is to draw objective, reliable and biologically meaning-

ful statistical inference about the population parameters on the basis of samples. Observations

are either geometric or temporal in nature, where time related distributions can be fitted into a

circular or spherical pattern [7]. Parametric and non-parametric statistical methods can be used

to test hypotheses concerning angular data [7].

These methods are based on the assumption that observed angles are independent, a condition

that may not be satisfied when multiple angles are recorded from a single individual. Among

the distributions used to describe data on a circle are the circular uniform and Von Mises

distributions. Goodness-of-fit tests exist for these distributions. Four widely known methods

for carrying out such a task are the subject of the current paper. Biological applications related

to the technique described in section 6.2.1 and 6.2.4 illustrate the earlier predominant role of one

particular life science in predicting the potential utility of circular statistics in other domains of

scientific and technical endeavor.

In recent years new data sources and GIS tools have been increasingly used in ecological studies.

A peculiar characteristic of these data sources is that, often, only information about the locations

of the animal trajectory/path have been recorded over some sampling resolution. Methodologies

targeted especially for these data need to be developed. Motivation of this work arises from the

a study about the movement patterns of Elephant in Kruger National park, South Africa and

the apparent lack of tangible awareness of circular statistics in the movement ecology literature.
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This study was performed in order to support decisions for the management, in particular the

conservation strategies for Elephants.

A limitation of the most common approaches is that they treat turn angles qualitatively, that is,

converting angular data as either north, south, east or west which may lead to loss of valuable

information [23]. The specific aim here is to demonstrate the potential usefulness of circular

statistics to animal movement analysis, in deciding whether GPS derived telemetry data justify

the inference of uniformity in animal movement. Following a short presentation of theoretical

aspects, numerical examples illustrate calculations required for drawing proper conclusions about

the animal movement patterns.

6.2 Theory of hypothesis testing and notation

Circular hypothesis testing for uniformity is a valuable tool in movement ecology [42]. Statistical

test should depend on previous assumptions supported by the descriptive or exploratory analysis

[43]. In applied research, critical decisions based on data depends on objective and reliable

assumptions. Due to technological advances and huge data collected on animal movement, testing

such assumptions on animal movement data requires the knowledge of hypothesis testing.

A common question in circular statistics is whether a sample of data is uniformly distributed

around the circle or has a common mean direction [10]. A multiple of test statistics have been

designed for testing this hypothesis. These methods includes :(i) Rao spacing test; (ii) Kuiper’s

test, (iii) Rayleigh test and (iv) Watsons test. These four tests can be used to assess the evidence

for a uniform, unimodality and the goodness-of-fit for the von mises distributions respectively

[78]. Previous investigations shows that the Raos spacing method is more susceptible to rejecting

H0 than the kuipers test and the Rayleigh test in the face of a small data sample, unless data

distribution is appreciably uniform at least in some of its sub-domains [43, 109]. This implies

that the Rao’s spacing test carries a similar Type 1 error compared to other test; however, we

point out that from the nature of the data, rejection of H0 cannot be absolutely certain [78].

In all the testing methods, the null hypothesis H0 states that the population samples are uni-

formly distributed around the circle and the alternative hypothesis HA the population samples

do not show a uniform (or random) circular distribution. Each method rejects H0 if its test

statistic exceeds a critical value depending usually on sample size n, and level of significance

α [59]. In the theory of statistics, α = 0.05 regarded as significant and α = 0.01 is highly

significant, meaning that a Type 1 error, is made by rejecting H0 is 5% or 1%, respectively. In

the theory of statistics, α = 0.05 is regarded as significant and α = 0.01 is regarded as highly

significant, meaning that a Type 1 error, is made by rejecting H0 is 5% level of significance,
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respectively. The current approach is more flexible by allowing the test statistic to determine

the rejection of H0 on the basis of the p-value. According to Hogg and Craig [54], the p-value is

the magnitude of the error committed in rejecting H0 in face of the computed test statistic.

Rejecting the null hypothesis thus implies that deviations from uniformity are too large to assign

them to chance factors, hence they are of deterministic origin [100]. Since rejection of a null

hypothesis is statistically stronger than its opposite, Rao’s method is more inviting than any

other test when at least medium-size deviations from non-uniformity are expected from prior

inspection descriptive statistics or exploratory analysis [78]. Pewsey et al. [100] emphasis the

importance of testing uniformity hypothesis in circular. We note that if the data fits neither a

von Mises distribution or a uniform distribution and contains a single mode, then this data is said

to follow a unimodal distribution [10, 43, 100]. In this case, although it is not possible to identify

the actual distribution, the presence of a single mode not only indicates a preferred orientation

in the sample, but also enables the use of non-parametric methods to estimate a mean direction

with a confidence interval [43, 78, 100]. We then tested the uniformity hypothesis following

the procedure outlined in figure 6.1 . Figure 6.1 represents the sequence of hypothesis tests

Figure 6.1: Flowchart representing the sequence of hypothesis tests based on
circular distributions.

performed in this analysis. The Kuiper test is an omnibus test, meaning it tests the hypothesis

of the sample following a uniform distribution, against any alternative distribution. If the null

hypothesis is rejected, then there is evidence against uniformity and the possibility that the

data fit the von Mises distribution is tested. The goodness of fit of the von Mises model can

be formally assessed using Watson’s test [78]. The null hypothesis in this test is that the data

are drawn from a von Mises distribution, against the alternative that they are not drawn from a

von Mises distribution. Rejection of the null hypothesis in the Watson’s test, leads to rejecting

the hypothesis that the data fits a von Mises model. The next step is to determine whether the

data presents a single modal direction, using Rayleigh’s test, where the alternative hypothesis is

unimodality [78].
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6.2.1 Rayleigh’s test

The Rayleigh’s test is based on the intuitive idea of rejecting uniformity when the vector sample

mean θ̄, is far from 0 , when R̄ is large [43, 78, 100]. The Rayleigh’s test is the score test of

uniformity within the von Mises model [78]. Put w = (κ cos (µ), κ cos (µ))′, the log likelihood

Von Mises based on circular observations θ1, . . . , θn is

l(κ : θ1, . . . , θn) = nκ̄θ̄ − nlogI0(h),

where Io(κ) is the modified Bessel function and θ̄ = 1
n

n∑
i=1

(cos θi, sin θi)
T is the sample mean

vector. The score is:

U =
∂l

∂κT
= nθ̄ − nA(κ)(cosµ, sinµ)T (6.1)

From the moments properties of R̄, [78] it is possible to note that the score statistic is

U ′var(U)−1U = 2nR̄2. (6.2)

From the general theory of score test, [78] the large sample asymptotic distribution of 2nR̄2

under uniformity is a χ2 with two degrees of freedom:

2nR̄2 ∼ χ2 (6.3)

where n is the sample size. It has been demonstrated , also that the Rayleigh’s test coincides

with the likelihood test of uniformity within the von Mises family.

6.2.2 Kuiper’s test statistic

Kuiper’s test is used to determine if a given set of data can be a sample from a specific dis-

tribution. It is similar to the Kolmogorov-Smirnov (KS) test, as both compare cumulative

distributions [10]. For the one-sample test, the empirical cumulative distribution is compared

to a theoretical cumulative distribution. As for circular case, this test measures the deviation

between empirical distribution, Sn(x), and the Uniform cumulative distribution functions (cdf),

F (x) = θ
2π . In the case of circular data, the definition of cumulative distribution is not obvious

and is quite different from the in line cdf [100]. In the circular data case, in fact, we first have to

choose the circle zero point and orientation, then we need to augment the ordered observations,

θ1, . . . , θn of x0 = 0 and θn+1 = 2π. The Sn is then defined by:

Sn(θ) =
i

n
if θ(i) ≤ θ ≤ θ(i+ 1) i = 0, 1, . . . , n. (6.4)
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Just as in Kolmogorov-Smirnov’s test for in line distribution [33], the following quantities are

defined:

D+
n = sup

θ
{Sn(θ)− F (θ)}, D−n = sup

θ
{F (θ)− Sn(θ)}.

To overcome the dependence of D+
n and D−n on the choice of the initial direction, [70] defined

Vn = D+
n +D−n (6.5)

The statistic (6.5) has been demonstrated [59, 78] to be invariant under the change of initial

direction. The null hypothesis of uniformity is rejected for large values of Vn. Moreover, the

Kuiper’s test is consistent against all alternative to uniformity [100]. For practical purposes, the

following modification of Vn is used:

V ∗n = n1/2Vn

(
1 +

0.155√
n

+
0.24

n

)
. (6.6)

6.2.3 Watson’s test

Another common test of uniformity in circular statistics is the Watson U2 statisticWatson [137]

which is a modification of the Cramér-von Mises test [33]. This test is used as a goodness-of-fit

statistics for the von Mises distribution [77]. As a test of goodness of fit for circular data, it is

invariant to the choice of the origin. The watson test statistic is defined as

U2
n =

2π∫
0

(Sn(θ)− F (θ))−
2π∫
0

(Sn(θ)− F (θ))dF

 dF (6.7)

It follows from this definition that the Watson’s statistic is invariant under rotation and reflec-

tions. As for the Kuiper’s test, it is useful to consider the following modified statistic:

U∗2n =

(
U2
n −

0.1

n
+

0.1

n2

)(
1 +

0.8

n

)
. (6.8)

Stephens [121] provides the in a tabular form the quantiles of the Watson test statistic.

6.2.4 Rao’s spacing test

Rao’s Spacing test is a useful and powerful statistic for testing uniformity of circular data. As

with other circular statistics, Rao’s Spacing test is applicable for analysis of angular data, in

studies of movement and spatial trends in geographical research [100]. In many cases, particularly
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with an underlying distribution that is multimodal, it is more powerful than the popular Kuiper’s

Test and Rayleigh Test.

Rao’s Spacing Test is based on the idea that if the underlying distribution is uniform, successive

observations should be approximately evenly spaced, about 360/N apart. Large deviations from

this distribution, resulting from unusually large or unusually short spaces between observations,

are evidence for directionality. It is related to the general class of linear statistical tests that are

based on successive order statistics and spacing. The spacing tests sample arc lengths T1, . . . , Tn

defined as:

Ti = θ(i)− θ(i− 1), i = 1, . . . , n− 1, Tn = 2π − (θ(n)− θ(1)). (6.9)

Under uniformity E[Ti] = 2π
n . Hence, it is reasonable to reject uniformity for large values of

L =
1

2

n∑
i=1

|Ti −
2π

n
| (6.10)

Large values of L indicate clustering of observations [10, 109]. An extensive table of quantiles of

L is given [109], while Sherman [115] shows that a suitable transformation of L is asymptotically

standard Normally distributed.

6.3 Application to elephant movement data

6.3.1 Ethics statement

Elephant capture and handling was conducted in strict accordance with ethical standards.

Specific approval for this particular research project was obtained through the University of

KwaZulu-Natal Animal Ethics sub-committee (Ref. 009/10/Animal). This research also forms

part of a registered and approved SANParks project, in association with Kruger National Park

and Scientific Services (Ref: BIRPJ743) [11, 131].

6.3.2 Study area and GPS Data on a elephants

The methods described were applied to GPS location data for three female elephant herds in

Kruger national park of South Africa. Elephant movement have been previously studied by

[11, 131]. The elephant population in KNP was estimated to be 14,000 individuals during 2010

(SANParks, unpublished data). From 2006 to 2010, we collected geographical location data,
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downloaded from GPS/GSM Collars (Africa Wildlife Tracking cc., South Africa), fitted to three

elephant cows from different herds. To ensure the independence of sampling, a single female in

each herd was selected and collared. Because GPS coordinates were measured continuously at

frequent time intervals, the trajectory we obtained was almost smoothly connected [131]. The

GPS data are freely available upon request.

The turning patterns of elephants were monitored by computing the angle θ between to consecu-

tive relocations over 30 minutes interval of time between May, 2006 and June 2009. The data set

consists of 36395, 29221 and 29908 observations for herd AM108, AM307 and AM308 respectively

recorded at an interval of 30 minutes. The turning angle (θ) were computed for the three herds

as the change in the direction of movement made by an each individual elephant tagged from one

location to the next. The turning angle is a right-hand turn that ranged from −π to π. The GPS

locations provided data every 30 minutes during an entire day with an accuracy of the locations

within 50 meters. This information was sent via cellular phone(GSM) network to a website from

where the information was downloaded. The descriptive analysis of elephant turn angles shown

in Table 6.1 the elephant turn angles are oriented towards a preferred direction as evidenced

by the mean orientation 359 and 1 degrees. The circular variances of the three herds ranged

between 0.518 and 0.566 for the three year period. However the circular variance is larger in the

wet season than in the dry season. Angular data of three elephant herds was used to construct

circular histograms that depict the mean and frequency of movement orientations of animals

Figure 6.2 to 6.4. The rose diagram in Figure 6.5 indicates that elephants move in a non-random

manner during the dry and the wet seasons. This variation is attributed to uneven distribution

of resources during dry season than in the wet season. Similarly, the linear histograms in Figure

6.4 shows that elephants turn angles are concentrated around zero degrees which indicate that

the movement is target oriented. The tendency is known as the Unimodal movement pattern

better described by Unimodal distributions. However, the histograms in Figures 6.2 and 6.3.

indicate there is no season deference in the distribution of elephant turn angles. All the three

herds display an oriented movement across the wet and dry seasons. The histograms further

show that the turn angles follow a Unimodal pattern.

Based on the results in Table 6.2, the circular uniformity hypothesis is rejected in all the three

elephant herds. The Kuiper’s test result indicates that the elephant movement turn angles are

not uniform (p-value¡ 0:05). This implies that the turn angles are non-randomly distributed.

Kuiper’s and Rayleigh’s test exhibit small p-values although the former is less realistic with

respect to the powerful rejection of uniformity hypothesis by Rao’s test statistic. The result of

Table 6.3 indicates that the turn angles of the three elephants follow a von Mises distribution

across the wet and dry seasons. This finding implies that it’s valid assume that elephant turn

angles data follows a von Mises distribution. Similar results are obtained for the three year

data. Based on the Rayleigh’s test statistic in Table 6.2, the claim that the data is unimodal
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for the three elephant herds is not rejected. A p-value is not a sufficient justification for the

rejection of the unimodality distribution as evidenced by the histograms in Figure 6.5, 6.2 and

6.3 indicating a tendency of elephants to move in one direction while approaching a target [27]..

There distribution was not different between the wet and dry season 6.3.

6.4 Discussion

This chapter focuses on the test of uniformity hypothesis for the circular data of animal move-

ment. The primary objective was to determine whether elephant orientation patterns were

uniform. We also investigated the hypothesis that elephant orientation patterns would vary be-

tween seasons. Testing the null hypothesis can be accomplished by comparing any test statistic

for uniformity to a reference distribution obtained by simulation. This is appealing in that pre-

cise distributions consistent with turn angle data need not to be assumed for the procedure to

have the proper type I error rate. These applications, in summary entail calculation of animal

orientation variables mean turn angle, concentration parameter, distribution, and determination

of modality and testing hypothesis about uniformity of animal turn angles. Our results suggest

that elephant turn angles data is not uniformly distributed and showed no seasonal variation.

The four statistical tests reject the uniformity hypothesis. We also found that the elephant turn

angles follow a von Mises distribution. This means that making an assumption that animal turn

angles are von Mises distributed is valid. It is important to note that the circular statistics

applies to any level and scale of analysis, from individuals to several species of animals, and that

the descriptive measures calculated are easily compared statistically by means of a variety of two

or more test statistics.
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Table 6.1: Descriptive analysis of the turn angle data of three elephant herds collected from Kruger National Park, South Africa.

Statistic AM108 AM307 AM308
Seasons Seasons Seasons

Variable Angle Wet Dry angle Wet Dry angle Wet Dry
Number of Observations 36395 17736 18659 29221 12652 16569 29908 13550 16358
Mean Vector (µ) 359.425◦ 359.434◦ 359.418◦ 0.706◦ 0.84◦ 0.609◦ 359.957◦ 359.7◦ 0.16◦

Length of Mean Vector (r) 0.481 0.464 0.498 0.434 0.418 0.446 0.482 0.471 0.492
Concentration 1.096 1.046 1.144 0.962 0.92 0.995 1.099 1.065 1.127
Circular Variance 0.519 0.536 0.502 0.566 0.582 0.554 0.518 0.529 0.508
Circular Standard Deviation 69.292◦ 71◦ 67.686◦ 74.044◦ 75.65◦ 72.833◦ 69.19◦ 70.336◦ 68.248◦

Standard Error of Mean 0.414◦ 0.618◦ 0.556◦ 0.519◦ 0.821◦ 0.668◦ 0.455◦ 0.695◦ 0.602◦

Table 6.2: Tests for uniformity for three elephant herds turn angles drived from GPS tracking data.

Kuiper’s Rayleigh Rao spacing Watson’s
statistic p-value statistic p-value statistic p-value statistic p-value

AM108 61.6574 < 0.01 0.4813 0.000 166.2602 < 0.001 452.2261 < 0.01
AM307 50.7271 < 0.01 0.4339 0.000 162.4811 < 0.001 301.1729 < 0.01
AM308 56.3221 < 0.01 0.4823 0.000 166.2796 < 0.001 376.4143 < 0.01
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Table 6.3: Testing if the elephant movement data is Von Mises distributed
using Rao’s spacing test.

Wet Season Dry season Both seasons
statistic p-value statistic p-value statistic p-value

AM108 0.0196 > 0.05 0.0177 > 0.05 0.0169 > 0.05
AM307 0.0302 > 0.05 0.0278 > 0.05 0.0292 > 0.05
AM308 0.0484 > 0.05 0.0882 > 0.05 0.0154 > 0.05

Figure 6.2: Histogram of herd AM108, AM307 and AM308 GPS-telemetry
derived turn angles data collected from Kruger National Park South Africa

(May 2006 -April 2009)

Figure 6.3: Histogram of herd AM108, AM307 and AM308 GPS-telemetry
derived turn angles data collected from Kruger National Park South Africa

(May 2006 -April 2009)
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Figure 6.4: Histogram of herd AM108, AM307 and AM308 GPS-telemetry
derived turn angles data collected from Kruger National Park South Africa

(May 2006 -April 2009)
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Figure 6.5: Circular rose diagrams of the elephant herd AM108, AM307 and
AM308 GPS-telemetry derived turn angles data collected from Kruger National
Park South Africa (May 2006 -April 2009). Circular bars indicate the number

of observations within each class range.



CHAPTER 7

Conclusion

7.1 Summary conclusions

In this thesis, we have investigated how the movement of animals can be studied in terms of

statistical analysis and the biological meaning drawn from it. Specifically, we examined the ap-

propriateness of the various probability distributions for the non-linear variables in describing the

elephant movement linear and circular metrics. In our work, we find that the stable distribution

assumption is inadequate to capture the heavy tail and skewness properties of the step length

data. We further demonstrate the flexibility of the stable distribution can be exploited in a linear

regression models to investigate the effects of habitat type covariate on heavy tailed and skewed

data. A model for describing the effect of the habitat type covariate on the tails is presented.

However, one limitation of the stable distribution is that the confidence intervals estimated when

the tail index and the skewness parameters are at the boundary are unreliable. Our models are

a milestone to the modelling of animal movement. With the recent advances in technology and

increasing ability to collect more data on animal movement, our findings provide alternative

statistical tools for analysing tracking data and investigating the effects of environmental factors

on movement metrics.

In chapter 2, I introduced and critiqued a range of analysis methods for analysing tracking

data. In particular, i discuss methods for fitting stable distribution including the method of

moments, the regression type characteristic methods and the maximum likelihood method. I

also critique alternative to stable distribution and focus on the stable Paretian and the power

law distribution only in this chapter. For most applications, power law distributions are the

most rigorous analytical approaches but they require a high level of programming knowledge and

105
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statistical expertise to implement effectively. We also compare the stable distribution against the

power law across several herds. We find that the stable distribution fitted the data better than

the power law and was robust across the six elephant herds. Our findings support an assertion by

[101] who pointed out that wrong statistical assumption of the distribution generating the step

lengths can lead to misidentification of the movement pattern and hence wrong conclusions which

can impact management and conservation policies if the goal is to protect endangered species.

Interestingly, we find herd to herd variation which indicates that future model developments

should endeavor to explain herd effects through a random effect term in a regression model.

In chapter 3, we assumed the error terms of the linear regression model linking the animal move-

ment step lengths to environmental variables to be stable distributed and fitted a stable Paretian

regression model. The potential of using a simple heavy tailed model known as t regression is

demonstrated and found to perform more better than stable law regression models. The analysis

demonstrated a clear relationship between vegetation cover type and animal movement speed,

with elephants moving more slowly and tending to forage in rich vegetation cover types, while

tending to moving quickly through poor vegetation cover types. Our findings indicates that

elephant movement is influenced by the vegetation cover types. Further analysis can be carried

out with more covariates.

In chapter 4, we demonstrated the application of ARMA-GARCH modelling structure to eco-

logical data of animal movement. GPS telemetry data of animal locations contains important

biological signals which are appropriately captured by the tail index and skewness parameters

of the stable distribution and the Skewed t distribution. However, the student’s t distribution

only captures the heavy tails. In this chapter, we found that the residuals of the stable Paretian

ARMA-GARCH model fitted the elephant movement data better than the alternative normal,

Student’s t and skewed student t distributed GARCH models. However, we note that the di-

agnostic testing and model checking for the stable GARCH models remains to be developed for

heavy tailed and skewed data sets. We note that future rime series models of animal movement

should be based on robust choice of appropriate distributions assumption that can appropriately

capture both the biological and the statistical properties of the data.

Chapter 5 and 6 focuses on statistical analysis of circular data from animal movement. Chapter

5 employed the circular statistical methodology and more on the biology of elephant movement.

In that chapter, i used the results of the circular regression model to describe the relationship

between animal turn angles and landscape features. The results indicates that there is a strong

relationship between distance to water point, distance to the river amount of rainfall and tem-

perature. In chapter 6, we test the circular uniformity hypothesis. A number of methods for

testing the uniformity of turning angles are explored and its implications in ecology discussed.



107

We demonstrate that during model building, appropriate statistical assumptions are necessary

to attain robust results.

7.2 Further Work

This study has used both sound statistical methodology and ecological theory to answer questions

on the movement patterns and behaviours of elephant. Specifically a number of statistical

methods have been explored and sound biological interpretation provided. The elephant data

has been used as the main focus in this thesis though the methods discussed here can be applied to

data from other animals. The study indicates further the need to apply statistical and ecological

theory rather than just answering specific descriptive questions about individual species that are

not in bigger ecological picture. For a huge data set which is highly skewed and heavy tailed,

the confidence intervals seems to be unrealistic as the upper limit lies outside the confidence

boundary. Such a problem warrants further investigations as the confidence intervals of the

stable distribution parameter when α and β are in the boundary.

The results of descriptive analysis have also shown to understand the biological variation in the

elephant population, future models need to capture the herd to herd variation. This can be

captured through a linear mixed model framework with the herds as the random term. To assess

the effects of covariates on each parameter of the stable distribution, a regression model in the

framework of glm should be adopted as described by Lambert and Lindsey [71]. Computational

softwares also need to be implemented to enable fitting such models.

The analysis of heavy tailed and skewed autocorrected time series data of elephant movement has

revealed important biological signals which could be lost if the data through sub-sampling. Time

series models incorporating environmental drivers remains to be tested in ecology. We further

note to make more valid understanding of animal movement data, future studies should focus on

developing diagnostic tools for model checking, selection based on the stable Paretian, student’s

t and skewed student’s t distribution assumption in a ARMA-GARCH modelling framework.

Higher order lags time series models can be of interest in future studies of animal movement.

Second we mention that the time series models can be generalized to study biological variation

between herds through the random coefficient autoregressive models. Asymmetric models such

as skewed Student’s t and skewed normal are the best next alternative to the stable Paretian

ARMA-GARCH models. More research needs to be carried out to establish the worth of these

models.

Circular linear regression models assuming a von Mises distribution of turn angles offers an al-

ternative framework of evaluating the effects of environmental variables on animal movement.
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Such models are computationally challenging as they are lacking in main stream statistical soft-

wares. Though a few statistical packages have been implemented in R statistical software, tools

for diagnostic checking, model selection and validation needs to be implemented. To necessitate

further development of such models, ecological data of animal movement rich with covariates is

needed. We leave this for future research. It would also be interesting to investigate the problem

in a time series framework.

Further, the models highlights the biological importance of using appropriate statistical assump-

tion that capture the properties of the data adequately. Previous studies of animal movement

failed to account for both heavy tail and skewness in the data. For a huge data set which is

highly skewed and heavy tailed, the confidence intervals seems to be unrealistic as the upper

limit lies outside the confidence boundary. Such a problem warrants further investigations as

the confidence intervals of the stable distribution parameter when α and β are in the boundary.
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fishing boats and foraging animals. Ecological Society of America, 92(6):1247–1257.



References 112

[38] Fama, E. F. (1963). Mandelbrot and the stable paretian hypothesis. Journal of Business,

pages 420–429.

[39] Fama, E. F. and Roll, R. (1968). Some properties of symmetric stable distributions. Journal

of the American Statistical Association, pages 817–836.

[40] Fama, E. F. and Roll, R. (1971). Parameter estimates for symmetric stable distributions.

Journal of the American Statistical Association, 66(334):331–338.

[41] Feller, W. (2008). An introduction to probability theory and its applications, volume 2. John

Wiley & Sons.

[42] Fisher, N. and Lee, A. (1992). Regression models for an angular response. Biometrics,

pages 665–677.

[43] Fisher, N., Lewis, T., and Embleton, B. (1993). Statistical analysis of spherical data.

Cambridge University Press.

[44] Fonseca, T. C., Ferreira, M. A., and Migon, H. S. (2008). Objective bayesian analysis for

the student-t regression model. Biometrika, 95(2):325–333.

[45] Getz, W. M. and Saltz, D. (2008). A framework for generating and analyzing move-

ment paths on ecological landscapes. Proceedings of the National Academy of Sciences,

105(49):19066–19071.

[46] Gill, J. and Hangartner, D. (2010). Circular data in political science and how to handle it.

Political Analysis, 18(3):316–336.

[47] Goodwin, B. J. and Fahrig, L. (2002). Effect of landscape structure on the movement

behaviour of a specialized goldenrod beetle, trirhabda borealis. Canadian Journal of Zoology,

80(1):24–35.

[48] Gould, A. L. (1969). A regression technique for angular variates. Biometrics, pages 683–700.

[49] Green, P. J. (1984). Iteratively reweighted least squares for maximum likelihood estimation,

and some robust and resistant alternatives. Journal of the Royal Statistical Society. Series B

(Methodological), pages 149–192.

[50] Gumbel, E. (1954). Applications of the circular normal distribution. Journal of the Amer-

ican Statistical Association, 49(266):267–297.

[51] Gumbel, E., Greenwood, J. A., and Durand, D. (1953). The circular normal distribution:

Theory and tables. Journal of the American Statistical Association, 48(261):131–152.



References 113

[52] Gurarie, E., Andrews, R. D., and Laidre, K. L. (2009). A novel method for identifying

behavioural changes in animal movement data. Ecology Letters, 12(5):395–408.

[53] Hall, R. L. (1977). Amoeboid movement as a correlated walk. Journal of Mathematical

Biology, 4:327–335. 10.1007/BF00275081.

[54] Hogg, R. V. and Craig, A. T. (1978). Introduction to mathematical statistics. New York:

Macmillan.

[55] Hopcraft, J. G. C., Morales, J. M., Beyer, H. L., Haydon, D. T., Borner, M., Sinclair, A. R.,

and Olff, H. (2007). Serengeti wildebeest and zebra migrations are affected differently by food

resources and predation risks. zebra.

[56] Jachowski, D. S., Montgomery, R. A., Slotow, R., and Millspaugh, J. J. (2013a). Unrav-

elling complex associations between physiological state and movement of african elephants.

Functional Ecology, 27(5):1166–1175.

[57] Jachowski, D. S., Slotow, R., and Millspaugh, J. J. (2013b). Corridor use and streak-

ing behavior by african elephants in relation to physiological state. Biological Conservation,

167:276–282.

[58] James, A., Plank, M. J., , and Edwards, A. M. (2011). Assessing lévy walks as models of
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Appendix

circular codes

library(circular)

circ.lin.reg <- function(x, theta, beta0, trace = FALSE, print = TRUE, tol = 1e-10, maxiter=1000)

{

if(is.vector(x))

x <- cbind(x)

n <- length(theta)

betaPrev <- coef(lm(theta~x))[2:(dim(x)[2]+1)]

# CHANGE 1:1 TO 1:4 FOR DIFFERENT STARTING VALUES

for(i in 1:1) {

if(i==2) betaPrev <- betaPrev

if(i==3) betaPrev <- betaPrev+1

if(i==4) betaPrev <- betaPrev-1

if(i==1) betaPrev <- rep(0,length(betaPrev))

S <- sum(sin(theta - 2 * atan(x %*% betaPrev)))/n

C <- sum(cos(theta - 2 * atan(x %*% betaPrev)))/n

R <- sqrt(S^2 + C^2)

mu <- atan2(S, C)

k <- A1inv(R)

diff <- tol + 1

iter <- 0

S.function <- function(betaPrev,x) {

2/(1 + (t(betaPrev) %*% x)^2) }

while(diff > tol & iter < maxiter) {

iter <- iter + 1

u <- k * sin(theta - mu - 2 * atan(x %*% betaPrev))

120
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A <- diag(k * A1(k), nrow = n)

g.p <- diag(apply(x, 1, S.function, betaPrev = betaPrev), nrow = n)

D <- g.p %*% x

betaNew <- lm(t(D) %*% (u + A %*% D %*% betaPrev) ~ t(D) %*% A %*% D - 1)$coefficients

diff <- abs(max(betaNew - betaPrev))

breaked = 0

if(iter==1000) {

breaked = 1

}

if(is.na(diff)==TRUE) {

breaked = 1

break

}

if(max(betaNew) > 100) {

breaked = 1

break

}

betaPrev <- betaNew

S <- sum(sin(theta - 2 * atan(x %*% betaPrev)))/n

C <- sum(cos(theta - 2 * atan(x %*% betaPrev)))/n

R <- sqrt(S^2 + C^2)

mu <- atan2(S, C)

# mu <- asin(S/R)

k <- A1inv(R)

if(trace == T) {

log.lik <- - n * log(2*pi*I.0(k)) + k * sum(cos(theta -

mu - 2 * atan(x %*% betaNew)))

cat("Iteration ", iter, ": Log-Likelihood = ",

log.lik,"mu ", mu, "k ", k, "b ", betaNew, "\n")

cat("Starting values ", i, "\n")

}

}

log.lik <- - n * log(2*pi*I.0(k)) + k * sum(cos(theta - mu - 2 * atan(

x %*% betaNew)))

log.lik.old <- - n * log(2*pi*I.0(k)) + k * sum(cos(theta - mu - 2 * atan(

x %*% betaPrev)))

cov.beta <- solve(t(D) %*% A %*% D)
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se.beta <- sqrt(diag(cov.beta))

se.kappa <- sqrt(1/(n * (1 - A1(k)^2 - A1(k)/k)))

circ.se.mu <- 1/sqrt((n - ncol(x)) * k * A1(k))

z.values <- abs(betaNew/se.beta)

p.values <- (1 - pnorm(z.values))*2

result.matrix <- cbind(Coef = betaNew, SE = se.beta, Z = z.values,

p = p.values)

dimnames(result.matrix) <- list(dimnames(x)[[2]], c("Coef", "SE", "|z|",

"p"))

cat("\n", "Circular-Linear Regression", "\n", "\n")

print(result.matrix)

cat("\n", "\n")

betaNew <- as.matrix(betaNew)

dimnames(betaNew) <- list(dimnames(x)[[2]], c("Estimate"))

list(mu = mu, kappa = k, beta = betaNew, log.lik = log.lik, log.lik.old = log.lik.old,

circ.se.mu = circ.se.mu, se.kappa = se.kappa, cov.beta = cov.beta,

se.beta = se.beta, result.matrix = result.matrix, breaked=breaked)

}

}

kappa <- out$kappa

kappa.var <- (out$se.kappa)^2

out$mu <- 2*pi - abs(out$mu)

out.par <- as.vector(c(out$mu,out$beta))

varcov.mat <- matrix(0,length(out$beta)+1,length(out$beta)+1)

varcov.mat[1,1] <- (out$circ.se.mu^2)/10

varcov.mat[2:(length(out$beta)+1),2:(length(out$beta)+1)] <- out$cov.beta

se <- sqrt(diag(abs(varcov.mat)))

z.val <- abs(out.par/se)

par.list <- cbind(out.par,as.vector(se),as.vector(z.val))

rownames(par.list) <- c("mu",colnames(cbind(X)))

colnames(par.list) <- c("coef", "se", "|z|")

print(round(par.list,3))

var.mat <- diag(1,dim(varcov.mat)[1]) * diag(varcov.mat)

out$mu / out$circ.se.mu

out$kappa / out$se.kappa



References 123

conf.level <- 0.95

mlogl <- function(alpha, x) {

if (length(alpha) < 1) stop("alpha must be scalar")

if (alpha <= 0) stop("alpha must be positive")

return(- sum(dgamma(x, shape = alpha, log = TRUE)))

}

n <- length(x)

out <- nlm(mlogl, mean(x), x = x, hessian = TRUE,

fscale = n)

alpha.hat <- out$estimate

z <- qnorm((1 + conf.level) / 2)

# confidence interval using expected Fisher information

alpha.hat + c(-1, 1) * z / sqrt(n * trigamma(alpha.hat))

# confidence interval using observed Fisher information

alpha.hat + c(-1, 1) * z / sqrt(out$hessian)

mean(log.lik[index.new]) # MEAN LL FULL MODEL

out.null$log.lik # LL NULL MODEL

(dev1 = 2 * (mean(log.lik[index.new]) - out.null$log.lik)) # Fahrmeier/Tutz DEVIANCE

(dev2 = 2 * (-mean(log.lik[index.new]))) # RESIDUAL DEVIANCE

(dev3 = 2 * (0- out.null$log.lik)) # NULL DEVIANCE

(AIC <- 2*dim(X)[2] - 2*mean(log.lik[index.new])) # AIC

Chapter 4 time series analysis

# This examples uses the dataset of the package

fGarch to estimate # an ARMA(1,1)-GARCH(1,1) with GEV conditional

distribution. library(fGarch) data(dem2gbp) x = dem2gbp[, 1] gF.new

= GSgarch.Fit(data = x , 1,1,1,1, cond.dist = "sstd", intercept =

TRUE, APARCH = FALSE, algorithm = "nlminb", printRes = TRUE, get.res

= TRUE)

library(fGarch) data(dem2gbp) x = dem2gbp[, 1] fitarmagarch0=
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GSgarch.Fit(data = Lx1 , 0,0,1,2, cond.dist = "stable", intercept =

TRUE, APARCH = FALSE, algorithm = "nlminb", printRes = TRUE, get.res

= TRUE)

###################################################### #Fitting

stable paretian ARMA-GARCH(1,0,1,2) model

######################################################## fitgarch1=

GSgarch.Fit(data = Lx1 , 1,0,1,2, cond.dist = "stable", intercept =

TRUE, APARCH = FALSE, algorithm = "nlminb", printRes = TRUE, get.res

= TRUE)

fitgarch2= GSgarch.Fit(data = Lx2 , 1,0,1,2, cond.dist = "stable",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch3= GSgarch.Fit(data = Lx3 , 1,1,1,2, cond.dist = "stable",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch4= GSgarch.Fit(data = Lx4 , 1,0,1,2, cond.dist = "stable",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch5= GSgarch.Fit(data = Lx5 , 1,0,1,2, cond.dist = "stable",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch6= GSgarch.Fit(data = Lx6 , 1,0,1,2, cond.dist = "stable",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

#################################################### #AIC for the

stable paretian GARCH models



References 125

##################################################

AIC1<-GSgarch.FitAIC(data = Lx1,1,0,1,2,cond.dist = "stable")

AIC2<-GSgarch.FitAIC(data = Lx2,1,0,1,2,cond.dist = "stable")

AIC3<-GSgarch.FitAIC(data = Lx3,1,0,1,2,cond.dist = "stable")

AIC4<-GSgarch.FitAIC(data = Lx4,1,0,1,2,cond.dist = "stable")

AIC5<-GSgarch.FitAIC(data = Lx5,1,0,1,2,cond.dist = "stable")

AIC6<-GSgarch.FitAIC(data = Lx6,1,0,1,2,cond.dist = "stable")

fitgarch1= GSgarch.Fit(data = Lx1 , 1,1,1,1, cond.dist = "sstd",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch2= GSgarch.Fit(data = Lx2 , 1,1,1,1, cond.dist = "sstd",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch3= GSgarch.Fit(data = Lx3 , 1,1,1,1, cond.dist = "sstd",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch4= GSgarch.Fit(data = Lx4 , 1,1,1,1, cond.dist = "sstd",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch5= GSgarch.Fit(data = Lx5 , 1,1,1,1, cond.dist = "stable",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitgarch6= GSgarch.Fit(data = Lx6 , 1,1,1,1, cond.dist = "std",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE) n1<-length(Lx1) plot(sort(Lx1), (1:n1/n1),

main = "Probability", col = "steelblue4") lines(Lx1, pstable(x =

Lx1, alpha = 1.67))

hist(Lx1, breaks=200,xlim=c(0,1500), probability = TRUE, border =

"white", col = "steelblue4") x = seq(min(Lx1), max(Lx1), 0.02)
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lines(x, dstable(x =x, alpha = 1.67, beta =1),col="red")

fit1<-garchFit(Lx1~arma(1,1)+ garch(1,1),data=Lx1 ,cond.dist="sstd"

,trace=FALSE)

fitarmagarch1= GSgarch.Fit(data = Lx1 , 0,0,1,2, cond.dist = "gev",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitarmagarch2= GSgarch.Fit(data = Lx2 , 0,0,1,2, cond.dist = "gev",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitarmagarch3= GSgarch.Fit(data = Lx3 , 0,0,1,2, cond.dist = "gev",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitarmagarch4= GSgarch.Fit(data = Lx4 , 0,0,1,2, cond.dist = "gev",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitarmagarch5= GSgarch.Fit(data = Lx5 , 0,0,1,2, cond.dist = "gev",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitarmagarch6= GSgarch.Fit(data = Lx6 , 0,0,1,2, cond.dist = "gev",

intercept = TRUE, APARCH = FALSE, algorithm = "nlminb", printRes =

TRUE, get.res = TRUE)

fitsst1<-garchFit(x = "Lx1", cond.dist = "sstd") fitsst2<-garchFit(x

= "Lx2", cond.dist = "sstd") fitsst3<-garchFit(x = "Lx3", cond.dist

= "sstd") fitsst4<-garchFit(x = "Lx4", cond.dist = "sstd")

fitsst5<-garchFit(x = "Lx5", cond.dist = "sstd") fitsst6<-garchFit(x

= "Lx6", cond.dist = "sstd")

fitstd1<-garchFit(x = "Lx1", cond.dist = "std") fitstd2<-garchFit(x

= "Lx2", cond.dist = "std") fitstd3<-garchFit(x = "Lx3", cond.dist =
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"std") fitstd4<-garchFit(x = "Lx4", cond.dist = "std")

fitstd5<-garchFit(x = "Lx5", cond.dist = "std") fitstd6<-garchFit(x

= "Lx6", cond.dist = "std")

fitsnormd1<-garchFit(x = "Lx1", cond.dist = "snorm")

fitsnormd2<-garchFit(x = "Lx2", cond.dist = "snorm")

fitsnormd3<-garchFit(x = "Lx3", cond.dist = "snorm")

fitsnormd4<-garchFit(x = "Lx4", cond.dist = "snorm")

fitsnormd5<-garchFit(x = "Lx5", cond.dist = "snorm")

fitsnormd6<-garchFit(x = "Lx6", cond.dist = "snorm")

fitsnigd1<-garchFit(x = "Lx1", cond.dist = "snig")

fitsnigd2<-garchFit(x = "Lx2", cond.dist = "snig")

fitsnigd3<-garchFit(x = "Lx3", cond.dist = "snig")

fitsnigd4<-garchFit(x = "Lx4", cond.dist = "snig")

fitsnigd5<-garchFit(x = "Lx5", cond.dist = "snig")

fitsnigd6<-garchFit(x = "Lx6", cond.dist = "snig")
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